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Abstract

Two given integers k > 2 and 1 <i < k. A set S consists of all k-long oligonucleotides. All of these
oligonuleotides are written 5" to 3’. A directed graph D(k,i) (called DNA graph) is defined on S C §
as follows: each oligonucleotide from S becomes a point, two points from first point to second one are
connected by an arc if the i rightmost nucleotides of the first point overlap with the # leftmost nucleotides
of the second one. In this paper, it is obtained that a digraph is a DNA graph if and only if it is a
directed line-graph. Moreover, we present an useful equivalence relation and give an efficient algorithm
to find the equivalence class with respect to the equivalence relation in a DNA graph.

1 Introduction

As it is known DNA (deoxyribonucleic acid) is a double helix in which the two coiled strands (chains)
are composed each of only different nucleotides. Every nucleotide consists of phosphate, sugar and one of
the following bases: adenine (abbreviated A), thymine (T), guanine {G) and cytosine (C). The two chains
are held together by hydrogen bonds which exist only between pairs of complementary bases, which are A
-Tand G- C. It follows that knowing one chain, the other (complementary) can be easily reconstructed.
DNA computing must not be confused with biocomputing. Usually, biocomputing means everything that
computer scientists can do to help biologists to study genes. For example, algorithms and data structures
have been developed to investigate the properties of the sequences of nucleotides in DNA or RNA, and
those of amino acids in the primary structure of a protein. In DNA computing, instead, molecular
biology is suggested to solve a problem for computer scientists. There are many reasons to investigate
DNA computing. As known, Hamilton Path Problem is an NP-Complete one. Adleman’s experiment!!!
showed that DNA can be used to solve the hamiltonian path problem and bio-steps are O(n), where n is
the number of the points of the directed graph. In 1997, Qi Ouyang et all?l gave the DNA solution of the
Maximal Clique Problem. In 2000, Qinghua Liu et all® presented the DNA computing on surfaces. In
2002, Adleman’s group?! solved an instance of 20-variable 3-SAT (satisfiability) problem experimentally,
and this is the largest instance of the SAT problem solved experimentally by DNA computing. In 2002,
Yachun Liu et al® proposed the DNA solution of a graph coloring problem. In 2002, Shiying Wang!®l
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gave the DNA computing of bipartite graphs for maximum matching. In 2003, G. Rozenberget et alll
published the DNA computing by blocking. In 2005, Shiying Wang et all®l give the DNA solution of
integer linear programming. A class of graphs is called directed line-graphs. It and DNA graphs are
close. In this paper, it is obtained that a digraph is a DNA graph if and only if it is a direeted line-graph.
Moreover, we present an useful equivalence relation and give an efficient algorithm to find the equivalence
class with respect to the equivalence relation in a DNA graph.

2 DNA Graph

A DNA sequence in molecular biology is a sequence of characters from the set {A, T, G, C}. One of
the methods of recognition of the primary structure of DNA sequences is sequencing by hybridization.
This method consists of two phases: biochemical and computational. In its compntational phase, the
first approach to this problem based on graph theory, has been described by Blazewicz et all®l. A directed
graph is built from Spectrum ( a set of some I-long oligonucleotides ) as follows: each oligonucleotide
from Spectrum becomes a point, two points are connected by an arc if the (I — 1) rightmost nucleotides
of the first point overlap with the (I — 1) leftmost nucleotides of the second one. For more information
on the biological background, we refer the reader to Blazewicz et all®). On the other hand, there are
many NP-complete problems in graph theory. In DNA computing, the points of a graph must be labeled
by DNA sequences. If the points of a graph are just oligonucleotides, then it is convenient in DNA
computing. Thus we give the following.

Definition 2.1. Two given integers k¥ > 2 and 1 < i < k. A set S consists of all k-long oligonu-
cleotides. All of the oligonuleotides are written 5’ to 3. A directed graph D(k.7) (called DN A graph)
is defined on S € S as follows: each oligonucleotide from S becomes a point, two points from first point
to second one are connected by an arc if the i rightmost nueleotides of the first point overlap with the i
leftmost nucleotides of the second one.
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Figure 2.1

Definition 2.1 has extended the definition of DNA graphs in [9]. For example, let S=[TTGG,GGAG,
AGGG,GGTC,TCTG,TGTC,TCAC]. Then the DNA graph D(4, 3) which is exactly the DNA graph in
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[9] is an empty digraph and the DNA graph D(4,2) is shown in Figure 2.1. In fact, (4, 2) is the digraph
i which Adleman’s experiment solves the hamiltonian path problem [U, The points of a DNA graph
are oligonucleotides, i.e., the points are labeled by DNA sequences, and the arcs are determined by the
points. Therefore DNA graphs ave better in DNA computing.

