MATCH MATCH Commun. Math. Comput. Chem. 56 (2006) 519-526
Ci ications in Math ical

and in Computer Chemistry [SSN 0340 - 6253

On dissection of graphs*

Zhixia Xu, Baoyindureng Wu and Xiaofeng Guo
College of Mathematics and System Sciences, Xinjiang University
Urumgqi, Xinjiang 830046, P.R.China

(Received March 27, 2006)

Abstract

For a graph G, the dissection of G, denoted by D{G), is a binary vector («,y) introduced
by Randic in 1979. Let D(G) = (a(G),b(G)). In this paper, we obtain the dissection of
some special graphs. For a graph G and an edge e € E(G), we show that b(G — e) < b(G).
Moreover, if G is connected, for any induced proper subgraph H of G, a(H) < a(G) with
some exception. We also show that among all trees of order n > 5, the path P, has the
minimum a(G) and 5(G), and the star K ,_; has the maximum a(G) and &(G). Finally we
prove that, for any tree T of order n, a(T) > b(T') except for T' = P, when a(P,) = b(F,).

1 Introduction

The dissection of a graph was first introduced by Randic [3] in 1979, and was further
investigated in [6]. For a graph G = (V(G), E(G)), the dissection of G, denoted by D(G), is a
binary vector (z,vy) defined recursively as follows:

1) If G = Ky, D(G) = (1,0).

(2) If G = Ky, D(G) = (0,1).

(3) If G is not connected, then D(G) = 3°7_, D(G;), where G1,Ga,- -+, G, are all the com-
ponents of G. If G is a connected graph of order n > 3, D(G) = 3, cy(q) D(G - v).

We denote the first and the second entry of the dissection D(G) = (z,y) by a(G) and b(G)
respectively. Namely, a(G) = z and b(G) = y.

The dissection of graphs is a useful molecule descriptor of chemical molecular graphs. It was
shown in [5] that the dissection parameters a and b produce good regression for steric factor of
alkanes and correlate quite well with the hyper-Wiener index. From the obtained value of the
dissection parameters of smaller trees, we can see that the novel parameters, which are integer,
are very sensitive to molecular branching (see Table 1).

There are several graph invariants of a very high-resolution power (2, 4] that may be of
interest for graph isomorphism testing. An interesting conjecture on dissection of graphs can
be find in [5]: for two trees Ty and T, D(T3) = D(T3) if and only if 7} = T,. But it is not the
subject of the present study.

*The project supported by NSFC and the grant XJEDU2004113.
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Tablel: 'The dissection parameters for the smaller alkanes

Hexanes Octanes
n-hehexane (54,54) | n-octane (486,486)
2-methyl (78,68) | 2-methyl (702,662)
3-methyl (85,74) | 3-methyl (850,786)
2,3-eimethyl (112,88) | 4-methyl (905,830)
2,2-dimethyl (131,94) | 2,5-dimethyl (1014,914)
J-ethyl (1072,974)
leptanes 2, 4-dimethyl (1241,1096)
n-heptane (162,162) | 2,2-dimethyl (1314,1106)
2-methyl (234,214) | 2,3-dimethyl (1340,1170)
3-methyl (272,245) | 3,4-dimethyl (1526,1320)
3-ethyl (312,279) | 2-methyl-3-ethyl (1600,1384)
2,4-dimethyl (338,288) | 3,3-dimethyl (1693,1388)
2, 3-dimethyl (398,334) | 2,2,4-trimethyl (1919,1564)
2,2-dimethyl (420,331) | 3-methyl-3-ethyl (2035,1644)
3,3-dimmethyl (488,380) | 2,3,4-trimethyl (1991,1670)
2,2,3-trimethyl | (614,460) | 2,2,3-trimethyl (2379,1900)
2,3,3-trimethyl (2531,2000)
2,2,3,3; tetramethyl | (3708,2772)

In section 2, the dissection of some special graphs are given, and one will find that a(G) and
b(G) are generally large numbers with contrast to the order of G. In section 3, we show for a
graph G and an edge e € E(G), )(G — e) < b{G), and if G is connected, for any induced proper
subgraph I of G, a(H) < a{G) with some exception. In section 4, we will see that both a(G)
and b(G) increase with molecular branching when G is a tree and for any tree T of order n we
have a(T') > b(T') except for T = P,.

