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Abstract

In this paper a continuous-time Markov process is presented to describe the evolution

of networks, and the degree distributions of several processes are discussed.

INTRODUCTION: Complex networks describe a wide range of systems in nature and society,
it has brought many attentions recently (see [1, 4, 6, 10, 17]). The recent study of networks
shifts the main focus from classical graph theory to very large networks which may dynamically
evolving in time. This movement is triggered by the paper of Watts and Strogatz [21] about the
‘small-world phenomenon’ and the paper of Barabasi and Albert [3] about ‘scale-free’ nature
of networks.

One of most popular topology structure, a scale-free probability distribution for network
connectivity, has been reported in many systems as diverse as protein reaction networks
({12, 13]), metabolic reaction networks ([14, 19, 20]) and ecological food webs ([18}). How-
ever, the common evolutionary mechanism (‘scale-free’ nature): preferential attachment based
on the number of existing connections, is confirined mainly by heuristic methods or computer
simulation in the literatures. In fact, as pointed out in ([5]) that the results on ‘scale-free’
networks are largely heuristic and experimental studies with "rather little rigorous mathemat-

ical work; what there is sometimes confirms and sometimes contradicts the heuristic results”.
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Thus, increasing the level of rigor in this field becomes a challenge and it will improve our
understanding on complex networks.

The purpose of this paper is not only to attempt to prove some theorens, but also to draw
the attention of theoretical bio-chemists to this interesting topic. Thus some basic results
which we obtained recently are presented in the paper.

Most of evolving networks can be regarded as a graph valued discrete time Markov chain
[16]. Tn the paper, we will embed the evolving process of networks into a continuous time
Markov process. The advantage of this consideration is that the corresponding master equation
becomes a differential equation, which is much easy to deal with comparing with the difference
master equation in the case of discrete time processes. Using the framework of continuous
time Markov process, we discussed the degree distribution of several evolving networks.

This paper is organized as follows. In the first section, we introduce a contimious time
Markov process which describes evolving networks, and prove a result which plays the same role
as Azuma inequality in discrete thine processes. In second section, we discuss some continuous

time preferential growth model of evolving networks.

§1 GRAPH VALUED MARKOV PROCESSES
Denote the set of natural numbers by N and
Ey= {1 = ((zi;),mz) € {0, 1}N1 x N | 25 = xji, 2 = 0 and x5 = 0 if max(¢, ) > vl_c} i

An element x = ((2y;),n:) € Ep can be regard as an adjacency matrix of a simple graph G
with all n,-vertices labelled, which may contains isolated vertices. In this sense, the space Ey
can be considered as the sct of finite vertex labelled simple graphs.

For =,y € Ey, if ny = ny, these two vertex labelled graphs have the same order, and
furthermore ||z — y|| = zl_j |zij — wij] is twice of the number of different edges of two vertex
labelled graphs «,y € FEy, and which measures the difference between two vertex labelled
graphs of the same order. We also use |x| = ||z||/2 for the total number of edges of the graph
x € Fy, and di(x) = Z; 25 is the degree of the node i.

The continuous-time Markov chain X(t) € Ey we will considered in this paper is a jump

process defined by the following one-step jump probability matrix:
plx,y) 2 0,2,y € By, (1)

where p(z,x) = 0, Eyp(;r. y) = 1, and the sojourn time in any state is exponentially distributed
with rate 1.
Note that, if for all i,j € N, x;; < y; and n, < n,, we can think that the graph y is

obtained from z by adding some new nodes and/or edges, or conversely, & is obtained from y
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by deleting some existing nodes and/or edges. So the Markov chain defined above describes
evolving networks, it will be called a graph valued process.

