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Abstract
The set of trees with n vertices is denoted by 7,. In this paper, we consider
the problem of ordering trees in 7, by their Wiener indices. Some order relations
of trees in 7, are obtained. Based on the order relations, the trees in 7, with the
first up to fifteenth smallest Wiener indices are determined.

1 Introduction

The Wiener index is one of the oldest topological indices of molecular structures. It
was put forward by the physico-chemist Harold Wiener {1] in 1947. The Wicner index of
aconnected graph G is defined as the sum of distances between all pairs of vertices in G:

W=W@G)= Y dalu,v) (1)
{u) V(@)

where V(G) is the vertex set of G, and dg(u, v) is the distance between vertices v and v
of G.
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As summarized by Dobrynin and Gutman et al. in [2], the Wiener index belongs
to the molecular structure descriptor that are nowadays extensively used in theoretical
chemistry for the design of so-called quantitative structure-property relations (QSPR)
and quantitative structure-activity relations (QSAR), where under ‘property’ are meant
the physico-chemical properties and under ‘activity’, the pharmacological and biological
activities of the respective chemical compounds.

There are two groups of closely related problems which have attracted the attention
of researchers for a long time:

(a) how Wicner index depends on the structure of a graph;
(b) how Wiener index can be efficiently calculated, especially without the aid of a com-
puter(by so-called ‘paper-and-pencil’ methods).

The greatest progress in solving the above problems was made for trees and hexagonal
systems (see two recent surveys by Dorbrynin et al [2] and Gutman et al [3}).

For chemical applications, it may be especially interesting to identify the graph with
maximum and minimum Wiener indices. Entringer et al [4] proved that among all trees of
a given vertex number n, the Wiener index is maximized by the path 7, and minimized
by the star S,. For connected graphs with n vertices and m edges, the bound on the
Wiener index was obtained by Soltés [5]. And for the trees with n vertices and a fixed
maximum vertex degree, Liu et al. [6] showed that the dendrimer on n vertices is the
unique graph reaching the mimimum Wiener index. The same result was later obtained
by Fischermann et al. [7] independently. In [7], they also characterized the trees which
maximize the Wiener index among all trees of given order that have only vertices of
two different degrees. In addition, for trees with n vertices and fixed pendent vertices,
the upper bound on their Wiener indices was obtained by Shi [8]. The bound was later
obtained independently by Entringer [9]. And the lower bound was obtained by Burns
and Entringer [10]. A sharp upper bound on Wiener index of a graph depending on
the vertex number and the independence number was given by Dankelmann [11]. Asa
corollary he obtained the maximum average distance of a graph with given vertices and
matching number.

It is natural to consider not only the trees with the maximum and minimum Wiener
indeces, but also the order of trees by Wiener indices. Ordering trees by their Wiener
indices maybe help us to understand the relationship between the structures of trees and
their Wiener indices. It was pointed out as above that the problem how W (T') depends on
the structure of 7" has attracted the attention of researchers for a long time. In this paper,
by applying the edge-growing transformation and moving pendent edges, we obtain some
order relations in the trees with n vertices and with one, two and three nonpendent edges,
respectively. Based on the order relations, the trees with n vertices and with the first up
Lo fifteenth smallest Wiener Indices are determined.
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2 Preliminaries

Throughout the paper, we always denote by 7, the set of trees on n vertices.

Theorem 2.1 [I] Let T be a tree and e its edge. Let ny(c) and ny(e) = n —ny(e) be the
numbers of verlices of the two components of T — e. Then

W(T) = > mle)nae). 2
e€E(T)
Entringer et al. [4] were the first to formulate the following result. Note, however, that
the results equivalent to Theorem 2.2 were stated already by Bonchev and Trinajstié [12]
but not in a theorematic form. In 1997, Gutman et al. [13] gave the following theoren.

Theorem 2.2 [13] (a) If T' is an n-vertex tree, then for all integers n > 1,
W(S.) < W(T) < W(R,).

(b) If, in addition, T differs from S, and P,, then for all integers n > 5,
W(S,) < W(T) < W(P,).