For a graph G = (V(G), E(G)), |V (G)| is called the order of G. If the order of G is equal to
1, G is called trivial, and nontrivial, otherwise. If E(G) =@, G is called an empty graph. For
v € V(G) and e € E(G), let G — e denote the graph obtained from G by dcleting e, G — v the
graph obtained from G by deleting v and its incident edges. v is said to be a cut vertex if G —v
is not connected.

The complement of G, denoted by G, is the graph with the same vertex set as G, but where
two vertices are adjacent if and only if they are not adjacent in G. As usual, P,,C, and K,
are respectively, the path, cycle, and complete graph of order n. For two positive integers r
and s, K, 5 is the complete bipartite graph with two partite sets containing 7 and s vertices. In
particular, K is called a star. K denotes the graph resulting from K, by deleting an edge.
A graph T is called tree if it is connected and contains no cycle. We say two graphs G and H
are disjoint if they have no vertex in common, and denote their union by G + H; it is called
the disjoint union of G and H. The disjoint union of k copies of G is written as kG. Undefined
terminologies and notation can be found in 1].

2 Dissections of some special graphs

In this section we get the dissections of Ky, K, P,, C, and K, n.
Proposition 2.1. For n > 2,

n!

n+1)(n-2)
5 h —_—).

D(K,) = (0 D(KD) = (n - 22, ¢ 5
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Proof. Let vy,vg,--+, v, be all the vertices of K,,. By the definition,

D(K,) = > DK, -w)
i=1

= nD(Kpo1) =n(n—-1)D(Kp2)=---
= n(n-1)---3D(K>)
= 0%

ia

We prove (2) by induction on n. For n = 2, the result is trivial.

D(Ky) = 2D-1)+ (n—2)D(K,_,)
- :zx(o,(’%l—)!)ﬂn—a) x(n—s)!(z,'l("—z'ﬂ)
= {(n-2)x2(n—2)x [(n—1)+”(”2‘3)]
= (n,‘g)!(zyw))_ [m]

2

Proposition 2.2. For n > 3, D(B,) = (2 x 37 3,2 x 3"%), D(C,) = (2n3"~4, 2n3"1).

Proof. We prove by induction on n. For n =3, D(P4) = (2,2) and the result holds. Now sup-
pose n > 4 and the result is true for all paths of order less than n. Let V(P,) = {v1,v9,--+, o}
and E(Py) = {vivi41,i =1,--- ,n —1}. Then

n—1
D(Py) = D(Py—u)+D(Pu—va)+ Y D(Pn—v)
=2
n—1
= 2D(Pay) + 3 (D(Pi1) + D(Pasy))
=2
n—1 ) )
- (2 % 3n—4‘2 x 371—4) + Z[(z % 31’—4’ 9 x 31—4) +(2x 371-1—1‘2 % 311—:—1)]
T2

(2% 83, 2% 373,

Since D(C;,) = nP,—1, the result follows. O

Proposition 2.3. For any two positive integers m and n,
m i n n
i _ e b . AN 5
a(Kpmn) —né(n+m i l).(2 )z+mjz=;(n+m j 1).(j)j
b(Kmn) = (m+n—2)-mn.
In Particular, D(K),) = (n! 021 &, nl).
Proof. Our proof is by induction on m+n. Form+n =3, K., = K12 = P3, D(Kj2) = (2,2),

the result is true. Now let m +n > 3. It is easy to see that D(K,, ) = mD(Kpn_1,) +
aD(Kmn-1), and thus by the induction hypothesis,

m—1

a(Kpeig) =n Z(n +m—-1-i- 1)!("1‘_1):' + (m — l)zn:(n +m—-1-j7- 1)!(")_7',
i=2 ! g

=2
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. n—1
m n—|
a(Kmn-1)=(n— I)Z(n+m —-1—i- 1)!( )1 + mZ(n +m—-1—j- ])I( ] )j,
i=2 & j=2 2
WKy 1) =(m+n=3) (m=1)n and bKy,_1)=(m-+n—3-mn—1)

