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Abstract: For a graph G, its Hosoya index is defined as the to-
tal number of independent edge sets of G. Hou in Discrete Appl.
Math. 119(2002)251-257 characterized the trees with a given size
of matching and having minimal and second minimal Hosoya in-
dex. In this paper, we determine the trees with m-matchings and
the third minimal Hosoya index.

1 Introduction

The Hosoya index of a graph, abbreviated by H-index, was first defined by
Hosoya [4] in 1971, which is a topological parameter to study the relation between
molecular structure and physical and chemical properties of certain hydrocarbon
compound. Much related progress can be found in [2 — 7). All graphs considered
here are simple, finite and undirect. Undefined notation and terminology conform
to those in [1].

Let G be a graph with the vertex set V(G) and the edge set E(G). Two edges
of G are said to be independent if they possess no vertex in common. Any subset
of E(G) containing no two mutually incident edges is called an independent edge
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the Science Foundation of the State Education Ministry of China(205170).
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set of G. An independent edge set of & edges in G is said to be an k-matching of
G. H-indezx of a graph G is defined as follows:

Z(6) = Y m(G. k),

where m(G, k) denotes the number of k-matchings of G. Recall the m(G,0) =
1 and mn(G,1) = |E(G)|. Note that if m(G, k) = 0, then m(G k + 1) = 0.
Furthermore, m(G. k) = 0 for k > 3, where n = |V(G)].

For n>2, by P, and S, we denote the path and the star of n vertices, respee-
tively. For all trees with n vertices, it was proved that the path P, and star S,
have maximal and minimal H-index in [4, 6], respectively, that is, for any tree T
with order n, we have

n=Z(S)SZ(N)SE(P) = Fo.

where F,., is the (n + 1)th Fibonacci number with F,. = F, + F,_; and
Fy = Fy = 1. The author in [3] characterized the trees with m-matchings and with
the minimal and second minimal H-index. In this paper, we shall characterize
the trees with m-matchings and having the third minimal H-index.

Let k and 7 be two non-negative integers and let n = 2k +r + 1. The tree
S(n, k,r) is defined as follows [3]: S(i, k, r) is the graph obtained from star Sky,41
by attaching a pendent edge to & non-central vertices. Note that S(n, k,r) has
a matching of m = k + 7" edges, where v’ = 0if 7 = O and v = 1 if r > 0, and
the center of S(n,k,r) is the center of the star Sgy,4;. For n>3, let R(n,k,7)
denote the graph obtained from S(n — 2,k — 1,7) by attaching a path of length
2 to one vertex of degree 2. For example, Graphs §(14,5,3) and R(14,5,3) are
the graphs shown in Figure 1:

5(14,5,3) R(14,5,3)
Figure 1. 5(14,5,3) and R(14,5,3).

It is obvious that R(n,k,r) also has an m-matching, where m = k + 1,
¥ =0ifr =0and 7 = 1if r > 0. The center of R(n,k,7) is the center of
S(n — 2,k —1,7). Now we define three new families of graphs: T'(n, k,r) is the
graph obtained by attaching one vertex of degree 1 of P; to the pendant vertex of
S(n — 2,k,r) that is not adjacent to the center, U(n, k,r) is the graph obtained
from R(n — 2,k — 1,r) by attaching one vertex of degree 1 of P; to one vertex
of degree 3 which is adjacent to the center, and V'(n, k,r) is the graph obtained
from R(n — 2,k — 1,r) by attaching one vertex of degree 1 of P; to one vertex
of degree 2 which is not adjacent to the center. As some examples, T'(14, 4, 3),
U(15,6,2) and V(14,6.1) are the graphs shown in Figure 2.
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T(14,4,3) U(15,6,2) V(14,6,1)
Figure 2. 7(14,4,3), U(15,6,2) and V(14,6,1).