A maximal subtree of a tree T' containing a vertex v as an end vertex will be called a
branch of T at v. The weight of a branch B, denoted by bw(B), is the number of edges
init. The centroid of a tree T', denoted by C(T), is the set of vertices of T' for which the
maximum branch weight at v € C(T') is minimized. The graph S(n,m), 3 <m <n -1,
is the tree of order n with just one centroid vertex, say v, and each of the m branches of T’
at v is a path of length |22} or [21]. The treedumbbell D(n,a,b) consists of the path

P_a-p together with @ independent vertices adjacent to one pendent vertex of P, , 4
and b independent vertices adjacent to the other pendent vertex.

Theorem 2.3 [8, 9, 10] If T is a tree of order n with k pendent vertices, 2 < k < n,
then W(S(n, k)) < W(T) < W(D(n, |%],[%1)). The lower bound is realized if and only
§T=S(n,k) and the upper if and only if T = D(n, I_%CJ, ["'ﬂ)

The following transformation was put forward by Xu [14] to study the spectral radius
of trees. It can be applied for ordering trees by Wiener indices.

Definition 2.4 [14] Let T be a tree in T, and n > 3. And let e = uv be a nonpendent
edge of T', and let T\ and T, be the two components of T'— e. w € Ty, v € Ty, Ty is the
graph obtained from T' in the following way.
(1) Contract the edge e = uv.
(2) Add a pendent edge to the verter u(=v) .

The procedures (1) and (2) are ealled the edge-growing transformation of T (on edge
e), or e.9.t of T(on edge e) for short(see Fig. 1). If T is transformed into Ty by one step
of e.g.t of T, this transformation 1s denoted by T — Tj.
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Figure 1: The edge-growing transformation of a tree T

Theorem 2.5 Let T be a tree in T, with at least one nonpendent edge, and n > 3. If T
can be transformed into Ty by carrying out one step of edge-growing transformation, then

W(Ty) < W(T).

Proof. Let ¢ = uv be a nonpendent edge of T', T, and T3 the two components of 7" —¢'.
Let Ty be the graph obtained from T by contracting edge ¢ and adding a new edge ¢” to
the vertex u in 7. Without loss of generality, let |V (T})| > |V(13)] = 2, we have

W) = 3 mlenale)= > mle)nale) + [V(T)IIV(T)]

eeE(T) ecE(T)\{e'}

W(T,) = Z ni(e)ng(e) + V()| + |V(T3)| — 1
eeE(To)\{e"}
= > mlemle) + V(T + V(T - 1
e€ B(T)\{e'}
Thus,

W(T) = W(To) +|V(T)IIV(I)| - V(T)l = [V(T2)| + 1
= W)+ (VD) - )(V(T2)| - 1)
> W(Ty) o

One can see easily by Theorem 2.5 that, for any tree T'in 7, with a nonpendent edge,
T can be transformed into the star S, by carrying out e.g.t repeatedly. So, one can make
a conclusion that W(S,) < W(T). T, can be partitioned as some subsets by the numbers
of nonpendent edges of trees in the following way. Let 7.} = {T' | T € T,, and there
exist exactly i nonpendent edge in T'}. Then T, = U'J7; . Obviously, the sets 7, and
T.*=3 contain only the star S, and the path P,, respectively. For any tree T € T}, i =
1,2,-.. ,n — 3, one can transform T into S, by carrying out exactly i steps of e.g.t to T
repcatedly. At the same time, we notice that the sets 7,! and 7,2 contain the following
two kinds of trees as shown in Fig. 2, say T,‘J (= D(n,4,j)) and Tf‘,.t, respectively, where
itj=n—-2,and1<ij<n-3for T} andr+s+t=n=371>1 s>0frT?,
respectively.
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Figure 2: Trees in 7} and T2.
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Figure 3: Trees in 7,2,

Also 7 contains only the two types of trees Tl(ul,lu.m.m and Tl(:lmlm_qz as sllqwn in
Fig. 3, where [, + my+pi+q=n—4, pp 20, gL,y > land b+ ma+p2 + g =

n—4, b,g2 =1, pp,ma > 0.