S0 we obtain

H(Kmm) = ma(Kmvl,n) + "a("(m,n—l)
= ndY (ntm—i- 1)!(#‘)1‘ +my (n+m=j- 1)!(77)13
=2 ¥ i=2 J
(K nn) = Mb(Kpo10) +0b(Kmno1)
= m[{m+n-3)! (m—1n|+na|(m+n-3)!mn-1)
= (m+n-2).mn O

3 Dissection of a graph and its subgraph

Theorem 3.1. For a graph G and its any subgraph H, we have 8(G) > b(H), with equality if
and only if E(G) = E(H).

Proof. If G is an empty graph, then the result is trivial. So assume that G is not empty,
and it is enough to show that for each e € E(G) of a graph G, b(G — €) < b{G). We prove
by induction on the order n of G. For n = 2, the result is true. Now assume that n > 3 and
e € E(G). If G is not connected, denote all the component of G by Gy, G, -+, Gy, Without
loss of generality, suppose e € E(Gy). By the induction hypothesis, b(G} — ¢) < b(Gy). Thus
b(G —€) = b(Gy ~€) + b(Ga) + -+ +b(Gr) < b(G1) + b(G2) + -+ - + b{Gy) = b(G). Now suppose
G is connected. Since G has order at least three, there is a vertex w, say, which is not incident
with e in G. Since b(G — e — v) = b{G — v — €), by the induction hypothesis, for any v € V(G),
b(G—e—~v) < Y(G—v) and b(G—e—w) < B(G'—w). Consequently, from 4(G) = 3=, cy () B(G-1)
and b(G,) = ZveV(G) b(G. — v), we have b(G — ¢) < b(G). O

As an immediate corollary we have

Corollary 3.2. For any graph G of order n, we have 0 < b(G) < 2l with the left-hand side

Sat Ry PR

equality if and only if G = K,, and with the right-hand side equality if and only if G = K,,.

Theorem 3.3. For any graph G, a(G) = 0 if and only if each component of G is a complete
graph of order at least two.

Proof. If each component of 7 is a complete graph of order at least two, then «(G) = 0. We
prove the necessity by induction on the order n of G. For n = 2 and n = 3, the result is trivial.
Now suppose n > 4 and the result holds for all graphs of order less than n. If G is not connected,
then by the induction hypothesis each component of & is a complete graph of order at least
two, the result follows. Next assume that G is connected and we will prove that G is a complete
graph. Since a(G) = 3 ey a(G —v) = 0, for any vertex v € V(G), a(G — v) = 0 and thus
a(G — v) is composed of compfete graphs of order at least two. Since G is connected, it contains
two non-cut vertices vy and vy. Then G —v; and G — vy are connected, and thus are the complete
graph of order n — 1 by the induction hypothesis. It follows that for any v € V(G)\{v, v},
G —v is connected and is a complete graph of order n— 1, and thus G must be a complete graph.

O
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Theorem 3.4. Let G be a connected graph of order n > 3, Then there is a vertex » such that
a(G =) = a(G) if and only if G = K, or G = P3.

Proof. If G = K, and v € V(G) or G = Pj and v is the vertex of degree 2, then a(G—#) = o).
Next we show the necessity. Assume G is a connected graph with a vertex v € V(G) such
that a(G — v) = a(G). Further we assume that G is not a complete graph, so it sulfices to
prove that G = Pj. Moreover, since Py is the only connected graph of order 3 which is not a
complete graph, we need only verify n = 3. From D(G) = 3 oy () D(G — v) and Theorem 3.3,
a(G —v) = a(CG) > 0 and for any vertex u € V(G)\ {v}, a(G —u) = 0, thus G — u is composed
of complete graphs of order at least 2. Since G is connected, it contains at least two non-cut
vertices. Let u; be a non-cut vertex different from v. Then G — uy = K,_1. If n > 3, we can
find second non-cut vertex ug, say, from V{G)\ {1, v}. Again G —ug & K,,_1. Now choose an
arbitrary vertex ug € V(G) \ {v,u1,up}. It is clear that uy is neither a cut vertex. It implies
that G is a complete graph, a contradiction. So, n = 3 and the proof is complete. [J

Both Proposition 2.1 and Theorem 3.3 tell us that the parameter a(G) has no monotone
property for subgraph relation as b(G) does. But we have

Theorem 3.5. Suppose ( is a connected graph of order # and H is an induced subgraph of G.
Then a{G)} > a(H) unless G = K,, or G = Py and H = K,.