2 Preliminaries

Let 7" be a tree with n vertices and A its adjacent matrix. Let B(T) = A+ I,
where [ is unit matrix of order n. Recall the definition of permanent [8] of a
matrix B = (b;):

per(B) =" [Tbiw),
o i=1
where the summation is taken over the symmetric group of order n.
Lemma 1([3]). Let 7 be a tree. Then

Z(T) =per(A+1).
Let M denote a matching of graph, v€ M means the vertex v is incident to

an edge of M and v¢gM means the vertex v is not incident to any edges of M.

Lemma 2([3]). Let T be a tree with a perfect matching. Then 7" has a pendant
edge which is incident to a vertex of degree 2.

Lemma 3([3]). Let T be a tree of n vertices with an m-matching, where n > 2m.
Then there exists an m-matching M and a pendant vertex v such that vgM.

Lemma 4([3]). Let T be a tree of n vertices with an m-matching, where m > 1.
Then
Z(T) > 2" *(2n — 3m + 3),

where the equality holds if and only if T'= S(n,m — 1,n — 2m + 1).
Lemma 5([3]). Let T be a tree of n vertices with an rn-matching, where m > 1.
If T#8(n,m —1,n — 2m + 1), then

Z(T) > 2™ 4(10n — 15m + 9),

where the equality holds if and only if T = R{(n,m — 1,n —2m + 1).

Remark: There is an error that the original version of Lemma 5 in (3] is
Z(T)>5-2m%(2n — 3m).

Lemma 6. Z(T(n, k,7)) = 257%(5k + 10r + 11).
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Proof: We choose an appropriate ordering of the vertices for T'(n, k,7), such that

1100010 - 101:--1
111000
011100
001110
000110
1000011
BIj=A4i=|008 0011 ,
1 11
L1
1
1 1

where the unwritten entries are all zerces. Calculating the permanent by an
expansion along the first row, we then obtain

Z(Tln,k,r)) = 5251 4 3.2571 4 5(k — 1)2472 4 57251 = 25 2(5k + 10r 4 11).

As an analogue to the proof of Lemma 6, we have the following lemma.
Lemma 7. (i) Z(U(n, k,7)) = 2873(6k + 12r — 2).

() Z(V(n, k,7)) = 25736k + 12r — 1).
Lemma 8. Let 7" be the graph obtained from G by attaching one vertex of degree
1 of P3 to a vertex of G, where Ge{S(n —2,m —2,1), R(n —2,m — 2,1}, U{n ~
2,m—2,1),V(n—2m-21)} and T¢{S(n,m — 1,1), R(n,m — 1,1),U(n,m —
1,1}, V(n,m —1,1)}. Then

Z(T) =z Z(T(n,m —2,1)).

Proof: We only prove the lemma for G = U(n — 2,m — 2,1). It is easy to see
that n = 2m and

Z(U(n,m - 1,1)) = 2"4(12n - 18m +4), Z(T(n,m — 2,1)) = 2°(5m + 11).

Note that m>5 for U{n — 2,m — 2,1) and U(8,3,1)=5(8,3,1) if m = 5. By the
definition of T', we have that T is one of the following graphs:

S$(10,4,1), or R(10,4,1)=U(10,4,1), or T'(10,3,1), or H,,
where H; is the graph shown in Figure 3.

AN
i

Figure 3. Graph H,.
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By calculation, we have Z (/) = 76>Z(7T(10,3,1)) = 72. From the condition of
the lemma, the result holds.

Now we need only consider the case of m>6. For T', vy, v, and vy are the
vertices of T shown in Figure 4.

V3! U2 (o1

Figure 4. Graph T with the vertices v, vy and v3.
Then
1 1 0 0,5
Bry=A+1=| o 1 ' O
0T, OT; B(U(n—2,m-21))
where O, _3 is a zero vector of length n — 3 and OT_, is the transpose of O,,_s.
perB(T) = 2perB(U{n — 2,m — 2,1)) +perB(T),

where T" is the graph obtained from T by deleting vy, v, and v3. From the
structure of U(n — 2,m — 2,1) and the condition of the lemma, we have that
dr(vs) = 2, or 3, or 5. We distinguish the following cases:

Case 1. dp{vs) = 2. Then T is a tree of n — 3 vertices with (m — 2)-matchings.
It follows from Lemma 4 that

perB(T)>2™4(2n — 3m + 3).

