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Abstract: Inspired by the fact that the buckminister fullerene is a Cayley
graph, we are devoted to characterizing fullerenes which are Cayley graphs.
Here we prove that the buckminister fullerene is the unique fullerene which is
a Cayley graph.

1 Introduction

A fullerene is a cubic planar graph with all faces 5-cycles or 6-cycles. It is the topo-
logical structure of a molecule which contains only carbon atoms, and each carbon atom
is bonded to exactly three others.

Let f5 and fg denote the numbers of faces of a fullerene F* with size 5 and 6 respectively,

then we have the following result.

Lemma 1.1 (Lemma 9.8.1 in [1]) f5 = 12, n = 2fs + 20, where n = |V(F)|.
By Lemma 1.1 we see that n > 20. Thus the dodecahedron is the smallest fullerene.
Not all fullerenes correspond to molecules which exist in nature. One necessary con-
dition believed by many chemists is that no two 5-cycles can share a common vertex.
Such fullerenes are called isolated pentagon fullerenes. By Lemma 1.1, any isolated pen-

tagon fullenerene has at least 60 vertices. There is an example on 60 vertices known
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as buckministerfullerene. To introduce this fullerene, we need the definition of Cayley
graphs.

Let G be a finite group and S an inverse-closed subset of G not containing the identity
1 of G. The Cayley graph of G related to S, denoted by C(G, S), is the graph with vertex
set G and, for any z,y € G, x and y are adjacent in C'(G, S) if and only if 7'y € 5.
Now we can define the buckministerfullerene. Let As be the alternating group on the set
{1,2,3,4,5} and T = {(12)(34), (12345), (15432)}. Then the buckministerfullerene is just
the Cayley graph C(As,T) ([1], page 209). Inspired by this fact, Professor Fuji Zhang
posed the following questions: Are there any other fullerenes which are Cayley graphs?
or further, can we characterize the fullerenes which are Cayley graphs? In this paper, we

show the following result.

Theorem 1.1 The buckminsterfullerene is the unique fullerene which is a Cayley graph.

It should be noted that Klein and Liu has proved in [3] that the sole preferable cage
(the definition of which can be found in [3]) with fewer than 70 vertices is the buckmin-
isterfullerene. On the other hand, we prove in this paper (Lemma 2.2) that if a fullerene
of order n is a Cayley graph, then one of three cases occurs, the largest n being 60. Thus
Theorem 1.1 follows readily. However, we go further to provide a new proof which has
much algebraic taste.

For discussion of the next section, we cite some known results as our next lemma.

Lemma 1.2[5] Let G be a finite group and S an inverse-closed subset of G with 1 € S.
Then

(i) C(G,S) is connected if and only if S generates G.

(ii) C(G,S) is vertex transitive.

(iii) If T = a(S) for a € Aut(G), then C(G,S) = C(G,T)

Notation and definitions not defined here are refered to [1]. For more results on fullerene,

ee 2] and [4].

2 Proof of the main result

To prove our main result, we first establish a sequence of lemmas. The first lemma is

obvious.
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Lemma 2.1 Every cycle of length 5 or 6 in a fullerene is the boundary of a face.

Lemma 2.2 Let F' be a fullerene of order n which is a Cayley graph. Then one of the

following statements holds:

(i) n =60, fo = 20, every vertex of F' is contained in exactly one cycle of length 5 and

exactly two cycles of length 6.

(i) » = 30, fs = 5, every vertex of F is contained in exactly two cycles of length 5 and

exactly one cycle of length 6.
(i) n =20, fsg = 0, every vertex of F' is contained in exactly three cycles of length 5.

Proof. By Lemma 1.1 we have

n=2fs+20 (1)
Since Cayley graph is vertex transitive, the number of eycles of length 5 or 6 containing a
vertex is independent of the choice of vertices. Therefore, we may let n, be such number
for r = 5 or 6. Then we have

ns x n = 60, (2)
and

neg X n.=0f. (3)
Since n > 20, (2) has three solutions: (ns,n) = (1,60), (2,30), (3,20). For n = 60, 30,20,
by (1) we have fs = 20,5,0, respectively. Then by (3) we have ng = 2, 1,0, respectively.
The result follows. O

Let F = C(G,S) be a 3-regular connected Cayley graph. Then |3 = 3, S is a

generating set of G and can be written as one of the following forms:
(i) S={a,bc},®=b=ct=1.
(ii) S={a,bb '}, a>=b=1k2>3.

Lemma 2.3 Let G be a finite group and S = {a,b,c} be a generating set of G with
a?=b? = c* = 1. Then the Cayley graph C(G, S) is not a fullerene.