Now we calculate the Wiener indices of the above trees by formula (2) as follows:

W(T,.fj) = (n-1)n-2)+GE+1)(7+1). (3)
W(TE,) = (a=Dn=3)+r+)n—r—1)+({t+Dn-t-1) (1)
W ma) = (G+D@E~h—1)+(m+1)n—m —1)
Hap+1)n—q—-1)+(n—-1)(n—4) (5)
WID, ) = +Dn—b—1)+(+me+2n—lb—m—2)
+(ge+1)(r—ga ~ 1)+ (n—1)(n —4) (6)

The following result was given by Barefoot[15] but not in a theorematic form.

Theorem 2.6 [15] Suppose that ab is an edge of the tree T', A and B are the components
of T — ab containing a and b, respectively, and that S is the set of end vertices adjacent
to a and different from b . Define the tree T' = T — {as|s € S} + {bs|s € S} (Shown in
Fig. 4). Then

W(T') = W(T) +|S[(IV(A)| - [V(B)] - |S]).

Now we extend the result to general case.

Theorem 2.7 Let T be a tree in T, and Pyy = vovyv---vy a path in T. Let T;, i =
0,1,2,+-,t, be the component of T — E(P.4;) containing v; with |V (T})| = n;, and let
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Figure 4: Trees in Theorem 2.6

Uy, Uz, -, U be pendent vertices of T, which is adjacent fo v, Let T* =T — Z;:l v+
> vovy. Then

£
W(T*) — W(T) = s[> _(2i — t}n; — st].
=0
Proof. Let e; = »;_1v;,i = 1,2,--- ,t, and let ny(T—e;) and na(T'—e;) = n—n; (e;} denote
the numbers of vertices in the components of T — e;, containing v;_; and v;, respectively.
For an edge ¢ € E{(T)\E{P,), it is not difficult to sec that ni(T" — e)na(T' —e) =
ny(T" — e)na (T — ). So

W(T™}y — W(T)
= Z (T — e (T — ) — Z (T — e)ne(T — ;)

e€E(R) ei€B(F;)
= Z [(n (T — &) + s){na(T — ;) — ) — (T — e)na(T — )]
e €E(R)
= Z (sn9(T — ;) — sny (T — e;) — s*) = s[t(n — no — 8) — Z(t — 2i)ny]
€ E(P) i1
= 3[2(21' — t)n; — st]. o
=0

Corollary 2.8 Let T be a tree in T, and e = vory € E(T). Let T;, i = 0,1, be the
component of T — e containing v; with |V(T})| = ni. and let wy, un, - -+ , ¢ be pendent
vertices of T, which is adjacent to vy. Then

W(T + Z(—'uluj + vou;)) — W{T) = s(ny — ng — s).

J=1
The above corollary is equivalent to Theorem 2.6.
Corollary 2.9 Let T be a tree in T, and Py = vovyve a path in T, Let 1;, i =0,1,2,
be the component of T — E(Pa) containing v; with |V(T})| = n;, and let wy, g, -+ uy be
pendent vertices of T', which is adjacent to va. Then

W+ ) " (—vaw; + vowy)) — W(T) = 2s(ny — ng — ).

J=1
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Corollary 2.10 Let T be a tree in Ty, and Py = vovyeavs @ path in 1. Let 1}, i =
0,1,2,3, be the component of I'— E(Py) containing v, with |V (T:)| = n;, and let wy, uo, -+ uy
be pendent vertices of T', which is adjocent to vy. Then

W(T + ) _(—vsu; + vouy)) — W(T) = s[3(ng —no — 5) — ny +ma).

j=1

3 Some order relations of trees in 7, by their Wiener
indices.

At first, we give the order of trees with one nonpendent edge by their Wiener indices.

Theorem 3.1 The order of trees in T} by their Wiener indices is as follows:
W(T ) < W(Ta, ) <--< LV(TLI%ZJ‘[L;?])‘

Proof. Let T € T}, and let e = vyvy be the nonpendent edge of T, with d(vp) = ng+1 and
d(v)) = ny + 1. Let u be a pendent vertex of T adjacent to v;. By Corollary 2.8, we have
W(T —viu+vou) — W(T') = ny —ng— 1. So, when ng > ny, W(T —vju+vou) < W(T).
Obviously, we get the result. m]

For the trees with two nonpendent edges, by Corollaries 2.8 and 2.9, we can get some
order relations if the degree of a nonpendent vertex is fixed.

