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Abstract: Using the AutoGraphiX 2 system (AGX2), we study relations between graph
invariants of the form
by € R® i < ub,

where R denotes the Randi¢ index of a graph G = (V, E), i another invariant among matching
number z and the index (or the maximum eigenvalue) A;, & denotes one of the four operations
+,—, %, /, while lb, and ub, lower and upper bounding functions of the order n of the graph
considered which are tight for all n (except possibly very small values due to border effects).
Conjectures are obtained in 14 out of 16 cases, 6 of which are proved automatically, 7 are
proved by hand and one remains open.

1 Introduction

Let G = (V, I) denote a graph with vertex set V = {v),va,...v,,}, edgeset E = {ej, ea,... e}
and vertex degrees dy,dy,...d,. The number of vertices of G, n = |V|, is called the order
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of G. Similarly, the number of cdges, m = |E|, is the size of G. The Randi¢ index [27] is
defined as follows:

1
o=
(ygg Vit

t.e., as the sum over the edges of weights equal to the inverse of the geometric mean of the
vertices degrees.

Since 1975, when Milan Randi¢ [27] proposed this index (initially called the conmectivity
index, and viewed as a measure of molecular branching) it was very extensively studied,
extended and applied in over 1300 papers and hooks (e.g. [14, 15, 28, 21, 22]). For a
comprehensive survey of its mathematical properties see the recent book of Li and Gutman
on Mathematical Aspects of Randic-Type Molecular Structure Descriplors [24).
The AutoGraphiX 1 and 2 systems (AGX 1 and AGX 2) for computer-assisted as well as, for
some functions, fully automated graph theory were developed at GERAD, Montréal, since
1997. AGX 1is described in [8, 9] and AGX 2 in [2]. References to mauy applications of AGX 1
and AGX 2 in mathematics and chemistry are given in the short survey [4]. For more general
surveys, discussions and references about discovery systems in graph theory, one may consult
chapters [10, 11, 16, 17] in the rceent book Graphs and Discovery [12], edited by Fajtlowicz,
Fowler, Hansen, Janowitz and Roberts. The basic idea of the AGX approach is to view
various problems in graph theory - i.e., finding a graph satisfying given constraints, finding
an extremal graph for some invariant, corroborating, strengthening, refuting or repairing
conjectures, finding conjectures and proofs or ideas of proofs - as optimization problems on
an infinite parametric family of graphs (the members of moderate size of which are mainly
studied) to be solved by a generic heuristic. The heuristic used is an application of Variable
Neighborhood Search metaheuristic [25, 19]. Results are analyzed using tools from data
mining, linear programming and graph theory.
AGX 1 was already applied to the study of the Randi¢ index in two papers: (a) in [6] chemical
trees with maximum and minimum Randié¢ index were determined (see also [29, 14, 7] for
proofs that the path has maximum Randié index for trees). This approach and a new way
to use linear 0-1 programming to prove relations which can be deduced from the graphs
found led to many extensions, e.g. [15, 26]; (b) in [18] interactive use of AGX led to improve
relations between R and the ramification index obtained by Araujo and de la Pefa [5]. In the
thesis [1] a systematic comparison of 20 graph theoretic invariants was made. The general
form of these relations is

b, <1 & iy < ub,

where i; and ip are graph invariants, & denotes one of the four operations —,+, /, x, while
b, and ub, lower and upper bounding functions for i; & i depending on the order n (or
number of vertices) of the graphs under consideration. Moreover, these bounding functions
are requested to be best possible in the strong sense, i.e., for all n (except possibly for very
small values due to border effects) there is a graph such that the lower (upper) bound is
attained.

In this paper, we focus on some of the results of that study, which concern the Randié index.
More precisely we study relations of the form

b, < R®i< ub,

where R denotes the Randi¢ index of a graph G = (V,E), i € {u, A1}, 1 denotes the
matching number of G (i.e., the largest number of edges without common vertices in a set)
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and Ay denotes the inder of G (i.e., the largest eigenvalue of the adjacency matrix of the
graph).

These indices are considered in turn in the next two sections. Brief conclusions are drawn in
the last section.

In order to prove antomatically some ecasy relations, we need the best possible bounding
functions for the individual invariants as well as the lists of families of extremal graphs for
which they are attained. This information is gathered in Table 1.

G for lb, by, Inv. ub, G for ub,
8 V=1 R 5 G regular (K,, C, ... )
P 2(:05(%) Al n—1 K
Sn 1 In 5] Hois Pay Cagsns

Table 1: Bounds on the invariants and associated ex-
tremal graphs.

2 The Randi¢ index and the matching number

AGX 2 led to results in 6 cases out of 8; in the 2 remaining cases, the extremal graphs
obtained did not present enough regularity in their structure to deduce conjectures. The
results obtained are presented next.