Proof. By contradiction, suppose C(G, S) is a fullerene. Then by Lemma 2.2 we may
assume that C is a 5-cycle containing the identity 1 of G. Since the neighbor set N(1)
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of 1is S, we have |V(C) N S| = 2. Without loss of generality, we may assume that
V(C)N S = {a,c}. Then there exists wy, us, uz € S such that

C = (1, a, auy, auyuy, auyuguy = ¢)

Clearly, wy # a, us # uy, ug # us and uz # ¢. Then wy € {b,c}. We now consider two

Cases.

Case 1. u; =1

Since ug # wy, up # b, we have uy € {a,c}.

If u; = a, then uz = b and ¢ = (ab)®. Thus G can be generated by {a,ab} with
a® = (ab) = 1 and a(ab)a = ba = (ab)~'. It follows that |G| = 8, a contradiction.

If ug = ¢, then w3 = a and ¢ = abca. Thus b = (ac)®. Now G can be generated
by {a,ac} with @ = (ac)! = 1 and a(ac)a = (ac)™'. But these imply that |G| =8, a

contradiction.

Case 2. u, =c¢
By a similar argument as above we can obtain a contradiction. O
In what follows, we consider the case where S = {a,b,b7'} with a®> = ¥ = 1 and
BEia.

Lemma 2.4 Let G be a finite group and S = {a,b,b"'} be a generating set of G with
a® =t =1 and k > 3. Suppose that C(G, S) is a fullerene and C is a 5-cycle containing
10fG. Ifa € V(C), then aba = b*2,k = 15 and |G| = 30.

Proof.  Assume, without loss of generality that V(C) NS = {a,b}. Then there exist

uy, ug, uz € S such that
C = (1,a,auy, auyug, auguguy = b)

Clearly, 1, # a, us # uy', ug # uy ' and uy # b. It follows that uy € {a,b~'}, and if

wy = b, then uy € {a,b}; if w; = b~", then uy € {a,b7'}. We now consider two cases.

Case 1. uy =band u, € {a,b};
If uy = a then ug = b, and so aba = b*; If uy = b then us = a, and so ab®a = b, that

is, aba = b°.
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Figure 1: C(G, S) has a subgraph that is a subdivision of K3

Case 2. wy=b"and uy € {a,b7'};

If uy = a then uy = b7, and so ab~'ab™! = b, that is, abe = b2 If uy = b~' and
g = a then aba = b2 1f ug = b~ and uz = b~! then a = #,

From the above discussion we know that there are only two situations: a = 4% or
aba = b*2. In the former case, G contains subgroup {(b) of order 8. Hence |G| # 20, 30, 60.
In the later case, the order k of b must be odd and so |G| = 2k. By Lemma 2.2 we

conclude that k = 15 and |G| = 30. m}
Corollary 2.1 If the Cayley graph C(G, S) is a fullerene, then |G| # 20.

Proof. By Lemma 2.3, we can write S = {a,b,b7'}, a? = b* = 1, k > 3. If |G| = 20, then
by Lemma 2.2, every vertex is contained in three 5-cycles. Thus, there exists a 5-cycle C
containing 1 such that V(C) NS = {a,b}. But then, by Lemma 2.4, we have |G| = 30, a

contradiction. ||
Corollary 2.2 If the Cayley graph C(G, S) is a fullerene, then |G| # 30.

Proof. By Lemma 2.3, we can write S = {a,b,67'}, a® = b = 1, k > 3. If |G| = 30, then
by Lemma 2.2, every vertex is contained in exactly two 5-cycles. Therefore, there exists a
5-cycle C containing a. Without loss of generality we may assume that V(C)NS = {a,b}.
Then from the proof of Lemma 2.4 we have aba = b*? k = 15 and |G| = 30. We
only consider the case where aba = b?, the other casc can be similarly discussed. Now
aba = %0 = 1,2, ...15, especially, ab®a = b, ab’a = b and ab''a = b'*. From these we
can see that C(C, S) contains a subgraph depicted in Figure 1.

This subgraph is a subdivision of Ky, thus C(G,.S) is not planar, a contradiction. []

This subgraph is a subdivision of K33, thus C(G,S) is not planar, a contradiction. ()

Lemma 2.5 If the Cayley graph C{G, S) is a fullerene with S = {a.b,b™1}, then |G| = 60,

¥ =1 and the unique 5-cycle C' containing 1 must contain b and b=".
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Proof. By Lemma 2.2, Corollary 2.1 and Corollary 2.2 we have |G| = 60. Now we show
that b,b~' € V(C). If, to the contrary, {b,b~'} € V(C), then a € V(C). By Lemma
2.4 we have |G| = 30, a contradiction. Thus V(C) NS = {b,67'}. Then there cxist

uy, Uz, u3 € S such that
C = (1,b, by, buyug, buyugus = b1) (4)

Thus wyugus = 572, If only one of uy,us and ug is a, then we have a = b, m < 4. Thus
G is a cyclic group of order no more than 2m < 8, a contradiction. If there are two a's in
{u1,up, uz}, then, from (4) we have, uy = u3 = a. But then abe = b*? and, by the proof
of Lemma 2.4, |G| = 30, a contradiction. Thus uy,uy, u3 € {b,b71}. Clearly, u; # b7!, we

have u; = b, and therefore us = uz = b. This gives b° = 1. O

Lemma 2.6 Let G be a group of order 60 and S = {a,b,b7'} be a generating set of G
with a® = &° = 1. If the Cayley graph C(G, S) is a fullerene, then 6-cycles containing 1

must contain a.