Theorem 3.2 When0 <s<n -5,
W(Tfonaes) < W(T3pn5.0) <o < W(Tfages |, pnmaey).
Theorem 3.3 When 1 <t < |3] -2,
W(Tiiteis) < W(Tg,n—S—t,l) < vt WA ntcane) = WITs10¢)
<o < W(TH o immaend) = W(TEpouig) a0

Proof Let f(r) == W(T?, _5_,_,) = (n=3)(n—1)+(r+1)(n—r—1)+(t+1)(n—t-1) =
=3n-1)+(t+1)n—t—1)—(r—22)?+n—1+ (2552)% So f(r) is an increasing
function when 7 € [1, "T‘z] , and a decreasing function when r € ["T‘z,u —-3-1].
For a given ¢, f(r) only depends on the value of (r — 5;—2)2. By calculating (r — "—;2)2 for
different r, we can get the equalities in the theorem. O
By Theorem 3.2, we have known the order of trees with some integer s. Then we
want to know the order rclation on trees with different s. So, we can first order the
trees with larger s. And by Theorem 33, W(T2, 5, ) = W(T2_,_.,_,_y,). It means
that the Wiener index of cach tree with larger s equals to that of a tree with smaller s.
Therefore, we only need to consider the order of trees with larger s, and then we insert
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the corresponding trees with smaller s to get the order relation of all the trees with two
nonpendent edges.

From formula (4), we find when n > 11,
WHTE i) & WITE ) = WAL o ), where r; +t; + 1 = rigg +
tigr, = 1,2,3. In fact, we will show that when s is more than some integer, W(77,,)
will decrease with s increasing.

I

ram—Bty

Lemma 3.4 For any r,r' s, t,t' € Z+, r+s+t=r"+s+1+t =n-—3and

s |ln—4—VIn—8|+1, W(i r,s+”,)<W( T

Proof. Since W(T7 ., ) < W'(T hsdoa oy, (nmisa) )
theorem 2.9, we only need to show W (T s

and ‘/V( n—d— ﬁ.ﬂ]) S W(Tzs‘t) by

nts) gy amies ) < W(T2_,_,,1). By formula

),
W (T acgory g f2oge))
= (1:—1)71—3)—#—(}_2-:-;—J+1)(”—|_ —-1)
HIEZZZ2 4 ) - (2022 )
= (i Din—E e tn= (s+3)2— 1 +2[”—“FJ[" _; =

WiTE i)
= n-1n=-3)+(s+3)(n—s5s-3)+2(n—2)
= (n—-1Hnr-38)+(s+5)n—(s+3)*—

S0, W(T24ms) =W (Thamgesy g meger)) = 0 — 2| 0422| (242 —3 2 — ool g,

Thus, when s > [n —4 — 1/2(n — 3)], we have W(T? (gt gy | 2o 'J) < W(TE i yuih

and equality holds iff s = n—4—+/2(n — 3) is an integer. So, if s > [n—4—+/2n — J+1
we have W(Tr,. o) g, 2gme ,J) <W(T?, ,,,)- The proof is completed.

Theorem 3.5 Trees in T? can be ordered by

W(Tm s1) < WI(TE, 61) = W(TE_0)) <W(TE, 7)) = W(TE5,0) <W(TE, 22) <

W(T, dn 1) = W(T? 621) <WI(T5, g2) = (Tﬁ-snz < W(T? Sn-u1) = (an,a,]) <

S W(TE s gpp1) = W(Tamron) <W(T2g_,0112) = W(Tlan g e2) < - <
W(T?, (25212541, 252 _5) <WI(T 4 g1) = W(T2 nopms) < W(T), (M

where s > |n—4 — /2n =6} + 1 and T is any tree in T2 which is different from
any other tree in the inequality (7). And when n — s is odd, W(T? T2] 241,258

WITL_ (o005 1-2)

