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Abstract

One of the most significant differences between the topological and the
physicochemical description of molecules is that the first usually makes use of
discrete mathematics while the second handles continuous functions. Thus,
molecular topology introduce discrete numbers called topological indices as the
key descriptors, whereas quantum chemistry introduces the notion of wavefunction
and its square (function density) as the mathematical objects able to encode all the
information on the molecule. In this work we aim to set up a straightforward link
between both formalisms by assigning wave or quasi-wave functions to the graphs,
Two ways are followed: The first, on the basis of the Fourier theorem, describes
the graph as a sum of sinusoidal functions. The second is a Hermite-like formalism
including the graph characteristic polynomials corrected by exponential factor. As
illustration of the potential interest of the method, Randi¢ index is interpreted as a
specific point of a continuous function and new topological indices are introduced
as well. Their usefulness to predict boiling temperatures is also showed.
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Introduction

Mathematical chemistry, and particularly molecular topology (MT), has become onc of the
most interesting areas of chemical research during the later years. Particularly interesting is its
ability to predict many different properties, ranging from physical [1], electrochemical [2] or
photochemical (chemiluminiscence) [3] up to biological [4-14]. However, while significant
efforts have been done on how MT works, much less is known about why it works so well. In
a previous report [15] one of us has suggested that MT may be not only an alternative but also
and independent approach to quantum chemistry. Perhaps the most critical difference between
both formalisms is that any branch of physics (not only quantum physics) employs dynamic
variables (such as pressure, volume, temperature) to define the state of the system, and
constitutive magnitudes (such as formation enthalpies, lattice geometry, etc.) to describe the
system structure. However, MT is not dealing with the state of the system but about the
constitution of the system. Of course, the constitution is influenced by the state, but along
with the continuous nature of dynamic variables it is always possible to reduce these
continuous values into discrete ones what determine the structural nature. For instance,
temperature changes in a continuous way, but what is really important from the structural
point of view are such critical discrete values, such as melting or boiling points, conditioning
whether the substance is going to hold into a gas, liquid or solid state. Indeed, these specific
points are depending, in turn, on what is called as molecular structure, so closing the cycle of
self-endorsement notions.

Thus, despite molecular structure plays a key role in the prediction of any experimental
property of compounds, a gap between the quantum and topological descriptions still remains

as an open issue.

Describing graphs through wave functions

One of the possible ways to bridge the gap between physicochemical structural descriptors
and topological ones is by assigning continuous functions to any graph, in the same way as
quantum chemistry does with molecules. Under this approach, these specific continuous
functions would play the same role as wave functions in quantum chemistry. Furthermore,
within this framework, topological indices can be considered as notable or specific points of

these functions. Indeed, there are many possible ways of doing that, but we chose two
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algorithms: The first is based on the Fourier theorem and the sccond on the graph

characteristic polynomial. Let us develop cach one in detail.

The trigonometric description of graphs
Starting from the classical time independent equation of waves:
(dPardx?)+ Qe ©=0
where @ stands for the wave function, A is the wave length, and x is the 1-D spatial
coordinate.

Assuming the de Broglie postulate, i.e. cach particle has an associated wave, even if we do
not introduce the mass into the wave equation (A = h / mv), the wavefunction is depending on
the quantum level as far as we confine the particle in a monodimensional box. So, the state
functions for the real values of the stationary states of the particle in the box are given by:

¢ =(2/a)" sin(nn x/a) 0
where “a” is the bond length and “n” is an integer number from one on up.

Let us consider the one-edge hydrogen depleted graph, that is, the ethane graph. Its
connectivity term Cyj, is C1y = (1+1)"% = 1.000

It may be realized that this value is equal to the maximun @ value for n=1 and a=2 in
equation (1).

If we do the same calculation for a 1-2 edge, as for instance either of the two edges in
propane’s graph, then its connectivity term is Cz = (1.2 = 0.7071. Likewise, this value is
the maximum wave function value for n=2 , a=4. The same stands for the C,; and C,; terms,
for which the equivalencies are n= 3, a= 6 and n= 4, a= 8, respectively. The connectivity
terms are so equivalent to the maximum probability values for particles (electrons) placed at
different quantum levels within boxes of different lengths.

The values for each edge wave functions are:

b1y =(2/2) % sin (r x/2)
d12=(2/4) * sin (n x/2)
$13 = (2/6) ** sin (n x/2)
d1a = (2/8) % sin (1 x/2)

An alternative way to reach the same result is taking into account the topological valence

values for each edge, while maintaining constant the box length, as follows:

Oy = 1/(31;) ¥ sin (B mx /2)
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That expression is pledged because the probability of locating an electron within a given 1]
edge (or bond into a chemical translation) is inverse to 8y;. [15]

The wavefunctions associated to the (1,1) (1,2) (1,3) and (1,4) edges are:

b = (1/1) " sin (1 x/2)
d12 = (1/2) " sin ( x)
i3 = (1/3) * sin (37 x/2)
G = (1/4) ¥ sin (21 x)

The corresponding wavelengths (in arbitrary units) are 4, 2, 1.333 and 1.000 respectively
and the corresponding topological levels as defined for their valence values are 1, 2, 3, 4,
respectively.