Proof. It suffices to show that
a(G) <a(H)ifand only f G2 K,,or G= Pyand H = K, (1).

The sufficiency of (1) is obvious. Next we prove the necessity of (1) by induction on the
order n of G. Suppose G is a connected graph with an induced subgraph H of G such that
o(H) > a(G). Further we assume that G is not a complete graph, so it suffices to prove that
G=P;

First let us consider the case n = 3. Since G is connected and G % K3, G = Py, and
thus H € {K1, K3, Ka}. By a(H) < 2 = a(Ps) = a(G), H = K3, (1) holds. Next we show
that there is no graph & of order n > 4 having the desired property. Since G is not complete
graph, by Theorem 3.4, for any v € V(G), a(G) > a(G — v), and since a(H) > a(G), we have
a(H) > a(G — vy and thus |V(H)| < n—2.

Claim 1. G has a non-cut vertex u in V(G) \ V(H).

By contradiction, suppose each vertex in V(G)\V (H) is a cut vertex and we take a vertex vy
from it. Then G— 1wy is not connected, and denote all the components of G—uvy by G1,Gs, -+ -, Gy
Let H; = HN G; for cach i = 1,---,k. Since a(G ~ vy) = a(G1) + a(G2) + -+ + a(Gy),
o) = a(H1) + a(H3) + - - + a(H) and a(H) > a(G - vy}, we have a(H,} > a(C)), without
loss of generality. By the induction hypothesis, G} is a complete graph of order at least two
and H, is the trivial graph. Moreover, we claim that G} = K. Otherwise, one can easily find a
vertex from V(Gq) \ V(H), which is not a cut vertex of G. It contradicts with our assumption.
Hence set V(Gy) = {v1,v]}, where v; € V(G) \ V(H) and v] € V(H). Since v is a cut vertex,
G - vy is not connected and has exactly two components, one of which is the isolated vertex v}
and the other, denoted by F', containing vo. Again by Theorem 3.4, a(G) > a(G—u) = a(F)+1,
and combining this with e¢(Mf) = a(H N F) + 1 and a(H) > a(G), we have a(H N F) > a(F).
So by the induction hypothesis, F' is a complete graph of order at least two and F N H is also
the trivial graph ( an isolated vertex). By changing the role of v to v, we also have F = K.
Thus G = P;. However, we have seen in Proposition 2.3 that a(P;) = 6 and a(H) < 2. A
contradiction. This shows the claim.

By Claim 1, G —u is connected, and H is the subgraph of G — « with a(H) > a(G —u). By
the induction hypothesis, G — u ia a complete graph and H = K. Since a(G) < a¢(H) =1, G
must be a complete graph by Theorem 3.3, a contradiction. This completes the proof. (J
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Note that the condition of connectedness for G in Theorem 3.5 cannot be omitted. Let us
consider G = Ka + 2K. Clearly, G has an induced subgraph H = 3K,. However, a(G) = 2<
3 =a(H). Also, from Theorem 3.5, we have more by strengthening Theorem 3.4 as follows.

Corollary 3.6. Suppose (i is a connected graph of order n and H is an indnced subgraph of
G Then

(1) a(G) = a(H) if and only if both G and H are complete graphs of order at least two, or
G = Pyand H = K.

(2) a(G) < a(H) if and only if & = K, withn > 2 and H = K.

4 Dissection of trees

Lemma 4.1. Let Gy and Gy be two nontrivial vertex-disjoint connected graphs. Suppose
w € V(G;) for i = 1,2 and G is obtained from Gy and Go by joining u; and wy. Then
a(G) > a(Gh) + a{G2) and b(G) > b(G1) + b(Gy).

