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Abstract

The Merrifield-Simmeons index of a graph is defined as the total number of the
independent sets of the graph and the Hosoya index of a graph is defined as the total
number of the matchings of the graph. Let T (n, A) denote the set of trees with order
7 and maximum degree A. We present a conjecture on the structure of the tree in
T (n, A) with maximal Merrifield-Simmons index or minimal Hosoya index, and verify
it for [2H]<A<n-2

1. Introduction

Let G be a graph on n vertices. Two vertices of G are said to be independent if
they are not adjacent in G. A k-independent set of G is a set of k mutnally independent
vertices. Denote by #(G, k) the number of the k-independent sets of G. For convenience,
we regard the empty vertex set as an independent set. Then i(G,0) = 1 for any graph G.
The Merrifield-Simmons index of G, denoted by 1(G), is defined as i(G) = i G, k). So
i(G) is equal to the total number of the independent sets of G. Similarly, t‘:;(()) edges of G
are said to be independent if they are not adjacent in G. A k-matching of G is a set of &

mutually independent edges. Denote by z(G, k) the number of the k-matchings of G. For
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convenience, we regard the empty edge set as a matching. Then z(C
L
G. The Hosoya index of G, denoted by z(G), is defined as z(G) = z(G, k). Obviously,

k=0

0) = 1 for any graph

ot

z(G) is equal to the total number of matchings of G.

The Merrifield-Simmons index was introduced in 1982 in a paper of Prodinger and
Tichy [17], although it is called Fibonacci number of a graph there. The Merrifield-
Simmons index is one of the most popular topological indices in chemistry, which was
extensively studied in a monograph [15]. There Merrifield and Siinmons showed the corre-
lation between this index and boiling points. Now there have been many papers studying
the Merrifield-Simmons index (see [1, 8, 13, 16, 17),{19]-[22],[24, 25}). The Hosoya index of
a graph was introduced by Hosoya in 1971 [11] and was applied to correlations with boil-
ing points, entropies, calculated bond orders, as well as for coding of chemical structures
{[15, 18]). Since then, many authors have investigated the Hosoya index (e.g., see [3]-[10],
[12],[18]-[22],[24, 25]).

For Merrifield-Simmons index and Hosoya index, a direction is to determine the graph
with extremal index in a given class of graphs. Here we consider the trees with n vertices
and given maximum degree. Let 7(n,A) be the set of all the trees with n vertices and
maximum degree A. Denote by T* the tree in 7T (n, A) such that i(T) < i{(T*) or 2(T') >
2(T*) for any T € T(n,A). In other words, T* has the maximal Merrifield-Simmons index
or minimal Hosoya index among all the trees with n vertices and maximum degree A. In
this paper, we present a conjecture on the structure of T, and verify it for [%] <AL
n—2.

In order to state our results, we introduce some notation and terminology. Other
undefined notation may refer to [2]. If W C V(G), we denote by G — W the subgraph of
G obtained by deleting the vertices of W and the edges incident with them. Similarly, if
E' C E(G), we denote by G — E’ the subgraph of G obtained by deleting the edges of E'.
IfW = (v} and £’ = {zy}, we write G — v and G — zy instead of G — {v} and G — {xy},
respectively. If a graph G has components Gy, Ga,--+,Gy, then G is denoted by Ji_; Gi.
For a vertex v of G, we denote Ng[v] = {v} U { u | wv € E(G)}.

2. Lemmas and results

According to the definitions of the Merrifield-Siinmons index and Hosoya index, we

immediately get the following results.

Lemma 2.1 Let G be a graph and uv be an edge of G. Then
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(1) i{(G) = (G — wv) — (G — (Ng[u] U Ng|v])),
(2) (see [9]) 2(G) = 2(G — wv) + 2(G — {u,v}).

Lemma 2.2 (see [9]) Let v be a verter of G. Then
(1) #(G) = i(G — v) + (G - Nalu]),

(2) 2(G) = 2(G —v) + 3 2(G = {u,v}), where the summation ertends over all vertices

adjacent to v.