It is easy to demonstrate that any other possible edge into a graph has an associate wave
function that is derived from the four edges outlined, which can be denominated as
Jundamental edges.

From these results, it is noteworthy that topological level values are the same as quantum
levels in the particle-in-a-box approach. This is a one another link between both formalisms,
i.e. between molecular topology and quantum chemistry.

Furthermore, it is easy to realize that the maximum of the edges-wave functions
(corresponding to sinus values =1) is equal to the connectivity terms Cij.

Since any graph is composed of the four fundamental edges (1,1), (1,2) (1,3) and (1,4),
what are the edges associated to cthane, propane, isobutane and neopentanc, respectively, the
discrete character of the connectivity indices can be associated to different wave function
quantum levels. This also agrees with the Fourier theorem, which stands that any wave
equation, despite its complexity, may be expressed as a sum of sinusoidal functions.

Thus, if we consider isopentane, its wave function would be:

Wisopentane = $13°012+ 2§13 + di2 = 0.408 sin (3 x/2) sin (r x) + 1.1547 sin 3n x/2)+

+0.707 sin (7 x).

It is interesting to realize that, under this formalism, the Randi¢ index, or first order
connectivity term, ¥ , is just the maximum value of the graph-wave function.

Table 1 shows the corresponding wave function equations for a set of alkanes, as well as
the values of the differences between maxima and minima for each graph wave function

(maximum-minimum gap, MMG).
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Table 1. Wave function equations and the valucs of the differences between maxima and

minima into cach graph wave function for a set of alkanes.

Alkane
" Ethane
Propane
Isobutane
Butane
Neopentanc

2M4

n-pentane

22MM4

23MM4

M5

3M5

n-hexane

23MM5

Sinusoidal wave function  MMG
Wetane = &1 = sin (1 X /2) 200
Wpropane = 2912 = 1.4142 sin(n x ) 2.83
Wisobutane = 3013 = 1.7320 sin(37 x /2) 3.46
Whatane = 2012+ diad12 = 1.4142sin(x x )+ 0.5 sin’( x ) 2.91
Wheopentane = 414 = 2 sin( 21 x) 4.00
Wona = d13 d12+ 2 b3 + dp2 = 0.4082sin(3n x /2)sin(nx) + 372
1.1547sin(31 x /2) + 0.707 1 sin(nx)
Wiepentane = 2412+ 2d1212 = 1.4142sin(rm x )+ 1.0 sin’(m x) 2.91
Waoms = Gra dr2+ 3 dug + d12 = 0.3535sin(27 x)sin(nx) 441
+1.5sin(2x x)+ 0.707 1sin(wx)
Woimma = 013912+ 2 di3 + dr2 = 0.4082sin(37 x /2)sin(nx) + 4.61
1.1547 sin(37 x /2) +0.707 I sin(mx)
Woms = 2013+ Qi3 pr2+ di2 12 + ¢ = 1.1547 sin(3m x /2) + 3.72
0.4082sin(37 x /2)sin(mx) + 0.5 sin’(x x ) + 0.707 Isin(mx)
Wims = 2012+ 21302+ di3 = 1.4142 sin(m x ) + 4.00
0.8164sin(3m x /2)sin(nx) + 0.5773sin(3n X /2)
Worhexane = 2012+ 3012012 = 1.4142sin(m x )+ 1.5 sin(m x ) 3.25
Wasmms = 3013+ Gradra+ Gi3duz + 12 = 1.7320 sin(3m x /2) + 4.88

0.4082sin(37 x /2)sin(nx) + 0.3333 sin’ (37 x/2 ) + 0.707Lsin(nx)

"MMG= Maximun-mimimum gap.

Other algorithms allowing manipulation of wave functions are possible as well.

example the (1,1), (1,2) (1,3) and (1,4) edges can be described as:

$11 = sin (n x/2 +n/2);
$12 = sin (T x/2 +1/4)
$13=2/3 sin (1t x/2 +1/3)
$14 = sin (w x/2 +71/6)

&1 (0)= 1.0000 =y,
$12 (0)=0.7071 = 1
G13(0)=0.5773 =93
14 ( 0)=0.5000 = 54

For
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As in the former description, any other graph edge may be derived from these four
fundamental edges. In this case, the differences in the associated wave functions are not in the
amplitude but in the phase angle (except for the (1,3) edge that includes both).

[n this case, the connectivity index 7 is just the intercept for each graph equation (x = ‘¥ (0)).

The polynomial approach

Many previous attempts arc reported on the graph characterization through their
characteristic polynomials. [16, 17] However, the use of the single polynomials leads to
asymptotic curves, whose characteristic points are not very representative as graph descriptors.
It is interesting to realize that the eigenvalues for the four fundamental graphs above defined

(corresponding to ethane, propane, isobutane and ncopentane) are identical to the % values for

each one.
\ 2.0 I
- — ¥=P(x
1.0
-4.0 -3.0 2.0 -1.0 1.0 2.0 3.0 40

Figure 1.- Comparison between the single polynomial and the Hermite-like function for the n-

butane graph. Observe that the AUC makes finite for the exponential quasi-wave function.