Observation 1 : For any connected graph on n > 3 wertices with Randic index R and
matching number 1,
l+\/n—15R+uSg+ [%J
n |n
=1 & Regpeieula]
n-1<R-psg lzJ
The lower (resp. upper) bounds are attained for stars (vesp. regular graphs with p=|3]).

The bounds in the above Observation are proved automatically by AGX 2 using the infor-
mation presented in Table 1.

Theorem 1 : For any connected graph on n > 4 vertices with Randic index R and matching
number i, =

—<vn-1,

’J,
with equality if and only if G is the star S,.

Theorem 1 (an AGX 2 conjecture) is a corollary of the following lemma, which is also of
interest. in its own right.
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Lemma 1 : For any connected graph on n > 4 vertices with Randic inder R, matching

number p and mozimum degree A,

k< ,u\./E.

Proof of the lemma:

Let us compute a maximal matching of (7 in the following way

1.

Note

Let V) denote the set of vertices of degree 1 and N(V}) the set of vertices which are
adjacent to some vertex in Vj. Let G| be the subgraph of & formed by the edges
between Vj and N(V}). let M) be a maximum matching of Gy. Let C be the set of end
vertices of M) which are not in Vj. Then C covers all edges of G and has the same
cardinality as M.

. Let G' = G — V(G,). Let Vo3 be the set of vertices of degree 2 or 3 of G which also

belong to (/. Let Gay be the subgraph of G’ which is induced by Vig. Let Mz bea
maximum matching of Ga3. Let € be the sct of vertices of My and E[C'] the set of
edges covered by 7.

. Let G” = G' = €' and Vyy = Va3 N G”. Then there arc no edges of G among Vi

(since Mj is maximum in Ga;). Let N(Vy;) be the set of neighboring vertices of Vi3 in
G”. Let M3 be a maximum matching of the bipartite graph B which consists of the
edges between Vjg and N(Vy;). By Konig's Theorem [23], which states that the size
of a maximum matching of a bipartite graph is equal to the size of a minimum vertex
covering of the graph, there will be a minimum covering set of B, denoted by C”, which
has the same size as Mj.

. Let G" = G" = VJ; - C". Note that all the vertices in G have degree greater than 3

in G. Let My be a maximal matching of G, Let C* be the vertex set of M. For each
edge of G, both end vertices have at least degree 4.

that M;, M, M3 and M, together form a (maximal) matching of G. Also C, C', C"

and C* together form a cover of all edges of G.

Thus
1
RE Y =t ¥ ot ¥ o=t ¥ o
i€C d J tj)EElC’ d'd iec” & J ieCt d!dj
(i ek Fever) JEV(GT)
(i) EE Lj)EE
‘We have:

< N Vd; < |CIVA = |IMIVA )
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Let us compute

el= ¥ .

waerey VUG
For each edge e in Ma, let N(e) denote the set of edges of G adjacent to e (including e itself).
Let

1
R(e) = ’
€= > o

(i.)EN(e) -

Then

1

= Y — <3 Re).
GareEle) V4idi

R[C"]

There are two cases:
Case 1. A >4

(a) If both end vertices of e have degree 2. Then R(e) < 1.5 < /3.

(b) If one end vertex of e has degree 2 and the other one has degree 3. Then
R(e) < ﬁ +1<Vv3

(c) If both end vertices of e have degree 3. Then R(e) < —e + 1< Vi

Thus
1
¥ < 3 R(e) < M|V < M]VA. (4)
o did;
i€ ee My
(i,5) e E

Using (1), (2), (3) and (4), we have

R < (ilMii) VA,

=1

and then Lemma 1 holds.

Case 2. A € {1,2,3}.

When A =1 or A =2, we can verify easily that Lemma 1 holds.
When A = 3, G” is empty.

(a) If both end vertices of e have degree 2. Then at least one of the two edges in N(e) other
than e belongs to another N(e'). Otherwise M will not be a maximum matching of
Ga3. Thus there is at least one edge in N(e) which is counted twice in > R(e). If we
only count half the weight of the doubly counted edges, then the contribution to R[C’]
from the edges in N(e) is at most R(e) —1/4 < 1/2+4+1/2+1/2 = 1.5,
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(b) If one end vertex of e has degree 2 and the other one has degree 3. By the same
reasoning as in (a) above, at least one edge in N(e) is counted twice in N{e). If we
only count half the weight of the doubly counted edges, then the contribution to R[C']
from the edges in N(e) is at most R(e) — 1/6 < 3/V/2x 3+ 1/2 ~1/6 < V3.

{¢) If both end vertices of e have degree 3. Then at least two edges in N (e) other then e
are covered by the end vertices of edges in Afy (not equal to ¢). Otherwise My can be
augmented by removing e and add a perfect matching of N(e). This will contradict to
that M is a maximum matching of Gs. So there are at least two edges in N(e) which
are counted twice in 3~ R(e). Thus the contribution from these edges in N(e) to R[C']

is at most R(e) — 1/3 < 4/v2Zx3+1/3—1/3 < /3.