Let 73 be the k-th transition time of the process, that is,
10 = 0,7 = inf{t > 71| X(#) # X(m1) ) A 2 1,

and Ty, = T — 74— denote sojourn times, N(¢) be the number of jumps in the time interval
[0,¢], i.e., N(t) = max{n|r, < t}. Then {Ty,k = 1} is a sequence of i.i.d. random variable

with the exponentially distribution:
P{T > X(0) =z} = P {Tx >t} = ¢

for all & 2 1 and ¢ 2 0, and therefore, N () is subject to Poisson distribution with rate 1, that
is,

P{N(t) = n|X(0) = 2} = P.{N(t) = n} = r?"tf—" b,

for = € Ey.

Note that Ty <t < Ta@)4 and then

N(t) - N
LT t o
N SN N()
It follows from the strong law of large number that
L TP )

tmoo L E.(Ti)

The continuous-time transition probabilities
P(tyx,y) = P{X(t) = y|X(0) = 2} = P.{X(t) = y}

is generated by a linear bounded operator g(x,y) = p(z,y) — d,,,, which is called the infinites-
imal transition rates, since
P(t;a,y) = g(z,y)t + o(t).
The transition probabilities P(t;2,y) are differentiable and they satisfy the Kolmogorov dif-
ferential equations:
Plzy) =3 alz,2)P(tzy) = Y Plta,2)e(zy).
zE€ED 2€Eo
Let f: Ey — R be a Lipschitz function: ie. there is a constant M, such that for all

,y € Eo, we have |f(z) — f(y)| € Mjlz — yl|. Then f(X(t)) is a stochastic process, and

EL[J(X(0) = D P'(t: =, 9)f (v)
v

=3 P2, 2)q(z, 9) f(y) = E<[QF(X(1))]

2
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where
QIGY= 3" al=y)f W) = Y pl,y)f) - fz)].
yekh veEy
Let oy = o{X(s)|0 € s < t} be the smallest g-algebra which includes all events occurred
before ¢, f a Lipschitz function on Ep. Then fix t > 0, for all 0 < s < ¢, the stochastic process
Yi(s) = E.[/(X(t)|os] is a martingale. The analogous to the Azuma inequality [2, 11] for the

discrete time process is the following theorem.

Theorem 1 Let {X(t),t 2 0} be a graph valued process. For any fired t > 0, let Yy(s) =
E.[f(X(t))|os] (0 < s < t), where x € Ey and f is Lipschitz. If there is a consiant a > 0,
such that Ex[(Y7(s1) — Yy(s2))?] < a for any |s1 — sa| € 1, then

5 [(ﬂxm) B Ew{f(X(tmﬂ <o+ ) )

t t 12

Proof. Since Y;(s),0 < s <t is a martingale, therefore, for all 0 < sy < s2 €53 <5y <Y,

we have

Ex((Yi(sa) — Y5(s3))(¥s(s2) = Yy(s1))) =
= E.[(Yy(s2) — Yi{s1))E[Y (54) — Yy(s3)los,]] = 0.

So we get required inequality,

E{(F(X(®)) = Exlf (X)) = E=[(Y¢(t) - Y3(0))*] =

-1 2
=E. [(mt) —YH) + Y Yk +1) - Y;(k))) } =

k=0
[tl-1
=E[(Y;(8) = Yy({)] + Y Eal(Yy(k +1) - Yy(K)Y] < alt +1).
k=0
0

As a corollary, we have

Corollary 2 If {X{t),t = 0},z € Eqs,f : Eo — R as in Theorem 1. Yy(s) = E.[f(X(t))|os]
satisfies E[(Y(s1) — Yy(82))?] € a for any |81 — s2| € 1, and in addition, if the limit

i BSKQU

t—oo

then

lim
t—oo

m: A as. -P,
t T
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§2 CONTINUOUS TIME BARABASI-ALBERT MODEL

In this section we will apply the graph valued process to discuss the degree distribution in
some continuous time preferential growth network models. The model of growth networks is
as follows: starting with an initial state = € Ey, at every one-step unp, we add a new node
and one edge that links the new node to one of the nodes already present in the graph.