Together with per B(U(n — 2,m — 2,1)) = 2" 5(12r — 18m — 2), we have that
per B(T)>
2m=4(14n — 21m + 1) and per B(T') — perT(n,m — 2,1)>2""1(2m — 10). So

perB(T)>per B(T(n,m — 2,1)).

Case 2. dp(vs) = 3. Then T" is the union of K, and a tree of n — 4 vertices with
(m — 2)-matchings. From Lemma 4 we have

perB(T')22"~*(2n = 3m + 1).

So
per B(T)>2""4(14n — 21m — 1).

If . = 5, then 7' = R(10,4,1). If m>6, then

perB(T) — per B(T(n,m — 2,1))>2""4(2m — 12),

and so

per B(T)>perB(T'(n,m — 2,1)).
Case 3. dp(vs) = 5. Then T is the graph shown in Figure 5.
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l !

Figure 5. Graph T with dy(vg) = 5.

1f m = 6 or 7, then T is R(12,5,1) or U(14,6,1), which contradicts to the
condition of the theorem. If m > 8, by calculation we have Z(T) = 2"~5(28m —
12), and so

Z(T) = Z(T(n,m —2,1)) = 2"7%(28m — 12) — 2" 4 (5m + 11) > 0.

This completes the proof.

Lemma 9. Forn > 2m+1, let T be the graph obtained from & by attaching one
vertex of P to any vertex of G, where Ge{S(n—1,m—1,n—2m), R(n—1,m-
1,n=2m),U(n—1,m—1,n—2m), V(n—1,m—1,n—2m)} and T¢{S(n,m—1,n—
2m+1), R(n,m—1,n—2m+1),Un,m—1,n—2m+1),V(n,m—1,n—2m+1)}.
Then

Z(Ty>Z(T(n,m—2,n — 2m+ 1)).
Proof: We only prove the lemma for G = U(n — 1,m — 1,n — 2m). For

U(n —1,m —1,n — 2m), we have m>4. By calculation we have

Z{Um,m—1,n—2m+1)) =2""%(12n — 18m + 4)
and
Z(T(n,m—2,n—2m+1)) = 2"7*(10n — 15m + 11).

For T', v is the vertex of T" with v,€V(F,) and dp(1y) = 1, and vy is the
vertex of T' with va€V (P2) and dr(v2)>2. Then

1 1 Op_o
B(T)=A+I=| 1 :

O, B{Un—-1,m—1,n-2m))

where O,,_; denotes the zero vector of length of n — 2 and OF_, is the transpose
of O,,_;. From the theory of matrix, it follows that

perB(T) =perB(U(n — 1,m — 1,n — 2m)) + perB(T’),

where T is the graph obtained from T by deleting v, and vy. From the structure
of U{n — 1,m — 1,n — 2m) and the condition of the lemma, it is easy to see that
dr{vs) = 2, or 3, or 5. We distinguish the following cases:

Case 1. dp(vs) = 2. Then 7" is a tree of n — 2 vertices with (m — 1)-matchings.
From Lemma 4 we have

perB(I')22""%(2n — 3m + 2).
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Since
perB(U(n —1,m — 1,n — 2m)) = 2""3(6n — 9m — 4),

we have per B(T)>2™3(8n — 12m — 2) and per B(T') — perT(n,m — 2,n — 2m +
1)>2"%(6n — 9m — 15). By n > 2m + 1, we have
perB(T)2per B(T(n,m — 2,n — 2m + 1)).

Case 2. dr(vz) = 3. Then T"is the union of /; and a tree of n — 3 vertices with
(m — 1)—matching. By Lemma 4, it is not hard get that

perB(T")>2"3(2n — 3m).
So
per B(T)>2"73(8n — 12m — 4),
perB(T) — perB(T(n,m — 2,n — 2m + 1))>2"*(6n — 9m — 19).