Proof. Let C be a 6-cycle containing 1. By way of contradiction, if a & V(C), then
V(C)NS = {b,b='}. Thus, there exist uy, uz, us, uy € S such that

C = (1, b, buy, buyuy, buyugu, buyuguzug = b7') (5)

From (5), ujugusug = b=2. If u; = b, then upuauy = b3, by a similar argument as in the
proof of Lemma 2.5 we can deduce that |G| < 30, a contradiction. Thus u; # b. If uy =,
then ujuguz = b=2. By the similar argument as above we can obtain a contradiction. Thus
ug # b. Again from (5), u; # b~! and uy # b~!. Therefore u; = 14 = a and uyus = ab™%a.
Since ustg # 1, ugug is one of ab, ba, b* and b2, and further ab~%a = b*2. Since b® = 1,

aba = b*! and so |G| = 10, a contradiction. 0

Proof of Theorem 1.1. Let the Cayley graph C(G, S) be a fullerene. Then by Lemma
2.3 we see that S = {a,b,b"!} with a® = ¥ = 1. By Lemma 2.5 we have |G| = 60 and
ki=:5.

Let C be a 6-cycle containing 1. Then by Lemma 2.6, a € V(C). Without loss of
generality, we may assume that V(C) NS = {a,b™1}. Then there exist u,,us, u3, us € S
such that

b7 = auyupuguy, (6)
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and the cycle € can be written as
C = (1, a,auy, auyuz, auiugts, auyugtuzuy = b~') (7
From (7), we know that w; # a, uy # 47", wg # 1y and uy £ b1
Claim 1. uw; = b; Otherwise, u; = b7}, and so0 uy € {a,b~'}. From (6) we have
tytzuy = bab™t.

First suppose that u, = a. Then uz € {b,b7'}. If uz = b, we have uy = b or uq = a.
The former leads to ab? = bab™!, that is aba = b, which implics |G| = 10, a contradiction;
The later leads to aba = bab=!, and further b = 1, a contradiction. If uy = b=!, we have
= b"'oruy = a. If uy = a occurs, then ab™'a = bab~!, and further b* = 1, a
contradiction.

Next suppose that us = 6~'. Then #3 = b~! or a. In the former case we have
uy = a. Therefore abe = b™! and |G| = 10. In the later case, we have uy = b. Therefore
b-lab = bab™', that is ab’a = b%. Since b* = 1, this gives aba = b and so |G| = 10, a

contradiction.
Claim 2. uy = a; Otherwise, u; = b and u3 = a or b. From (6) and Claim 1, we have
UUzgUg = b_lab*l (8)

If u3 = a, we have 1y = b and bab = b~'ab™!, that is, ab’a = b~2. Since §* = 1, we have
aba = b~'. Thus (b) is a normal subgroup of G and |G| = 10, a contradiction. If u3 = b,
then uy € {a,b}. If uy = e, then b~ 'ab™ = b’a => aba = b3, This gives |G| = 10, a

contradiction. If ug = b, then b® = b~lab™! == a = b° = 1, again a contradiction.

Claim 3. u3 = b; Otherwise, u3 = b™' and u4 = a. Then ab~'a = b~'ab™!, and so b? = 1,

this is impossible.

Claim 4. u; = a; Otherwise, uy = b. Then ab® = b~'ab™ !, that is, b3 = aba. But then
|G| = 10, a contradiction.
From the above four Claims and (6} we deduce the following relations for the elements
of S:
a® =10 =1and (ab)®* =1
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Then it is not difficult to show that any element in G must be one of the following forms:
b bald B (ab?a)l b (ab?ab~2a), where 0 < i, 5 < 4
Since |G| = 60, the above representation for the elements of G is unique. In the alternating

group Ag of degree 5, if we let @ = (12)(34) and b = (12345), then 7l = (15432) and

@ =B = (@h)* = 1. Therefore the elements of A5 can also be expressed in the following

forms:
. Bah b(@b ), b (@b ab @), where 0 <i,j <4
Then the following mapping
~
e = F-Ez = where 0 < 7,7 <4

bab®ab’ — babab

VabPab~*ald — BEbab ab
defines a group isomorphism from G to Aj, and under this mapping, we have ¢ — 4,
b— band b-' —s 5. Thus if we set T = {E,E,E_l}, then by Lemma 2.2 we have
C(G,5) =2 C(As,T). The result follows. O
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