Let e(i.7) € {0, l}Nz.i # j defined by e(i.j) = 60y + dgjdu. Then for = € Ey, the
one-step jump probability matrix

W (d;(z)) : :
o = 1.y = s + exa(d, : <ig
i STEL W@, G ny=ne+ Lyy =au+en(i,n, +1)and 1 <i < ny
otherwise
where W(d) is a positive increasing function, which deseribes the preferential attachment.
This is our graph valued process description of the preferential growth networks.
Let S(z) = Y17, W(di(x)), and as hefore Di(z) = f{ild; = k} denotes the number of

nodes with degree k.

Theorem 3 Suppose that there is a constant ¢ such that sup{W(k +1) —W(k): k >1} < ¢
and

lim H‘SL%M =5>0. (6)

t~—o0

Then, the probability that a node has the degree k in the graph valued process X(t) is

k-1 .
P = i DK S W)

= N wEsUwhHTs a.s.-P,. @

Proof. For any fixed ¢ > 0, let Yg(s) = E,[S(X(t))|os] for 0 < s < t. Since for all
|s1 — 82} < 1, we have
Ea[(Ys(s1) = ¥5(52))*] < Ex[(sup{|W{k+1) = W(E)[}N(|s1 — s2]))%) €
< R[N (1)) = 262,

and N(t)/t = 1 as-P; as t — o0, it follows from Corollary 2 that

t]_l_ngo-‘?it(tp- =S, as.-P,. (8)
On the other hand, for all ¢ > 0, we have
/ e Dea(XO)] _ e [Pe(X(8)
D) = W - 18, [ 2] e, [ 5, )
Let Di(t) = E-[Dr(X(t))]. By (8) the equation (9) can be rewritten as
D) = Wik —1)Dra(t) ~ W(k)Di(t) Sebiatall, (10)

St St



-490-

where

) = W (k= DB, [0 (xS SN

SIXW)S g
S—=S8(X(@))/t]
— WK, {Dk(xu))-—sm] = o(1).
Solving the differential equation (10) we get
k-1 -
Dl — e W 4 oenie

wikj+s A wi+s
So we have .
 ElDy (X(t))] s YW

A Vik)+ 5 H W)+ 5

Let Yp,_(s) = E.[Di(X(1))|oy]. Tt is easy to check Lhat. for any |sg —sp| < 1
E:[(Yis, (s1) — Y, (s2))%] € 4B [N*(1)] = 8.

Thus, by Corollary 2, we can conclude that the probability that a node has the degree k is
given by (7). O

Remark 4 In fact, the equation (10) is just the rate equation introduced by Krapivsky, Redner,
and Leyvraz in [15], which describes the rate of the average number of nodes with k edges at

time.

As an application of Theorem 3, we consider the following three examples of evolving

networks.
Example 5 (Uniform attachment)

Let W(k) = 1, we have

) (12}

i ESCY@D] BN
t—co t t—o00 4
i.e., S =1, and therefore, by (7) the probability that a node has the degree k is
1
Po= g (13)

Example 6 (Barabdsi-Albert model with initiol attracliveness)

Let W (k) =k + 3 with 8> —1. Then

S— lim TEI[S(tX(t))} - T E.[2N () + iﬁ(N(t) al| O ) (19)
By (7), it follows that
248 % i+g rEs+3) 1

by = ~ (24 8)e

k+2ﬂ+1)Hz+2(,3+1 T(F+1) k35

for large k. This degree distribution agrees with the result in 7]
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Example 7 (Sub-linear preferential attachment)

Let W(k) = k*,0 < @ < 1, and suppose that the limit

5= jm BSXO)

(15)

exists. Although it is likely that the limit exists, it has not been verified vet. Since 1 < W(k) =
k* < k, therefore, N(t) < S(X(t)) < 2N(t). It follows that 1 < S < 2, if the limit (15) exists.

Then by (7) we have
S Skl-e
Pk~k—nexp{f]_a} (16)

for large k.
Notice that, in (8], the same asymptotic formula (16) has been obtained but under a more

strong assumption: both (15) and all limits limg e Ex[Di(X (t))]/t exist.
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