12 =
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Proof. By Lemma 3.4 and Theorem 3.3, one can easily get

””(Tlﬁ —s1) < W(TE61) = W(T2400) < W(TZ,- ) = W 5,,)< W (T2 Gme72) <

”’(Rlu s1) = WL 621) < W (TZ,.-sz) = W( n-.oz) < W( 1527._'11) =W T2_7“) <
< W(TL sesas1a) = W( I¢+i7|—7 s < W(T2 ., st12) =W (P;-J-Jn g-s2) <0 <

w (T?.. 21201, 250 S W(T2_,_ wet) = WL 6oe1). And when n — s is odd,

W (T? W (12

Ll e R N B z)ﬁ n~[252],0,[#5|- a)

Now we will show W(T2_, V=W(I2,, ;) <W(T). Welet T = Tr, i
¢ and distinguish the following three cases.

Case 1. t' = 1.

Since 7' is different fromn the trees in the inequality (7), s > s’ > n—G6—s. By Theorem
3-31 "V(T) = ‘V(T:g—-l—a,s,l)'

Case2. ¢ >1and o' < [B] —2-1.

By Theorem 3.2, we have W(T) > W(TZ , ,.))- 8 < [2]-2-#¢ <[2] -4 <
[n-4—+2n—6] <s. And by Theorem 3.3, we have WITZ s )2 WUTE s
Ths, W(T) > W(TZ, ).

Case3. ¢’ >1and s" > [3] —2-1.

By Theorem3.3, W (T3 ) = W(T,f_z___.lr,_t._l‘,,). Thusr'—t'—1=(n—-3-5s"—t") -

r' >

t-1<(m-3-(|3]-2-¢&)-t)-t'-1= ["] —2—1t,since s’ > | 3| —2—¢'. Similar
to case 2, we can get W(T,f_z-r = n') > W( n-d-s,3, 1) So, W(T) > W( n—4—s,s, :)
The proof is completed. o

Lemma 3.6 Whenn > 9, let T € {r,‘” Prmt+p+g=n—d\T 7 T s

TP

Tun-sl} then W(Tl -r1) < W( T2ln 1) < W(Tm o) < W(T).

Proof. W(T{},_71) = (n = 1)(n — 4) + 6n — 12.
W 51) = (n = 1)(n —4) + Tn - 17.
W(T§ nm01) = (0= 1)(n — 4) +8n — 24.

So, W(T](}]),n—'i,l) < W(Té,]]),n-&l) < W(Tii(,l]),n—Q,l)‘

Now we will show W(Ts(’ll)’n_g'l) <W(T). Let T = T,(
the following three cases.

Case 1. 1 =2. Then T = T{3, o, or T =T335,_ e

(T2l2n-91J (" - 1)(n ‘4) +8n—-22> W(TSIn 9,1

W(Tz 2m-102) = (n—1)(n —4) +9n — 27 > W(Ta(,l,'n—g,l)

Case 2. I =3. Then m > 2, q>14

By Corollary 2.8, W(Tégw o) = (Ta(lll)_"fg'l) +(m—=1)(n—m—=3)+(g—1)}(n—q—-3).
Sincem—121, n—m—3>0, =120, n—q—3>0, W(Ih )>W(TH, 4

Case3. 1 >4 Thenm >1, ¢> 1.

WL 1) = WIS o)+ (1=3)(n—1=5) + (m—1)(n—m—3) +(g—1)(n—q-3).
Sineel—3>1,n—-1l-5>1, m—-1>20n-m-3>20,9g-1>20n-q-32>0,
Wy > W(T). o

m.p.q

i I > m > gq. We distinguish
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Compare formulae (5),(6), we easily get W (Th b = W(T,I s )y When =
by, mp=l+my+1, q =qa.

And the equality (6) can be written as the following symmetrically:
W ) = (e D=l = D)+ (2 + 2+ 2) (= p2 =4 = D) + (2 + ) (n— 02— 1),
So, similarly, lV(Tm VV(T(”

i v”HrI’lnyE) I2,ma.p2.q2

Yywhenly =5, my=p+@+1, ¢ =q.