In particular, when v is a pendent vertex of G and u is the unique vertex adjacent to
v, we have i(G) = (G — v) + (G - {u,v}) and z2(G) = 2(G — v) + 2(G — {u,v}).

From Lemma 2.1, if uv is an edge of G, then z(G) > z(G — wv). From Lemma 2.2, if
v is a vertex of G, then i(G) > (G —v). Moreover, if G is a graph with at least one edge,
then 2(G) > z(G — v).

Lemma 2.3 (see [9]) If G|, G3,---,G, are the components of a graph G, we have
(1) i(G) = [Tizy i(G),
(2) 2(G) = I1ic, 2(Gy).

For a vertex v of a tree T, if dp(v) > 2, we call v an internal vertex of T. Otherwise
we call v a pendent vertex. Recall that T* is the tree with maximal Merrifield-Simmons
index or minimal Hosoya index in T{n,A). Now we show T™* has the properties shown in

the following two lemmas.

Lemma 2.4 There are no two interval vertices u,v in T* such that d{u) < A and
d{v) < A.

Proof. We show the result by contradiction. Assume u and v are two internal vertices
of T* such that d(u) = k+1 < A and d(v) = s+1 < A. Then T* can be scen as the graph
shown in Fig. 1, where X; and Y] are the subtrees of T* with root z; (1 <4 < k) and y;,
(1< j < s), respectively, and T} is the component that join u and v together. Note that
ur; € E(T*), vyj € E(T*) (1 <i <k, 1<j<s), V(T1) is an empty set if uwv € E(T*)
and u) = vy if d(u,v) = 2. We denote Ny, [a;] = U; and Ny, [y;] = V;. T" and T” are the

trees obtained from 7.



Fig. 1

To show the lemma, it is sufficient to show that
(1) i(T") > i(T*) or i(T") > i(T*);
(2) 2(T") < z(T*) or 2(T") < 2(T*).

We first show i(T") > i(T*) or i(T") > i(T*). Denote L; = [I,i(X,), L} =
[Eoyi(Xi = 2:) (1 <5 <K)and R = T, i(Ya), R, = [T_yi(Yi — %) (1 <4 < 9).

If d(u,v) > 3, then by Lemmas 2.2 and 2.3, we have

i(T") LRy () + Ly R, - i(Th — {w1,v1}) + Ly R -i(Ty —v1) + LRy - i(Th — w),
i(T’) = LiR,- i(T]) + LLR’, . 'i(T] = {ul,"ul})
+ L R - i(Xp — ax)i(Ty — v1) + Ly R - i(X0)i(Ty — wy),

i(T”) LRy - i(Th) + LR, - Ty — {wr,01})

+i(Ye) - LeRy_y - i(T1 = v1) + (Y — ya) - LiRamy - i(Th = ).

Note that i(Xg) = i( Xy —a) +i( Xk — Uy) and i(Y;) = i(Ys — ys) +2(Ys — Vi), we have
(T —4(T*)
(T - 4(T*)

§(Xe = UMLL_ R8Ty — 1) = Lt B 4T3 —v3)),
i(Ye — V(LR _q - i(Th — n1) — LRy - (T — ).

If i(T") — i(T*) < 0, since i(Xx — Ux) > 0, we have

Ly By (T —w1) — L1 Ry - i(Th — v1) 0.

Since R, > 0 and #(Xj — xx) > 0, we have

Ly R, -i(T) - i( Xy —
L i(Ty — uy) < 2215 (T — n)i(Xx Ik).

S

So

LR, - i(Ty ~ v) = LARe_y - i(T) — 1)
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L R i(Ty = w)i( Xy — )
R,

H Xk — 24))

> LRy (T —v1) = Reey

i(Ys —ys)

= L= 1R’ 1T =) - (B X)) — TVA)

> 0

Note that (Y, — V) > 0, we have i(T") > i(T*).