We arrive that
per B(T)>perB(T(n,m —2,n — 2m + 1))

for m>5. For m = 4, we obtain the result by calculation.

Case 3. dr(vg) = 5. Then T is the graph shown in Figure 6.

A

Figure 6. Graph T with dp(v2) = 5.

If m =5 and n = 11, then T = R(11,4,2), contradicting with the condition
of the theorem. If m =5 and n > 11 or m > 6, with a similar proof of Lemma 6
we have Z(T) = 2"~4(16n — 24m — 12). It is easy to get that

Z(T)- Z(T(n,m —2,n—2m + 1)) = 6n — 9m — 23.
Note that n > 2m + 1. Thus we have that Z(T') — Z(T'(n,m —2,n—2m+1)) =
) =

6n—9m—23 > 0form=>5andn > 11, and Z(T) - Z(T(n,m—2,n—2m+1)
6n — 9m — 23 > 3m — 17 > 0 for m > 6. This completes the proof.

3 Main Results and Proof

Theorem 1. Let T be a tree of n vertices with m-matchings, where m> 1.
U T¢{S(n,m—1,n—=2m+1),Rnm—1,n-2m+1),Un,m-1,n—2m+
1),V(n,m—1,n —2m+ 1)}, then

Z(T)=2""*(10n — 15m + 11)
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with equality if and only if T = T'(n,m — 2,n — 2m + 1), where n. > 2m.

Proof: From the condition of the theorem, we have n>2m. Suppose that n =
2m, that is, T has a perfect matching. We prove the theorem by induction on
m. When m = 1, T = P, = 8(2,0,1); when m = 2, the tree with perfect
2—matchings is Py = S(4,1,1); I[f m = 3, the trees with perfect 3—matchings are
5(6,2,1), or Fs. If m = 4, the trees with perfect 4—atchings are B, S(8,3,1),
R(8,3,1), T(8,2,1) or the graph H; shown in Figure 7:

Figure 7: Graph H,.
By calculation, we have that Z{H,) = 32>Z(T(8,2,1)) = 31.
If m = 5, From the reference [9], we know that the trees with perfect 5—matchings

are

Py, 5(10,4,1), R(10,4,1),7(10,3,1), V(10,4,1), Gi(1 < i < 10),

where (5; are the graphs in Figure 8.

G] G‘z G3 G4 GS
r——se
G(j G7 Gg Gg G 10

Figure 8. Some graphs &; with perfect 5—matchings.

By calculation it is not hard to see that the results holds.
We now suppose that m>5 and proceed by induction. From Lemma 2,
it follows that T' has a pendant edge ww such that d{u) = 1 and d(w) = 2.
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Then there exists only one another edge wv such that we obtain the graph /i3
with 2(m — 1) vertices and {m — 1)—matching, by deleting « and w. Note that
T'e{Sn-2,m—-21),Rn—-2,m—=21),Un—-2,m—-2,1),V(n—2,m-2,1)}
It follows, from Lemma 8 and the condition of the theorem, that

Z(T)=2"1(10n — 15m + 11).

HT'¢{S(n—2,m—-2,1), R(n—2,m—2,1),U(n—2,m—2,1),V(n—2,m—2,1)},
by the induction hypothesis we have

Z{T)=2™5(10(n—2)—15(m—1)+11) = 2"°(5(m—1)+11), (1)

with equality if and only if T = T(2m — 2,m — 3,1).
Labelling the vertices by the order of u,w and v, we have

and
Z(T) = per B{T) = perC+2per B(T') = perC+2Z(T'). (2)

Since 7' has at least one perfect (m — 1)—matching, we label the vertices
except for u,w,v such that

