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Abstract

The Randié¢ index of an organic molecule whose molecular graph is G is the
sum of the weights (d(u)d(v))‘% of all edges uv of G, where d(u) and d(v) are the
degrees of the vertices u and v in G. In the paper, we give a sharp lower bound on
the Randi¢ index of cacti.

1. Introduction

In studying branching properties of alkanes, several numbering schemes for the edges
of the associated hydrogen-suppressed graph were proposed based on the degrees of the
end vertices of an edge [9). To preserve rankings of certain molecules, some inequalities
involving the weights of edges needed to be satisfied. Randi¢ [9] stated that weighting all
edges uv of the associated graph G by (d(u)d(v))~1/2 preserved these inequalities, where
d(u) and d(v) are the degrees of u and v. The sum of weights over all edges of G, which
is called the Randié¢ indez of G and denoted by R(G), has been closely correlated with
many chemical properties [7] and found to parallel the boiling point, Kovats constants,
and a calculated surface. In addition, the Randié index appears to predict the boiling
points of alkanes more closely, and only it takes into account the bonding or adjacency
degree among carbons in alkanes (see [8]). It is said in [6] that Randi¢ index “together
with its generalizations it is certainly the molecular-graph-based structure-descriptor, that
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found the most numerous applications i orqunic chemistry, medicinal chemistry, and
pharmacology’. More data and additional references on the index can be found in [4, 5]

Let G = (V, E) be a graph. We call G a cactus if all of blocks of & are either edges
or cycles. Denote G(n, ) the set of cacti of order n and with r cycles. Obvionsly, G(n,()
are trees and G(n, 1) are unicyclic graphs. The degree and the ncighborhood of a verte
u € V will be denoted by d(u) and N(u), respectively and §(G) = min{d(n) : u € V(G)}.
The graph that arises from G by deleting the vertex v € V' will be denoted by G —u.
Similarly, the graph G +uv arises from & by adding an edge uv between two non-adjacent
vertices u and v of G.

There are many results concerning Randié¢ index. In (1], Bollobés and Erdos gave the
sharp lower bound of R(G) > +/n—1 when G is a graph of order n without isolated
vertices. In the paper, we will give sharp lower bounds on the Randi¢ index of cacti.

2. Some Lemmas

In the section, we use G(n,r) to denote the set of cacti of order n and with r cycles and
G°(n,r) to denote the cactus obtained from r triangles and n — 2r — 1 edges by taking one
vertex of each triangle and each edge, and combining them as one vertex. Fig.1 illustrates
the graph G°(n,r) withn = 13, r = 3.

= SR

Fig. 1. G°(13,3) Fig. 2. G°(5,2)

Firstly, we will give some lemmas which will be used in Section 3.
Lemma 2.1 [3]. Let z, y be positive integers with x > 1 and y > 2. Denote
r+1 y—-1-—=z T y—1—z

v R

Then h(z,y) is monotonously decreasing in x.

h(il:, 'y) ==

Lemma 2.2 [3]. Let y be a positive integer with y > 2. Denote

4. 1 —~9 1
h(y):y_y+__y__

Then h(y) is monotonously decreasing in y.
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Lemma 2.3. Let y be a posilive integer with y > 2. Denote

hy) = (ﬂ = \/TI_—[) N M

V2 V2 Ve
where k > 1. Then h(y) is monotonously decrcasing in y.
The proof of Lemma 2.3 is very simple. We omit it here.

Lemma 2.4 [1]. Let G € G(n,0). Then
R(G) =2 vn -1,

and the equality holds if and only if G = G%(n,0).
Lemma 2.5 (3]. Let G € G(n,1). Then

n—3 2 1
R(C) > m+7§_ﬁ+§

and the equality holds if and only if G = G%n, 1).
3. Main Result

Let G(n,r) be the set of cacti of order n and with r cycles. Denote

f - 2r r n—1-=2r
et _\/ﬂn—l)+§+ Vn—1

We have the following result.

Theorem 3.1. Let G € G(n,r). Then
R(G) = f(n,7),

and equality holds if and only if G = G%(n,r).

Proof. By induction on n and r. If r = 0 and 1, then the theorem holds clearly by
Lemmas 2.4 and 2.5. Hence we can assume that > 2 and then n > 5. If n = 5, then the
theorem holds clearly by the facts that there are only one graph in G(5,2) (see Fig.2).

Let G € G(n,r) with n > 6 and » > 2. We will consider the following two cases.

