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Abstract

For a (molecular) graph, the first Zagreb index M) is equal to the sum of the squares of the
degrees of the vertices, and the second Zagreb index My is equal to the sum of the products of
the degrees of pairs of adjacent vertices. We provide upper bounds for the Zagreb indices M,
and Mpy of quadrangle-free graphs, in terms of the number of vertices and the number of edges,

and determine the graphs for which the bounds are attained.

INTRODUCTION

Let G be a simple graph with vertex set V(G) and edge set E(G). For u € V(G), I'(v)
denotes the set of its (first) neighbors in G and the degree of u is d,, = |['(u)|. The first Zagreb
indez My and the second Zagreb index Ms of G are defined as follows:

M =M(G)= Y (du)?
weV(G)

My=MyG)= Y dudy.
weEE(G)

The Zagreb indices M; and M3 were introduced in (1) and elaborated in [2]. The main
properties of M; and M, were summarized in (3, 4], and some recent results can be found in
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|5-12]. These indices reflect the extent of branching of the molecular carbon atom skeleton, and
can thus be viewed as molecular structure-descriptors (13, 14].

In [6] the first author considered upper bounds for the Zagreb indices My and M, of triangle-
free graphs. We now provide upper bounds for My and M of quadrangle-free graphs, in terms
of the number of vertices and the number of edges, and determine the graphs for which the
bounds are attained.

UPPER BOUNDS FOR M,

Before we state our first bound, let us slightly redefine a class of graphs usually called
windmalls. For n odd, a windmill W, is a graph obtained by taking "5' triangles all sharing
one common vertex. For n even, a windmill W, is a graph obtained from a windmill W,_;
by attaching a pendant vertex to a central vertex of Wi,_. In any case, a windmill Wy, hasn
vertices.

For quadrangle-free graphs, we have the following.

Theorem 1. Let G be a quadrangle-free graph with n vertices and m > 0 edges. Let
. i 1, n is even,
sueml) = 0, n is odd.
Then
Mi(G) € n(n— 1) + 2m — 2even(n) (1)
with equality if and only if G is isomorphic to a windmall W,,.

Proof. Since G is quadrangle-free, we have |[(x) NT'(y)| < 1 for any two distinct vertices x and
y of G. For any u € V(G), let

Ay = {{z,y} : D@} NC(y) = {u},z,y € V(G),z # y}.
Then A, N A, = if u # v. It follows that
e (dg) = 3 i< (’2‘) ;
weV(G) weV (@)

which proves (1) when n is odd. In such case, equality holds if and only if |I'(z) N T'(y)| =1 for
any two distinct vertices x and y of G. By the Friendship Theorem (which characterizes graphs
with this property: see, e.g., 15, 16}), G is isomorphic to a windmill W,, in this case.

If n is even, then there is at least one pair {z’,3'} of vertices with |['(z")NT'(y')| = 0, so that

d n
Z (;): Z |AuJ5(2)71r
4eV(G) weV(G)

and (1) follows again. The equality holds if and only if [I'(z) NI'(y)| = 1 for any pair of vertices
{z,y} # {2',¥'}. Such graphs are characterized by the following lemma.

Lemma 2. If a graph G with n vertices contains a pair of vertices {z',y'} without a common
neighbor, whitle every other pair of vertices has exactly one common neighbor, then n is even
and G 1s isomorphic to a windmill W,,.

Proof of Lemma 2. Let us classify the vertices of G — 2’ — /' into the following disjoint sets:
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o set [ is formed by vertices adjacent Lo 2';
e set J is formed by vertices adjacent to o'
o set [ is forimed by the remaining vertices.

Each pair of vertices from I has 2’ as a common neighbor, so no two vertices from I are
adjacent to the same vertex # x'. Moreover, each vertex from I and #' have exactly one common
neighbor, which, being a neighbor of «', must belong to I. Thus, we may conclude that the
subgraph induced by vertices in [ is isomorphic to aKy for some o ¢ N, yielding |/| = 2a.
Similarly, the subgraph induced by vertices in J is isomorphic to bK, for some b € N and
)= 2b.

Each vertex from K must have a common neighbor with 2/, so it has exactly one neighbor
in I. Also, it must have a common neighbor with 3/, so it has exactly one neighbor in J. Thus,
vertices from K may be indexed by pairs (¢,7) € I xJ in such a way that a vertex k; j is adjacent
toi € [ and j € J. Moreover, k;; is the common neighbor of 7 and j, and so there may not be
two vertices from K indexed by the same pair (4, §).

Suppose first that both I and J are nonempty.