113
11

— -
— -

where there are (m — 2) blocks ( i i ) in C. If the entries in x of C are all

0, then the two entries in X7 of B(T") which have the same rows as some block

11 in C are not all 1 or 0. If the two entrics are all 1, then T contains a

cycle; If they are all 0, then T is disconnected. Hence, one of them is 1 and the
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other is 0. Noting that the label of 7", we have

1101010 ... 1 01
111
011
10011 *
00011
B(T)y=|1
0
0 * 2
1 1
Obviously, T" = S (2m —2,m —2,1) which is a contradiction. So the number
of s in * of C' is at least 2(C is symmetric). We choose two blocks i 1 ;

which have the same row or column as that of some 1. By expanding perC' along
the four rows in which the two blocks lie, we have

PerC > per D-perE, (3)
where D is one of the following four matrices,

1110 1101 1100 1100
1100 1100 1101 1 R 4
1011 [’ 0011 |’ 0011} 0111
0011 18011 0111 0011

and F is obtained from C by deleting the row and column in which the entries
of D lie. It is obvious that per E>2™"% and perD = 5. Thus

perC>5.2m1, (4)

Z(T) = perC+22(T ) 25:2m 4 +2.9m=5(5(m—1)+11) = 2"~ (5m+11) (5)

with equality in (5) holds if and only if Z(T") = 2™73(5(m — 1) + 11), that is,
T =T(2m —2,m—3,1) and perC' = 5:2™*_ Then there exists only one minor
like as D in C, the other entries is 0, the minor like as D implies that there is path
P, contained in 7. Since T is a tree, there is only one 1 of the entries in X” which
have the same rows as D. The degree of all vertices in 7" = T'(2m—2,m—3,1) is
less than 3 except the vertex v. Thus, the number of 1’s in every row of C' is not
more than 4. So the entries in X7, which have the same row as one of the rows
in which the two 1's of D lie, are 1, then one of pendant vertex of P; is adjacent
tov of T'.

Suppose that n > 2m, we will prove the theorem by induction on the order
of T. From Lemma 3, it follows that 7" has an m-matching M and a pendant
vertex v such that v@M. Let w be adjacent to v in 7" and 7" denotes the graph
from T by deleting v. Then T is a tree of n — 1 vertices with m-matchings.
HT e {Stn—1,m—1,n—2m),Rn—-1,m—-1n-2m),Un—1,m-1n-



-603-

2m), V(n—1,m—1,n —2m)}, by the condition of the theorem and Lemma 9 we
have
Z(T)=2""*(10n — 15m + 11).

T ¢ {Stn—1,m—1,n—2m),Rn—1,m—1,n-2m),Unh—-1,m—-1n-—
2m}), V{n — 1,m — 1,n — 2m)}, by the induction hypothesis we have

Z(T")y =2 2" *(10(n— 1) — 15m + 11) (6)

with equality if and only if 77 = T(n — 1.m — 2,n — 2m).
Ordering the vertices of T as v, w, - - -, we have

1 1 0
Biy=l1 1 x|, B(T'):(}T )((,)
0 XT ¢ .
By expanding the permanent along the first row, we have
Z(T) = per B(T) = per B(T') + perC.
As an analogue to the above proof, we can obtain
perC > 523 (7)
Z(T)22"(10(n—1) - 15m+11). (8)
Thus
Z(T) > 5:2™ 342 4(10(n—1)—15m+11) = 2"~ (10n~15m+11). (9)
If the equality holds in (9), so do (6) and (7). By induction hypothesis, we have
T =T(n—1,m—2,n—2m).
Similarly, by induction on m, we can show the case of n = 2m, and w is the
center of 7" =T(n — 1,m — 2,n — 2m) and
T=THnm—2,n—-2m+1).

This completes the proof.

Remark: From Lemma 7, if m > 6, then
ZUm,m—1n-=2m+1)) > Z(T'(n,m—2,n-2m+1)).
If m > 7, then
ZVinym—=1n—-2m+1)) > Z(T(n,m—2,n—2m +1)).

We only characterize the tree with m-matchings and having the third minimal
Hosoya index when the number of matchings is more than 6.
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