Lemma 3.7 When p > [, we have W(T, f,fw) =W (T“l““{_l’p )

When m > g, we have L‘V(]’f‘ﬂ%q) = IV(T!(:J)M“ Tyl

By above result, we just need to order the trees in {Tt,,m,‘,,],ql |ty +my+p+q1 =n—5}

and compare them to the trees in {T!-;.mu,mm“? > pa, G2 > ma} to get the order of T2,

Theorem 3.8 Letn > 17 andT € Tr?\{TI(,ll),n—Zl: Tl(,ll),n—s Q-Tl n—6,0, erl‘,ll],n»El,J: Tl( w—T L1
then
‘V(T}(,ll),nq,l) < LV(TEI,]l)‘n-S,l) = "V(le(,z:x)—ﬁ,(),l) < lI”(’]‘g,ll),n—o,l) = W(Tf,?q,l,l) < W(T).

Proof By formulae ( ) and Lemma 3.6, we can get
WL 7)) < WIS s)) = WITE)501) < W(T30n00) = W(T110).

T = T,‘}n’w by Lemma 3.6, W(T{}, o) < W(T).

T = T, g 2nd p > [ or m > ¢, without loss of generation, we suppose p > {, then

Wl ) = Wi petorg) > WY y)-

Ifr= !(qu’ [ > p, and ¢ > m, without loss of generation, we suppose I +p > q+m.
Ifl+p>qg+m >3 sincen > 17, then I +p > 7. By Corollary 2.9 and Lemma 3.7,
W( 1(2,p,q) = W(Tf?. daporg) T2 -1)(p+q) = ]V(Tf]vZ|+2£+p—3,q)+2(£_ 1)(p+q). Since
m+2+q2> 5, l+p 3o B e s T i T gy end T oo, By Lemma
3.6, we have W(T{)\ 5\, )) > W(T{{s,). Therefore, W(T{Z, ) > W(T{) 1)
fg+m< 2 then {+p>11and ! > 6. By formula (6), it is easy to verify that

W, ) > W00 = WIS o). u

4 The first fourteen trees in 7, with Smaller Wiener
indices.

Theorem 4.1 Let T € T\{Su, Ta_s.1» Ta—s2s Ti—s.3 Tn—6.00 Tencs.s Tonets
7 (1) (1) (2)
T'z,n—'r.za T3,n—7,]1 Tn—4,0,1:T1,n—s,u [‘l,l,n—'l,l! T?.l,n—s,l!Tl,u—ﬁ,l),l}!n > 24, then

W(Sa) < W(T_5,) < W(T_y,) < W(Tl aesn) < W(Th_s,) < W(Tzn_m)

=W _101) < W(Tl Lm-71) < W(T,_ 64) < W(TirhT 1) = W(TE 5,1,1}
< LV(T;,“—T,Z) < VV(T'Z,II,TL—S‘[) lV(Tln 601) < W(S(n,n—5)) <W(T).
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Proof. W(S,) = (n—=1>=(n—2)(n—1)+n~-1,
W(P” 31) = (n=2)(n-1)+2(n-2),
W(TL 49) = (n —2)(n—1)+3(n—3),
W, s)={n—-3)n—-1)+4(n— r))ﬁ (n—2)n—1)+3n-17,
W(T_s3) = (n— 2) n—1)+4(n—
Wl 1) =W (T2 101)=(n— l)(n—3) +5n—=13=(n—2)(n—1)+4n - 12,
W(Tﬂ wera) = (= 1)(n—4)+6(n—2) = (n—1)(n—2) +4n — 10,

W s.) = n—l)(n— 3)+6n—20=(n—1)(n-2)+5n—25,
W2, 1) = W( ) =m=1)n-3)+6n-20=(n-2)(n—1)+5n—19,
1V(T,,,_72) (n- 1)(n 3)+6n—-18=(n—-2)(n—1)+5n—17,
w(rd ,2" 81) = VV(F(?)(,B1 J=n-1)n—-3)+6n—-16= (n—2)(n — 1) + 5n — 15,
W(S(n,n—5)) = (n— 1}{n — 3) + 6n — 14.
So, when n > 24, W(S,) < W(TL;,) < W(T)_,,) < W(TE, 5,) < W(T}_s5) <
W(T, o.;)
=W(T, 401) < W(Tl(lﬂ 71) SWI(Th_g4) < W(T, 1) = W(TT,6)) < W(T3,72)
WG, 0) = WA 44) < W(SEn,n - 5)).