A directed graph, or digraph, D consists of a set of points V(D) and a set of ordered pairs of points
E(D) called arcs. For 2 € V(D), let I't (z) = {y € V(D) : (z,y) € E(D)}.

Definition 2.2. A digraph is a p-graph if given any ordered pair «, y of points (& possibly equal to
y), there are at most p parallel arcs from x to y.

By the definition of DNA graphs, a DNA graph is a l-graph.

Definition 2.3. Let k > 2,1 <7 < k and a > 1 be three integers. We say that a 1-graph D can be
(k,1; @)-labeled if it is possible to assign a label (I1{x), -, li(2)) of length k to each point = of D such
that

(a) lj(z) € {1,---,a} for every j € {1,--- k};

(b} (z,9) € E(D) & (li—ita(x), - Iu(@)) = (hi(y), -+, Lilw))-

Definition 2.4. Given three integers k > 2,1 < i< kand a > 1, 8¢
can be (k, i; a)-labeled.

As DNA uses only four letters, we consider the special case where a = 4. For special case, all labels
components will be chosen in the set {A, T, G, C} instead of {1,2,3,4}.

Definition 2.5. A digraph D is a DN A-graph if and only if there are k,i (k = 2,1 < < k) such
that D € 8¢ ;.

DNA graphs are defined by the biological background. Its points are oligonucleotides, and its arcs are
determined by the points. The complete properties of two oligonucleotides corresponding to the same
DNA sequences may he different. Thercfore the labels of two different points of a DNA graph allow to
be the same. Definition 2.3 is consistent with the concept of DNA graphs ( Definition 2.1 ).

Definition 2.6. The directed line-graph D' of a digraph D is the 1-graph with point set E(D) and
such that there is an arc from a point z to a point y in [ if and only if the head of the arc = in D is the
tail of the arc  in D.

. is the class of 1-graphs that

A digraph D’ is a directed line-graph if there exists some digraph D such that D’ is the directed
line-graph of D.

Let s be an oligonucleotide of length 2r. Decompose s into two strands, each of length r, s = sys9.
Thus s; (resp. s2) can be viewed as the first (resp. second) half of s.

The notations and definitions not defined here can be found in [10].
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Figure 2.2
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A semiwalk in a digraph is a finite non-null sequence vg. ay, vy, -+, ag, v, whose terms arc alternately
points and ares, such that, for i = 1,2,--- k, the arc a; has head v; and tail »;_ or head v;_, and tail
v;. A semitrail is a semiwalk whose arcs are distinct. A semitrail is called a friend trail if its each internal
point satisfies outdegree=2 or indegree=2. A friend trail is closed if it starts and terminates at a same
point. For example, D, of Figure 2.2 is a friend trail.

For every two ¢, ea € E(1)), we define a relation e; ~ e, when e; and ez have the same head or tail
or are in a closed friend trail of length 4. Clearly, we have the following.

(a) e ~ e for any e € E(D):

(b) g ~ eg == e5 ~ey.

Theorem 2.7. "~" is an equivalence relation if and only if the following holds
THa)NT " (y) # 0 == THx) =T*(y).

Proof. (only if). Suppose that "~” is an equivalence relation. Assume, on the contrary, that there
exists a pair =,y € V(D) such that TH(2)NT* (y) # 0 and ['*(x) # ['*(y). Without loss of generality, let
[¥(z) - TH(y) £ 0. Let 2’ € [ (x) — T+ () and o’ € TH(z)NTH(y). (2,27) ~ (2,37) and (%) ~ (4, 1)
therefore (&, z") ~ (y,7'). But ares (x,2’), (y,v') do not have the same head, tail and they are not in a
closed friend trail of length 4. This is a contradiction.

(if). Suppose that TH(x) N TH(y) # # = [*(z) = ' (y). Suppose that (ry,z}) ~ (@9,24) and
(@2, 2h) ~ (r3,2Yy), where (&1, 1), (2, #5), (w3, 25) € E(D). There are the following cases to treat.