If d(u,v) < 2, it is easy to see that

(1) — i(T*)
(T — i(T™)

(X — U)(Li_ Ry — Li RY),
i(Ys — Vo) (Le R,y — LiRs-y).

Similarly, we can show i(T”) > i(T*) or i(T") > i(T*).
Now we show that z(T") < 2(T*) or z(I") < 2(T*). Denote P; = [[_, 2(X;), P =
L e (1< < k) and @ = TE, 2(%), Q) = T, Xpdd (1 < < 5). By
Lemmas 2.2 and 2.3, we have
A(T") = PeQul(1+ P)((Th) + 2(T1 —w) + 2(T1)Q))
+2(Th = w) + 2(T7 — {ur,m1}) + 2(Th —w1)QY],

AT) = PuQul(1 + PLy)(2(Th) + o(Ti — ) + 2(T)Q, + zm)ﬂ‘%’*’)
+2(T7 — ‘ul) + Z(Tl - {‘LL],'U]}) +2z(Th - u1)Q' + 2(Th - u;)——(){,—ﬁ)-]
AT = PQ1+BL+ %ﬂ)(z(m + 2(T — o) + 2(T)Qy)

+2(Ty = w) + 2(T) = {ur,v1}) + 2(Th = w) Q)

Then we have

2( Xy — ax)
2(Xy)

‘"W’l (e(TO)@ s~ 2(T0)PL+ 2(Ts — v1) — 2Ty — uy)).-

f 2(T") > z(T*) and 2(T") > 2(T*), we have

AT — 2(T*)

PeQs (2(TVF_ — 2(T)Q, — 2(Th — v} + 2(Th —wy)),

2(T") ~ z(T) FQs

i

A
B

TPy = 2(T)Q, — 2(Ty = v) + 2(Th —wy) 20,
AT)Qy — 2P+ 2(Th ~ v1) — 2(Ty —uy) 2 0.

But we have

o - (S Sl <o
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a contradiction. Hence 2(T") < 2(T*) or 2(T") < z(T™).

If d{u,v) < 2, similarly we can show z(T") < 2(T*) or 2(T"} < z(T*). This completes

the proof of Lemma 2.4. "

Lemma 2.5 [fujus...up_quy is a longest path in T*, k> 5 and A > 3, then d(ug) =
dugq) = A

Proof. We show the tesult by contradiction. Without loss of generality, we assume
d{us) = 4+ 1 < A. Then by Lemma 2.4, we know all the other internal vertices of T*
have degree A. Since wjuy . .. ug is a longest path in T*, T* can be scen as the graph

shown in Fig. 2, where y1 +yo = A — 2 and |V(T})| > L.

A-l1—a<y - A—l{:

Fig. 2

A-1 A=t

IfA—1-1x <y, we have 35 > 1 since z + 1 < A, Then as shown in Fig. 2, we can
get T'. It is easy to see that T € T(n,A). By Lemmas 2.1, 2.2 and 2.3, we have

W)

i(T* — ug) +i(T™ — Np.[ug])

= (T x 11+ 21+ 2871 4 i(T) — uy) x 25HA Dy
i(T) = (T —ug)+i(T' — Nipslug))

= (M) x 7R 4 28Nt Ty ) x 28Rt D)

AT = =T —w)+ Y. #{T" = {w,w))
uswe B(T*)
= (L+2)A%(T1) +[A¥ + 1 A¥ (1 + 2) + A7 (1 +2)]=(Th)
+(1 + 2)A¥ 2(Ty — ua),
A1) = (T —w)+ D (T —{uswh)
ugweE(T")
= AT+ [+ DAY + (2 - go — DARH](T) + APHT] - )
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Note that the above four equations also hold when yp = 0. It is easy to see that

(T) = i(T*) = (23777 = 127712 i(T) — ug)2% —i(T)(1 + 25717,
Since 22 > 142271 and 2i(T) —u4) > i(T1), we can get i(T') ~i(T*) > 0 which contradicts
with the choice of T*.

And if g > 0, we have

2(T*) —2(T") = A2V A -z —1)[ydA - D2(Th) + A(z(T1) — 2(T1 — ug))].