Case 1. §(G) = 1.

Let u € V(G) with d(u) = 1 and uv € E(G). Denocte d(v) = d and N(v) \ {u} =
{y1s¥2,  Ya1}. Then2<d<n—1.

Assume, without loss of generality, that d(y,) = d(y2) = -+ = d(yx—1) = 1 and
diy;) > 2for k <i<d—1, where k > 1 and k = 1 implies d(y;) > 2for 1 <i<d-1.

Obviously, we have r < L“"é"‘]. Set ' =G —u—y; — = yp—y (if i = 1, then let
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G'=G—-u). Then G’ € G{n—k, 'r), Let S be the sum of the weights of the edges incident

with v except for the edges vu, vy, - vy;, 1 in G and S’ the sum of the weights of the
edges incident with v in G’. Then S = ‘2 _d\/T(_u f— and §' = §,/54.. By induction
tal(yi )

assumption and Lemma 2.3, we have

R(G) = R(G)+ k.1 +S5-5

Vvd
k d
> f(n—k,r)-!—ﬁﬂ—(l— m)S
2r 2r n—-k—-1-2r
e A ey e e
7n—1—2r+(ﬁ_\/d— )+(f—1
Vvn—1 V2 V2 Vad
S s+ 2r 2r n—k—-1-2r

\/2(n~k—1)_\/2(n—1)+ Vin—Fk—

n—1-2r+(\/nT1 Vr—1- )Jr(\f—l
vn—1 V2 V2 \/2(n—l)

v2-1 = V21 ]>f(n,r).
V2n—k-1)  \f2(n-1)
The equality B(G) = f(n,r) holds if and only if equalities hold throughout the above
inequalities, that is, if and only if d =n—1,2r =n—k -1 and G’ = G*n — k,r). Thus
we have R(G) = f(n,r) holds if and only if G = G%(n, 7).

Case 2. §(G) > 2.

f,r)+(n—k-1 —21‘)[

By the definition of cactus and §(G) > 2, there exists an edge upu; in E(G)) such that
d(ug) = d(uy) = 2. Let {us} = N(up) \ {u1}. Denote d{us) =d. Then d > 3 by n > 6
and 7 > 2. We will finish the proof by considering two subcases.

Subcase 2.1. vjuy ¢ E(G).

Let G' = G — ug + uyuz. Then G' € G(n — 1,7). Thus we have

R(G) = (G')+¢171 L \/%i
> f(”—l-f)+§
2r 2r n—2—-2r n—-1-2r 1
N f(n’r)+\/2(n—2)_\f2(n71)+ n-2  Ja-1 2
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> f(n,r).

The last inequality holds obviously if n > 7. 1f n = 6, then » < 2 and it is not difficult to
check that the inequality holds.

Subcase 2.2. wjuy € E(G).

Let "= G'—up —w. Then G' € G(n—2,r—1). Let S be the sum of the weights of
the edges incident with us except for the edges uguy and wjus in G and S” the sum of the
weights of the edges incident with uy in G'. Denote N(u2) \ {uo. w1} = {y1, 92, -+, Y2}

d-2
_ ! d=2 1. S( ' _ o [ Py . : .
Then S = l_% w7 < Z= by 8(G) 2 2 and § = /75 By induction assumption, we
have

RG) = RG)+1+2

—+5-9
2 Vad

s il Bt & +\/%_+s( d;fz)
G 2(?—1) 2r p=1 &
2 I \f?.n 3) \/2(71—1)+ 2 2
+n—3—‘2(r—l)_n—1—2r+l+_‘2_+ Yo d Yd-2
Vn—3 vn—1 2 Vo d-2] 2d
2(r—1) or
= f(nvr)"' -
V2n=3) \2(n-1)
+n—1—2r_n—1—2r+£_\/ri—2
vn—3 vn-1 V2 V2
5 2(1";1) 2r
- \[2(11 —3) 2n-1)
n—]~2r_n—l—2r+\/n—l_\/n—S
Vn—=3 vn—1 V2 V2
B L Vv2-1 2-1
= fin,r)+(n—1 2T)(J2(n—3) \/Q(n—l))
2 f(n,7).

The equality R(G) = f(n,7) holds if and only if equalities hold throughout the above
inequalitics, that is, if and only if G’ =2 G%(n — 2,7 — 1), d =n—1 and 2r = n — 1. Thus
R(G) = f(n,7) holds if and only if G = G%n, 7). »
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