Proof. Take a vertex u € V(G) \ {u1,u2}. Then the component of G — u containing w; (or ug)
is not a complete graph. By Theorem 3.3, a(G — u) > 0. Therefore,

a(G) 2 alG—u)+a(G —uy) + a(G —u)

(a(G1 — 1) + a(G2)) + (a(Gy — u2) + a(Gy) + a(G — u)
> a(Gh) + a{Ga).

By Theorem 3.1, b(G) > b(C — uua) = b(Gy) + b(Ga). 1

Lemma 4.2. Suppose G} and Gy are two nontrivial vertex-disjoint connected graphs, u; €
V(G;) for i = 1,2. Let @ is obtained from Gy and Gy by identifying uy and up as u. Then

(1) a(G) > a(G)) + a(Ga);

(2) B(G) = b(G1) + b(G2), with equality if and only if G} 22 Gy =2 K.

Proof. Let n; be the number of vertices of GG;. By induction on ny + na. First assume
that min{n;,ns} = 2, without loss of generality, let n; = 2 and v} = V(Gy) \ {w1}. Then
a(G) 2 o{G) — u)) + a(G = u1) > a(G2) + 1 > a(G)) + a(Gy). In particular, if n; = ng =2
then Gy = Ga = Ky, and thus G = Py, So a(G) = 2 > 0 = a(Gy) + a(G2), and b{(G) = 2 =
b(Gy) + b(Ga).

Now assume min{n,ny} > 3, and the result hold for any pair of graphs with the sum
of their orders less than my + ng. Let w; € V(G;) \ {u;} be not a cut vertex of G; — w; for
i=1,2. Then G; —w; is connected, and G — w; connected. Hence, by the induction hypothesis,
alG —wy) > a(G) — wy) + ¢(G2) and a(G — wa) > a(Ga2 — wy) + a{G}). Therefore,

a(G) a(G —wy) + a(G — ws)
a(Gh) + a(G2) + a(Gy — wy) + a(Ge — ws)
a(Gy) + a(Ga).

VoV IV

Since at least one of G| —wy and G2 —ws is nontrivial, by Corollary 3.2, b(G) —w) +b(G2 -
wy) > 0. Therefore,

B(G) > B(G —wy) + (G — wp) > B(C1) +B(Ga) +B(C1 ~ w1) +B(Ga — wa) > YC1) +b(C).

One also can see that b(G) = b(Gy) + b(Gy) if and only if G = Gy = Ky, O
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Lemma 4.3. Suppose &) and Ga are two nontrivial vertex-disjeint connected graphs, w; €
V(G;) for i = 1,2. Let G be a graph obtained from ¢y and Gy by joining 4 and s, GY be the
graph obtained from G} and Gy by identifying uy and wug as vertex u and adding a new vertex
w joining to «. Then

(1) a(@) > a(G);

(2) b(G") > b(G). with equality if and only if G} = Gy = K.

Proof. Let n; = [V(G,)| for i = 1,2. By induction on ny +ny. lny =ng =2, G' = Ky 3 and
G2 Py. By Propositions 2.2 and 2.3, D(G") = (9,6) and D(G) = (6,6), thus result holds. Now
suppose 11y + ng > 5.

We claim that for any vertex v € V(@) \ {ur,us}, e(G' —v) > a(G —v). To see this,
suppose v € V(G) and denote all the components of G — v by Iy, He, -+ I}, where I} is
the component containing #y and ua. Then H{, Ha,---, Hi_y, f}. be those of G' — v, where H}
is the one containing «. So it is enough to show that a(f]) > a(H,). Note that H; and H]
are obtained fromn the component F of G; — v, containing uy, and Gs by the same operation
as G and G are did from ¢ and Gy deseribed in the lemma. If ¥ is the trivial graph, then
H{ =Gy = Hy, and thus e(H]) > a(H}); if F is nontrivial, by the induction hypothesis, we also
have a(H{) > a(Hy). Hence a(G" — v) > a(G — v). In addition, by Lennna 4.2, we know that
oG — w)) > a(Gy) + a(G3). Therefore,

alG") = a(G —u)+a(G - w)+ Z a(G' —v)

veV(G)
= aGr—w)+a(Ga—w) +alG' —w)+ Y a(G'—w)
VeV (G {uaw}
> a(Gr - w)+a(Gy - w) +a(G) +alG)+ Y. a(G-v)
VeV G\ fuaw}
= a(G - w)+a(G —ug) + 3 alG — v}
weV (G)\ {ur,u2}

= a(G).