A possible alternative is combining the polynomial expression with the squared
exponential in a similar way as the Hermite polynomials are introduced into the wave
function of the harmonic oscillator.

Thus, we define the quasi-wave function for a graph as:
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Y=px) o2

being P(x) the graph characteristic polynomial. The difference between the two
representations is displayed in Figure 1. The most significant difference is that the area under
the curve becomes finite in the exponential approach, which makes sense to the concept of
quantum probability as the overall integral between 0 and .

It is noteworthy the appearing of a maximum at about x=2.4. That maximum also stands
for the rest of alkanes in the range between x=1 and x=5. Because of the similarity to the
Hermite approach for harmonic oscillator wave functions we call our approach as Hermite-
like wave functions.

Table 2 illustrates the characteristic polynomial, as well as the y connectivity index,
maximum eigenvalues, ordinates of the maxima placed between x=1 and x=5 (Wpx 1.5), area

under the curve and boiling temperatures for a set of alkanes.

Table 2.- Connectivity index y; characteristic polynomial; maximum eigenvalues; maximum

Y between x=1 and x=5; area under the curve AUC and boiling temperature, Ty, for a set of

alkanes.
Alkane X Characteristic Maximum Wiy exp. AUC Ty(K)
polinomial eigenvalues s

ethane 1.0000 x-1 1.000 04463  0.6065  184.4
propane 1.4142 x>-2x 1414 05592  0.7358 2309
isobutane 1.7320 x*-3x? 1.732 0.8962  1.1594 2613
butane 1.9142 x*-3x3+1 1.618 09486 12765 2725
neopentane  2.0000 x*-ax® 2.000 16922 2.1630 2825
2M4 2.2700 x* - 4x% +2x 1.845 1.8379 24772 3009
n-pentane 2.4142 X7 - 4% +3x 1.732 1.9188 26775  309.1
22MM4 2.5610 x%- 5x*+3x° 2.074 39767 53290 3227
23MM4 2.6430 x8 - 5xt+ax? 2.000 41095  5.6415 3310
2M5 2.7700 x8- 5x* +5x° 1.902 42497 59898 3330
3MS 2.8080  x%-5x¥+5%%-1 1.932 42318 59877  336.6
n-hexane 2.9140 x8- 5x* +6x% -1 1.802 43784 63219 3417

23MM5 3.1807  x’-6x°+8x’-2x 2.053 104415 14894  362.8

Results and discussion
The formalism we introduce here, i.e. assigning wave or quasi-wave functions to molecular
graphs, has a widespread potential applicability. One of the most interesting usefulness is

opening a new way to introduce novel topological indices, as specific points of such functions.
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A detailed description on how this approach can be achicved is out of the goal of this paper
and it will be hopefully dealt in the near future, but let’s illustrate, just as an cxample, a
simple case: The good fitting between the maximum amplitude (MA) of the sinusoidal wave
functions and the boiling points for groups of alkane isomers. The same happens with the
ordinate values of the maxima as well as with AUC for the Hermite-like approach.

The following regression cquations were the best (highest F-ratio), obtained correlating
boiling points with a set of topological indices including the new ones introduced by first time
here, as well as the connectivity up to the fourth order:

BP =59.80 % + 167.92

N=58 R*=09591 SE=823 F=1284

BP = 1.444 (MA) + 54.23 % + 179.66

N=58 R*= 09688 SE=6.78  F=191.2

BP =-4.93 (¥ nax 1.5) + 87.28 % + 112.85 )

N=58 R*=09878 SE=436 F =366.4

Thus, although the y index continucs to be the best single descriptor for boiling points
prediction for the selected set of alkanes, the inclusion of seme of the novel topological
indices led to a significant improvement in the prediction as compared with the rest of
connectivity indices.

In closing, we may conclude that the use of graph wave functions allows, within the
framework of the independent and fundamental nature of topological indices, to consider
molecular energies (at least electronic and vibrational) as particular cases of topological
indices. In fact, whilst energy is the eigenvalue of the Hamiltonian operator over a given wave
function, topological indices would result on applying different operators over the selected
wave functions. Under such a view, energy would be just a particular case of topological
index, what could explain why electronic and vibrational energies [7, 15] correlate so well
with some topological indices, This is interesting because topology, in the sense we use this
word here, would be an alternative and independent approach to energy, or at least, it may
suggest new ways of dealing with the well-known concepts of molecular energies and wave

functions.
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Conclusions

The possibility of describing graph by continuous functions is a very useful approach for

several reasons:

- First, it makes possible introducing new topological indices as specific points of
continuous functions describing each graph.

- Sccond, it allows setting up a parallclism between the quantization of energy and the
discrete character of topological descriptors.

- Finally, this formalism involves a straightforward relationship between molecular
energy and topological descriptors. Under this view, molecular energies, particularly
clectronic and vibrational ones, would be particular cases ot topological indexes
derived from the application of the Hamiltonian operator, just one of the many

possible opcrators to apply over the wave functions.
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