If yo =0, then y; = A — 2, we have
2(T*) = 2(T) = (& —z-1)(=(T1) — 2(Tq — w)).
Since * < A — 1 and z(Ty) > 2(Ty — ug), we get z(T") < z(T*) in either case which
contradicts with the choice of T*. This completes the proof when A — 1 — z < y;.

If A-1-2 >y, we have y5 > 2, then as shown in Fig. 2, we can get 7”. Obviously,
T" € T(n,A). Similarly we have

iT") = iT" < ug) +iT" — Nyn[ua])
= i(Tq) x 22H (1 + 2871)% 4 §(Ty) x AA-Dle==+1)(g 4 9a=1)z-1
+i(T] _ u4) X 2Ax—yg-](1 5 2A—1)y~z—:r+1!

AT = AT -w)+ Y AT fusw))
uaweE(T")

= M)A 22+ 2+ A% + A+ (2 - Dz +n)A + (2 — 1)(ya — x +1)]
+2(T) —u) A Nz +y1 + 1A+ (ya —z + 1)].

Note that the above two equations also hold when y; = 0. Then

i(T") —i(T™*)

982w (] 4 9A-Tym-rH] _ pAm-Aetrily

X (2i(Ty — ua)22C1D = 4(1)(1+ 2871,

(A + A7 — (z = DAPT)((Th) - 2(Th — ua))

+@ - DT (A -+ - o)A+ A -tz —1].

2(T*) = 2(T")

Since (A—1)(yo—x+1) > Aya—Az+x+1, 2i(T1 —uq) > i(T1) and 2% > 1+2°71, we have
i(T") > +(T*) which contradicts with the choice of T*. And since A =2 >y, >2—-12>0
and 2{T7) > z(T} — u4), we have z(T*) > z(T") which contradicts with the choice of T*. =
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Definition 2.1 (see [6]) Let A > 3 and R € {A — 1,A}. For cvery n the family
G(RR,A) of trees has a unique member T of order n up to isoimorphism which we now

define together with a natural plane embedding.

Let Mo(R,A) =1 and My(R.A) =1+ R+ RA - 1)+ -+ RA - 1) fork > 1.
Let
M(R,A) <n < My (R, A)

for some k> 0. Let n — Mp{R,Ay=m{A-1)+7r for some 0 <r <A~ 1. Let T be the

tree of order n emnbedded in the plane such ihat
(i) all vertices of T lie on some line R x {i} for0<i<k+1,

(#1) there is a unique vertex on line R x {0} which has exactly min{n —1, R} neighbors
that lie on line R x {1},

(i) for 1 < j < k— 1 every vertex on line R x {j} has a unique neighbor on line
R x {j — 1} and A — 1 neighbors on line R x {j + 1},

(iv) if v1,v9,.. ., Umyy are the m+ 1 leftmost vertices on line R x {k} such that v; lies
left of v; for i < j, then each of vy, vy,...,vm has A — 1 neighbors on line R x {k + 1}
and U4y has v neighbors on line R x {k+1}.

For a tree in G(R, A), we give each vertex a label for convenience. Label the vertex in
Rx {0} by 0Oand Rx {1} by 1,2,3..., R respectively. For j > 2 and v € R x {j}, we label
v with dyigiy ... 43175 if Npyegj1)(v) = d1izfs ... 4j-1. It is easy to sce that there are A-1
vertices in Rx {j} whose labels are same except for the last number, we will denote them by
ipig. .. i1 ldrdn. . 8502, fidp .. 51 (A — 1) respectively. Without loss of generality,
we may assume the vertices in R x {j} can be arranged from left to right according to the
order from 11:--1to (A = 1)(A =1)--- (A —1). Fig. 3 gives us an example of a tree in
G(R,A) and its labelling where R = A = 3 and n = Ma(R,A) +5(A ~ 1) + 1.