By the similar argument as above, one can prove that if ny +ng > 5, then h(G') > WG), too.
Thus b(G) = b(G") if and only if G} X Gy = Ky. O

Theorem 4.4. Let T be a tree of order n > 4. Then

233 <al) < (n—1M1+ g+ %+ + S"‘l‘?)’)’ with the left-hand side of equality
ifand only if T = P, and with the right-hand side of equality if and only if T = Kj .

(2) 2-3"3 < KT) < (n— 1)}, and for n > 5, 2-3"3 = P(T) if and only if T = P,;
bT) = (n—1)!if and only if T'= Ky ,,_y.

Proof. Let T be a tree of order n with maximum a(T) (or respectively, {T)) among all trees
of order n. By contradiction, suppose T' = K ,,_1. Then it is clear that there exists an edge
e € E(G) such that the two components of 7" — e, T and Ty, say, are both nontrivial. Let u; be
the end vertex of e in T;, and T’ be the graph obtained from Ty and 73 by identifying w; and
wy as verlex u, and adding a new vertex w and joining it to . By Lemuna 4.3, «(T) < a(T")
(or respectively, b(T') < b(7")), which contradicts with the choice of T. Thus T must be the
star, and thus by Proposition 2.3, the right-hand sides of inequalities (1) and (2) hold, with the
equalities if and only if T 2 K ;.

We prove the the left sides of the two inequalitics by induction on the order of trees. Note
that there are exactly two non-isomorphic trees of order 4, namely, Py and K 3. By Propositions
22and 2.3, b(Pj) = (K 3) = 4. Next suppose T is a tree of order n > 5 and is not the path
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P,. Then T has at least three vertices vy, v9 and wvs, say, of degree 1 and another vertices uy,
say, such that T'— wy is not an empty graph. So T — v; is a tree of order nn — 1 > 4, by induction
hypothesis, 6(T — v;) > b(P,_1), and by Corollary 3.2, b(T — vy) > 0. This gives

n 4
WT)= D b7 —wv) = BT — v} > 3610 ) = b(1%).
)

vEV (G =1
On the other hand,

n

3
off)= 3 all—w)2 Y alf —w) > 3H(Pur) =P
i=1

veV (G)

Combining with Proposition 2.2, we have a(T) = 2-3"73 (or b(T) = 2-3"73 } if and only if
T K egs O

It was pointed out in [5] that, for any tree T' of order n, a{T) > b(T) except for T = F,
when a(F,) = b(F,). Here we prove the statement.

Theorem 4.5. H T is a tree and | V(T') |> 3, then a(T) > b{T'), the equality holds if and only
if T' is a path.

Proof. We use induction on the order n of 7. If | V(T') |= 3,4 it is easy to see that the theorem
is truc. So we assume that n > 4 and the theorem holds for smaller values of n.

Let V(T') = {v1,v2,--+,vn}, then the dissection of T is the sum of the dissection of all the
components of T — vy, T —wg,--+, T — w,. For any component T' of T — vy, T —vg,-+-, T — vy,
if | V(T") |> 3, then by hypothesis a(77) > b(1"). If | V(1") |= 2, then T’ is an cdge. Let
V(T") = {v1,v2}, T’ a component of T'—v;. Without loss of generality, suppose vy is adjacent to
v;, then v is of degree 2 and vy is of degree 1 in T. Hence vy is an isolated vertex in T — vy, and
s0, in all the components of T — vy, -+, T —v,, the number of the isolated vertices is larger than
or equal to the number of the edges. Now it follows that o(T) > b(T'). If T is not a path, then
there is at least one component T} of T'— v; (: = 1,2,--- ,n) having order 7 — 1 and being not
a path. By the induction hypothesis a(T}) > (1), and so a(T") > b(T"). The proof is complete.
a
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