Suppose now that " and ' are not adjacent. Consider an arbitrary vertex i € I. It has
exactly one common neighbor with 3, and let it be j € J. So, vertices i and j are adjacent,
while 7 is not adjacent to any other vertex from .J. Consider now vertices of the form kyjr, §* # j.
From above, there ave 2b — 1 such vertices. Fix p € J\ {j}. Vertex ki must have a common
neighbor with ¢, and that common neighbor does not belong to .J. Thus, it has to belong to
K. But ¢ is adjacent only to vertices of the form k;j. Suppose that common neighbor is ki;.
It cannot be g = j, as then i and k;; would have two common neighbors: j and k! So, every
vertex of the form ki, p # j, is adjacent to exactly one other vertex of the form ki, g # j,
yielding that the subgraph induced by vertices k;j, 7' # 7, is isomorphic to ¢K; for some ¢ € N.
From here we conclude that there are 2¢ vertices of the form kyy, 5 € J. However, this is a
contradiction, as the equality 2b — 1 = 2¢ cannot hold in N.

Suppose now that 2’ and y’ are adjacent. Each vertex from I and y' have z' already as
a common neighbor, so no vertex from I can be adjacent to any vertex from J. Consider an
arbitrary vertex k;; € K. It has exactly one common neighbor with 7, which, being a neighbor
of i, must also be of the form &, j/ € J. Consider now vertices ¢ € I\ {¢}. If i and ¢ are
adjacent, then 7 is a common neighbor of i’ and k;;, and in such case, ki; is not adjacent to
any vertex of the form kyji, j' € J. If i and i’ are not adjacent, then k;; is adjacent to exactly
one vertex of the form ky j' € J. Altogether, we conclude that the degree of ki; within K is
2a— 1. If we exchange the roles of I and J in the above analysis, then it yields that the degrec
of ki within K is 2b— 1, i.e., it must hold that

a=b.

Therefore, set K contains 4a? vertices.

Next, vertex k;; has i as a common neighbor with vertices of the form ki, i € J\ {j},
and it has j as a common neighbor with vertices of the form ky;, ¢/ € I'\ {i}. Vertex k;; has a
common neighbor within K with the remaining 4a — 4a + 1 = (2a — 1)? vertices from K. We
may, therefore, conclude that there are

4a*(2a — 1)?
2

pairs of vertices from K that have a common neighbor within K.

=2a%(2e — 1)?
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On the other hand, each vertex from K has degree 2a — 1 within K and so it is a common
neighbor for (2"2' 1) pairs of vertices from K. Altogether, all vertices from K serve as a common
neighbor for

1a? (2“2‘ 1) = 20%(2a — 1)(2a - 2)

pairs of vertices from K. As
2a%(2a - 1)(2a — 2) < 2a%(2a - 1)2,

we conclude that not every pair of vertices from K can have a common neighbor, which is a
contradiction.

From the above contradictions, we conclude that the only possible case is that one of the
sets I and J is empty. Without loss of generality, suppose that J is empty. Then K must also
be empty. As we already know that the subgraph induced by vertices in I is isomorphic to
aKy, we can now finally see that the whole graph G is isomorphic to a windmill W, 42 and that
n=2a+2iseven. 0O

Remark 3. Let G be a Ky ,-free graph with n vertices and m edges, where » > 2. Then by
similar arguments as those in the proof of Theorem 1,

MGy <(F-1Dnn—-1)+2m
with equality if and only if |[I'(z) N ['(y)] = 7 — 1 for any two distinet vertices x and y of G.

Remark 4. Let G be a graph with m edges and girth r. Then for any wv € E(G), d, +d, <
m — r + 4 with equality if and only if uv lies on a cycle with r vertices and every edge outside
this cycle (if it exists) is incident with u or v. So

M(G)= 3 (du+dy) <mlm—r+4)
weE(G)

with equality if and only if G is a cycle with m = r vertices.

Further, we consider triangle- and quadrangle-free graphs. Recall [17) that the Moore graphs
of diameter 2 (regular graph of diameter 2 and girth 5) are pentagon, Petersen graph, Hoffman-
Singleton graph, and possibly a 57-regular graph with 3250 vertices (its existence is still an open
problem). They are /n — 1-regular graphs with n = 5,10, 50, and possibly n = 3250 vertices,
respectively.

Theorem 5. Let G be a triangle- and quadrangle-free graph with n > 1 vertices. Then
Mi(€) € nfn—1) @

with equality if and only if G is a star K; ,—1 or a Moore graph of diameter 2.

Proof. The statément is trivial for n = 2. Suppose that n > 3, and let u be an arbitrary

vertex of G. Let us bound vg%u)dm which counts the number of edges originating from vertices

in '(u). First, there are d, edges leading to u. Then, as G is quadrangle-free, a vertex from
V(G) \ ({u} UT(u)) may be adjacent to at most one vertex from I'(u). Thus, there are at most
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n-d, — 1 edges connecting a vertex from V(G) \ ({u} UT (1)) and a vertex from I'(u). Finally,
since G is triangle-Iree, I'(#) is an independent set. Thus,

z dr'S(lu+(7'*—(1|d-1):'l_]
vel'(u)
and if equality holds, then {J T'(v) = V(G), which implies that the distance hetween w and

wel (u)
any other vertex of G is at most 2. Thus

M@= Y Y d< Y m-D=nn-1).

ueV(G)vel'(n) neV(G)

This proves (2).