Fig. 3

If T is a tree in G(R, A) with order n = M(R,A), then we denote T' by Ty p. If T
is a tree in G(R,A) with order M (R,A) < n < Mgy (R, A), for a vertex v € R x {1}
(1 <& < k), let T, denote the maximal subtree of T that contains v and has only

vertices on lines K x {j} for j > i. Let uj,uz,...,um be m vertices of the graph G,
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and Gluyg, uz, ..., wa){a),a0,...,¢,) denote the graph obtained from G by attaching a;

pendent vertices to the vertex w; (1 <7 <m).

Definition 2.2 Suppose TA € T(n,A) with order My(A,A) < n < Mi(AA).
Suppose n — Mi(AA) =m(A—1)+7 where 0 <r < A=1. We call T a A star-tree, if

(i) m=r=0,TA =Tka;

(ii)m #0,r=0,Th =Tiavi, vz, o) (A—1,A=1,--- | A1) where vy, va, -+, vy

are the leftmost m vertices on line R x {k} of Ty a;

(iii) m # 0 and v # 0, suppose v1,v2, U, Umy1 @re the leftmost m + 1 vertices
on line 1 x {k} of Ty a and the label of vniy is iydy...ix—1%k, TR is obtained from
Tea(v1,v2, VU ) (D = LA = 1,- - JA — 1,7) by switching the subtrees

Trityiicoa et 1) Ty e GiA D) ¥ s Lhpha clipe s G (A =1=5))

from verter iyia ...ix_y to vertex iyia...ix_1ix, where the addition is module A — 1 addi-

tion.

In order to explain how to switch the subtrees when m # 0 and r # 0, we give an example

in Fig. 4 where A=4andm=r=1.

1]1 1J2 113 121

[
T2,4(11,12)(3, 1)

switching subtrees T3, Th1

from vertex 1 to vertex 12

Fig. 4

Conjecture. Suppose T € T(n,A) with order Mi(A,A) < n < Miyp(A,A) where
k> 1, then
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(i) (T) <4(TA) and the equality holds if and only of T =T};
(1) z(T') > 2(T}) and the equality holds if and only if T = TA.

n—2A—1

P;\—l.nfg\vl PaAvlm<2Arl,Ar 1

Fig. 5

Now we verify our conjecture for [3'—}1] <A<n-2.

Theorem 2.1 Let T be a tree in T(n, A), PA7IM87 gpg pp1ATLA28T e ghe
trees as shown in Fig. 5. If [2] < A <n -2, then i(T) < i(T*) and 2(T) > 2(T*) with
the equality hold if and only if T = T*, where T* = PP 237 i (2] < A <n—2, and
T* o pPrASIAEASl gp ikl € A < [B] - 1.

Proof. Suppose T is a tree in 7 (n, A) with maximal Merrifield-Simmons index. Let
P = ujus - - - ux be a longest path in T*, then we know u;,u; are the pendent vertices of
T*. By lemma 2.4, we know at most one of ug,u3,--,ux—1 has degree less than A, then
we have n > A+ (k—4)(A-1) + 20

If [5] £ A < n—2, then we must have k = 4. Without loss of generality, we may
assume d(uz) = A. Then it is easy to see that [3J] < A<n—2and T* = Pza"‘"_a_l.

If ["—‘.iu] < A < [3], we must have k = 5. Then we may assume ug, u3, u4 are the only
three interval vertices of T*, otherwise we also can get a contradiction with A > [Egl] by
lemma 2.4. By Lemma 2.5, we know d(u2) = d(us) = A, and thus T* = Pf_]‘a_l'“_m"l.
So we have proved that #(T) < ¢(T™) with the equality holds if and enly if T = T*.

Similarly we can prove z(T") > z(T*) with the equality holds if and only if 7= T*. »

Remark

From Theorem 3.2 [14], we can also get one result of Theorem 2.1:

Let T be a tree in T(n,A) and [21] < A < n =2, then 2(T) > 2(T*) with the
equality holds if and only if T = T*, where T* 2 pRA=1m=8-1 4 [51 <A <n—2 and
Tret AT el < A S TR - 1.
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