IfT € T}, then by Theorem 3.1, when n > 24, W(T) > W(T) ;) = (n—1)(n—3)+
n—37 > W(S(n,n—5)).

T € T W(Ti,s4) = (n—1)(n—3)+7n—29 Then W(S(n,n —5)) <
W(TE,_s.4) < W(T) by Theorem 3.5.

BT €T3 W(T,_s1) = (n = 1)(n — 3) + Tn — 23 > W(S(n,n — 5)), and so, by
Lemma 3.8, W(T) > W(TEY,_o1) > W(S(n,n - 5)).

If T € T4, by Theorem 2.3, W(T') > W(S(n,n — 5)).

If T € 77, where i > 5, we can transform T to some tree in T/ by carrying out i — 4
steps e.g.t. Therefore, by Theorem 2.5 and Theorem 2.3, W(S(n,n — 5)) < W(T).

The proof is completed. u]

Meanwhile, for 9 < n < 23, we can list the trees with the first, --, up to the 15"
smallest number of Wiener indices as follows.

(1) when n =9,

W(Sh) < W(TL) < W(TL,) < W(TLy) = W(I2,,) < W(T3,,) = W(TZ,) <
W(Tgy) = W(TE,) = WTa0) < W(TEa) < WD, ) = WER, ) < W(S©,9).

(2) when n = 10,

W(sa) < W) < WUIL,) < WTEs,) < WIL) < WITL) < W(TE,) =

( f,m) < W(T{Ja0) = W(TE1) = W(TFa,) < W(TP5,) < W(T,) < W(TL,,) =

01 1) < W(5(10,5)).

(3) when n = 11,

W(Sn) < W(Ty)) < W(T7,) < W(Tls,) < W(TEy) < W(TY,) < W(Ts)) =
W(TZe1) < W(T{0aa) < W(TEy) = W(T21)) < W(T2y,) = W(TE,,) = W(TE,,) <
WTisa) = W(T5g,) < W(S(11,6)).

(4) when n = 12,



-538-

W(Si) < W(T) < W(TL) < W%, .) < W(TL) < W(TL) < W(Tk,) =
W/(TS?,(J,I) = W(Tal,') < W(Tl(ml) < W(T3,,) = W(l. 1) < ”’(szz) = [V(Ttl-al) =
VV(T(:‘?,Z.J) < W'(T1(,11),4.2) = IL)I"Y(Tsf.zo).l ) < W(s(12 7))

(5) when n =13,

W(S) < W(Tm) < W(T3,) < W(THy) < W(TY,) < W(T,) = W(TE,)
”'/(TTQA) = ‘/V(Tl Lbl) = W('Eiis) < W(Tis,) = W(FSQ,LI < W(Ti4a) < W(Tis,) =
W(2,,) = W, ) = W(r, ) < W(S(13,8))..

(6) when n = 14,

”/(SM) = W’(Tllll < l’V(Tlluz < W leﬂl) <W Tol's) < 1"/(!28[) =W (Tlum) <
W(T,) < WT{lr) < W(THs) < W(Te) < W(T35,) = W(I3,,) < W(TE,) <
w (Tl( ,ll),S,E )

— ‘V(Tal,zu),],l) <W(Tfe) = W(T3,,) < W(S(14,9)).

(7) when n = 15,

W(S5) < "/(TIIEI) <W(TY ) < W(TEh,) < W(Tha) < W(TEe,) = W(Th,,) <
W(Te) < W(Tis1) < W(Tds) < W(T}e) = W(Thsy) = W(Th,,) < W(Ts,) <
W(T\ D7) = W(T55, ) = W(TT,) = W(T3,,) < W(S(15,10)).