Now suppose that equality holds in (2). Then 3. d, =n—1 for every u € V(G) and so the

vEl(u)

diameter of ¢ is 2. Bondy et al. [18] had proved that a quadrangle-free graph with n vertices
and diameter 2 is a graph of maximum vertex degree n — 1, or a Moore graph, or a polarity
graph. However, a polarity graph is not triangle-free (see [18]). It follows that G = Ky ,_; or
G is a Moore graph.

Conversely, if G =2 K, or G is a Moore graph of diameter 2, then it is immediate to check
that (2) is an equality. O

UPPER BOUNDS FOR. M;

Let G be a graph. From the definition of Ms, it follows that

M?(G)zé 5 s T dpe

weV(G)  vel(u)

We will use this observation in the proof of the following theorems.

Theorem 6. Let G be a quadrangle-free graph with n vertices and m > 0 edges. Then
My(G) < mn+ (Z) — even(n) (3)

with equality if and only if G is isomorphic to a windmill W,, for odd n.

Proof. The statement is trivial for n = 2. Suppose that n > 3. Since G is quadrangle-free, any
two vertices from I'(u) have distinet neighbors other than u. Moreover, note that the subgraph
G([(u}) induced by vertices in I'(u) may not contain path Pj3 as a subgraph, as P3 together with
u forms a quadrangle in G. So, G(I'(x)) has maximum degree at most 1, and as a consequence,

at most l%ij edges. Hence, as every of these edges is counted twice in Y~ d,, we have that
vel(u)

Y & gn—1+2[%nj. Thus
vel(u)

My(G) = % 4 3 &
weV(G)  vel(u)
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where the last inequality follows from Theorem 1.
In order for equality to hold, we must have that G is a windmiil W, with even vertex

degrees, i.e., that n is odd. On the other hand, it is straightforward to check that equality is
indeed satisfied for such graphs. O

Theorem 7. Let G be a triangle- and quadrangle-free graph with n vertices and m > 0 edges.
Then
Ma(G) < m(n —1) )

with equality if and only if G is a star K|, or a Moore graph of diameter 2.

Proof. The statement is trivial for n = 2. Suppose that n > 3. Since G is triangle- and

quadrangle-free, we have Y. d, < n— 1 for any u € V(G) and if equality holds, then the
vel(u)
distance between u and any other vertex of G is at most 2. Thus

Mg(G):% Soda Y dvgé 3 duln-1)=mn-1).

ueV(a) vel(u) ueV(G)

This proves (4).

Now suppose that equality holds in (4). By the arguments as in the proof of Theorem 5,
G = K-y or G is a Moore graph of diameter 2.

Conversely, if G = Kj,_1 or G is a Moore graph of diameter 2, then it is easy to check that
(4) is an equality. 0O

Besides n and m, the upper bounds in the next two theorems depend also on the minimum
vertex degree 4.

Theorem 8. Let G be a quadrangle-free graph with n vertices, m edges and minimum vertes
degree 8 > 1. Then

Ms(G) < 2m% — (n— )md + (6 — 1) [(g) +m] (5)

with equality if and only if G is isomorphic to a windmill W, for odd n, or 3 Kq for even n, or
a star Kin_1.

Proof. This bound follows from a different estimate of Y d,. Namely, for all u € V(G) it
vel(u)
holds that
S dy<2m—d,— (n—1-4d,)3,
vel(u)
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which is just a rewriting of an obvious inequality
dn= 3 dy=dy+ Y dy+ > du2dy+ Y dy+(n—1-d,)i.
ueV(G) vel'(u) weV(G\({u}ul'(u)) pel(u)

Note that eqnality holds above if and only if either d, =n — 1 or all vertices not adjacent to «
are of degree 8. Then

1
MyG) = 3 S ode ¥ dy
ueV(G)  vel(u)

1
£ & ST dulzm—d, - (n - 1—d,)d) (6)
ueV(G)

2m? — (n - 1)mé + %(5 — D)M(G)

IA

27112 s (n = 1)1716 + %(5 =F ])[n(ﬂ - ].) + 211’1] 3 (7)

This proves {5).

Now suppose that equality holds in (5). Then all inequalities above become equalities. From
(6) we have for every vertex u either d, = n — 1 or all vertices not adjacent to u are of degree
8. 1f & > 1, then from (7) and Theorem 1 it follows that G is isomorphic to a windmill W, for
some odd n. If § = 1, then for any vertex u with d,, = 1, all vertices not adjacent to u are of
degree 1, and so G = 3 Kj for even nor G = Ky,

Conversely, if G is isomorphic to a windmill W, for odd n, or 5K5 for even n, or a star
Kin-1, then it is easy to check that (5) is an equality. O

Similarly, we have

Theorem 9. Let G be a triangle- end quadrangle-free graph with n vertices, m edges and
minimum verter degree 6 > 1. Then

My(G) < 2m? — (n— 1)md + (5 — 1) (;) (8)

vith equality if and only if G is a star K\ n-1, or 3K, for even n, or G is a Moore graph of
diameter 2.
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