By (a), (b) and (c)

1

RIC') =
did;

< [Malv3. (5)

(i,7) € E[C")

Using (1), (2), (3) and (5), we have
4
R < (me) VA,
i=1

and then Lemma 1 holds. a

Theorem 1 follows immediately from the lemma and the relation A < n — 1. Unicity follows
from the fact that the star S, is the only graph for which R = +v/n—1 and p = 1.

The following conjecture, obtained in a straightforward way from the extremal graphs found
by AGX 2, is open.

Conjecture 1 : For any connected graph on n > 3 vertices with Randic inder R and match-

ing number u,
n+4||6n+2 n+4
gy =

with equality if and only if G is a complete bipartite graphs Kpq with p = p = | %]

3 The Randi¢ index and the index

Using the upper bounds on the index A; and on the Randié¢ index (see Table 1), AutoGraphiX
proves the following observation.

Observation 2 : For any connected graph on n > 3 vertices with Randié index R and index
A,

R+A1$3nu2

and R-,\lg”(—";—”

with equality for both formulae if and only if G is the complete graph K.
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To prove the next propostion we need to recall the following theorem due to Favaron, Mahéo
and Saclé {13].

Theorem 2 [13] : For any connected graph G of size m, Randié index R and inder \y,
A 2= (6)

with equality if and only if G is a bipartile bireqular graph (i.e., a bipartite graph m which
vertices of the same independent set have the same degree).

Proposition 3.1 : For any connected graph on n > 3 vertices with Randic¢ index R and
index Ay,

R4+M2>22vn—1 and R-M>n-—1,
with equality for both formulae if and only if G is the star S,,.

Proof:

The lower bound on R - A; follows from (6), and equality holds if and only if G is a bipartite
biregular graph of size m =n — 1, i.e., G is Sp,.

For the lower bound on 2 4+ Aj, using the corresponding bound on R - A}, we have

n—1 R?4+n-1

>
R+M >R+ 7 e

The latest bound reaches its minimum if and only if R = /n —1 and the corresponding
graph is S,. ]

The bounds given in the following Proposition 3.2 were obtained in an assisted way. First,
the AGX optimization component found the extremal graphs associated to the upper bounds
on R — Ay and R/A; (paths if n € 9 in the case of the difference and if n < 26 in the case of
the ratio, and cycles if n > 10 in the case of the difference and if n > 27 in the case of the
ratio). Then using the algebraic attributes of the extremal graphs, namely, if P, and C,, are,
respectively, a path and a cycle on n vertices

R(Pn)z%m and  Au(Pa) = 2eo0s(— ),

RC)=5 and  M(Cn)=2

we formulated the expressions of the bounds. This way of deriving conjectures is called
algebraic method of conjecture making (1, 2, 9}.

Before stating and proving the next proposition, let us recall the following theorem due to
Hong [20].

Theorem 3 (20] : For any connected graph G of order n, size m and indezx Ay,
M<V2m-n+1 )

with equality if and only if G 1s either K, or S,.
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Proposition 3.2 : For any connected graph on n > 3 wvertices with Randic inder R and
inder Ay,

'L’-:*—‘?—L—Zw‘/j —~Zeonl=T=] Hn<sY

2-n 1

2

<R-A\ <

% if n > 10.

The lower bound is attained if and only if G is K,, and the upper bound is attained if and
ondy if G is B, forn <9 or G s Gy, for n > 10, Moreover

n R deos(337)
< —<
2n—27" M~

3 ifn> 27

The lower bound is attained if and only if G is K, and the upper bound is attained if and
only if G is B, forn <26 or G s Cy, forn > 27.

Proof:
Lower bounds:
Using (6) and (7), we have

m m n—1-m
Bedpn L olpe-e B . dmemmra Tl
Y= % YT montl el V2 —n+1

The derivative of the latest expression is
—m

— <.
(2m—n+1)%

Thus the expression decreases and reaches its unique minimum for the maximum value of m,
namely
_nn-1)
=y
which leads to the lower bound on R — A; and the corresponding extremal graph is K.
In a similar way, we prove the lower bound on R/A;.

Upper bounds:
If G is a tree, Ay is minimum and R is maximum for a path and we have

n—3+2v2 T
R-M\ <2122 9cos(——). 8
1< 2 C"S(n+1) (8

If G is not a tree, the cycle C,, minimizes A; and maximizes R simultaneously, then we have

R-,\,gg—z. ©)

A comparison between the bounds given in (8) and (9) leads to the results. a
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4 Conclusion

The comparison of the Randi¢ index R with the matching number p and the index A; implies
16 (lower or upper) bounds. AGX 2 found complete results, i.e. the best possible bounding
functions together with a characterization of the associated extremal graphs, in 11 cases;
structural conjectures in three cases, for which algebraic formulae were found by hand; no
result in the remaining two cases. Automated proofs were found in 6 cases, 7 conjectures are
proved by hand and one remains open.
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