(8) when n = 16,

W (815} < W(T} 1) < W(T}”) 5 W(le,l].,l) <W(T5) < pv,(TEJO,I) = W(lez,o‘l) <
W(T1(,11_9,1) < W(Tw,4) < W(Tgl,s) < VV(TBE,D,]) = W(lel,i,l) < W(Ts},s) = W(Tg,gg) <
W(Tl(,ll),S,Q) = W(T1(§,)0,1,1) < W(5(16,11))

(9) when n = 17,

W(Sir) < W(TYy,) < W(THh,) < W(Tip,) < W(T,s) < W(Tzz,n.l) = W(TH,) <
W(Tl(,ll),m,l) < W(T111,4) < W(Tllo,s) = "V(T:?,w.l) = LV(lez,l.l) < W(Tg,m,z) < ‘LV(TI(,II),B,?) =
W(Tih 1) = W(Tde) < W(5(17,12)).

(10) when n = 18,

W](SIB) < W(Tfs,l) < W(T114,2) < W(Tll,lli,l) < W(Tn 5) < W(T3 212, )= (T124,0,1) <

1
W(Tl(,l),lé,l) <W(Th,) < W(TEh ) = W(TH, 0 < W(THh5) < W(TE,) < W(Tlt,l),lﬂ,‘l)
= W(TI(Q,)O,I,I) < W(Tma W(5(18,13)).

(11) when n. =19,

(Sm) <W(Tls1) < W(Ts o) < W(TL,) < WI(TL,) < W(T34,,) = W(Tnsm) <
W(T, Tina) < W(Th ) < W(TF,,) = W(TE, ) < W(th,s) <W(T},) < W(Tl,l‘ﬂ,z)
= W(T{Z,,) < W(S(19,14)).

(12) when n = 20,

W(Sa) < W(Tll'r 1) < W(T) 2) < W( Tl.l,ls,l) < W(Tlla,a) < W(T§14,1) = W(Tlﬂs,n,d <

(1)

W(Tl 1, 131) < W(T} 14 4) < W(Tflal) W(TI?S,I,I) < W(Tzl,m,z) < W(Tllil.ﬁ) <
W(T) 55) = WIS, ) < W(S(20,15).

(13) when n = 21,

W(Sa) < W(Tg,) < W(Tho) < W(Tis,) < W(Tls) < W(TE5 1) W(Tho,) <
W(Tl(,l]);m‘]) < W(T1ls,4) < W(Tfld,l) = W(Tizﬁ,l,l) < W(Til.m,z) = W(Tl,l,l.‘l,2) =
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W(T} II()I 1) = W(Tl5) < W(S(2L,16)).

(14) when n = 22,

W(Sy) < lv(Tl‘Jl <W(Tlsp) < W 1p0) < W(Thy) < W(T5 ) =W
W(T, “1)131) < ‘V(Tll(id.) < ]'V(-"Hu =W(TH,,) <W (T35 2) < W (11“1>11 2)
W I’M,“) <W(Ts5) < W(5(22,17)).

(15) when n = 23,

W(Sa) < W{( 1‘2]01 <W(hy,) < W(T!x,) < W(Tly) < W(TE2,) = W(The,) <
“/(II“'I)IHIJ < ‘V(]II'T W) <W(TF 160) = W) < W(T60) < II"’(TI(‘IIJ_IB,’Z) =
W(Ii010) < W(Tlss) = W(5(23,18)).

(](ll

Discussion. In the previous works on Wiener index, many researchers focused on de-
termining the trees with the maximum and minimum Wiener indices. This topic can be
naturally extended to ordering trees by Wiener indices. It can determine not only the
trees with the maximum and minimum Wiener indices but also the trees with the second,
the third, up to some kth smallest Wiener indices. In the above, by introducing some tree
transformations, we obtain some order relations of several classes of trees, furthermore
the trees with n vertices and with the first up to fiftcenth smallest Wiener indices are
determined. Becanse Wiener indices of molecular structures are closely related to physical
and chemical properties such as boiling point cte., the above results would be useful in-
understanding the relationship between some molecular structures and their physical and
chemical properties according to Wicner indices, and in determining molecular structures
with some given properties and Wiener indices.
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