Case 1: (zy,r}) and (z2,2%) (21 = 22) have the same tail.

If (z7, 2) and (73, 7%) (21 = 23) have the same tail, then (ry,r}) and (24, 7%) have the same tail. If
(21, 2%) and (x5, 24) (x5 = x4) have the same head, then by hypothesis ([ (x) NI ¥ (y) # 0 == I'* () =
I'*(y).) there exists an arc (z3,21) and so (1, 7}) and (r3, z%) are in a closed friend trail of length 4. If
(x1,2%) and (x3,x%) are in a closed friend trail of length 4, then by hypothesis (w1, £}) and (@3,25) are
in a closed friend trail of length 4.

Case 2. (w1, x)) and (z9,7}) (2] = 25) have the same head.

If (x2,}) and (x3, x4) (z) = z5) have the same head, then (21, #1) and (r3, x}) have the same head.
If (29, 21) and (23, 2%) (wg = x3) have the same tail, then by hypothesis (x(,2}) and (3, z}) are in a
closed friend trail of length 4. If (9, z}) and (x3,#5) are in a closed friend trail of length 4, then by
hypothesis (xy,2]) and (r3,2%) are in a closed friend trail of length 4.

Case 3. (xy,7)) and (x2,rh) are in a closed friend trail of length 4.

If (2, @) and (73, 7%) (ra = 22) have the same tail, then by hypothesis (zy,z}) and (ry, %) are in a
closed friend trail of length 4. If (x2,25) and (z3, z3) (&5 = x5) have the same head, then by hypothesis
(z),2}) and (r3,2%) are in a closed friend trail of length 4. If (@2, 2%) and (3, 23) are in a closed friend
trail of length 4, then by hypothesis (), 2}) and (x3,x%) are in a closed friend trail of length 4. Therefore

no_n

~" is an equivalence relation on E{D). The proof is complete. O

Theorem 2.8, A l-graph D is a DNA graph if and only if the following holds for any pair «,y € V(D):
M) nlty) #8= ") = I"(v).

Proof. (only if). Suppose that D is a DNA graph and ' (x) nT*(y) # #. Then there are k.i
(k = 2,1 <i<k)such that D € S},. Since T*(x) NT*(y) # B, there exists a point z € TH(z) N
T*(y). Therefore (l_is1(x), -, lk(z)) = (L(2), -+ -, Lilz)) and (h—ipi(@).- -+, lw)) = (L(2), -+, Li(2):
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Without loss of generality, let w € It (x) and w @ T (y). Then (l—ip (), - L(x)) = (h{w), -, L(w))
and hence (I_ i1 (), -, L(n)) = (Li(w), -+ -, Li(w)). By definition of the DNA graph, (y,w) is an arc, a
contradiction.

(if). Let the following hold for any pair z,y € V(D):

CHa) NI (y) # 0 = ' (r) = THy).

By Theorem 2.7, there exists a partition of E(D) into nonempty subsets £y, Es, -+, E,. Let n; denote
the number of isolated points and ng denote the number of points which only have out-degrees or in-
degrees in D. Choose that 4™ is greater than or equal to n+ 2n; + ng. In an equivalence class, we assign
alabel {1, -, ;) to the second half of the label of the tail of each are and the first half of the label of the
head of each arc, where I; € {A,T,G,C} (1 < i < m). In different equivalence classes, we assign different
labels. For the points which only have out-degrees, assign a different label (4, -+, 1y) to the first half of
the label of cach point; for the points which only have in-degrecs, assign a different label (4, -+, 4,) to
the sccond half of the label of each point. For the solated points, assign a different label (¢, -+ 4,) to
the first half and the second half of the label of each point, respectively.

Every arc in DD belongs to an equivalence class. By the above label, (r,y) € E(D) = the second
half of the label of 2 is equal to the first half of the label of y. Suppose that the second half of the label
of x is equal to the first half of the label of y and (z,y) ¢ E(D). Then by the above label, deg*(x) # 0
and deg™(y) # 0. Let (z,2"),(y',y) € (D). Then by the above label (x,2') and (3,%) belong to an
equivalence class. («,z’) and (y'.y) do not have the same head or tail because (x,y) € E(D). Clearly,
(z,2') and (¢, ¥) arc not in a closed friend trail of length 4. This is a contradiction. Therefore, if the
second half of the label of 2 is equal to the first half of the label of y, then (z,y) € E(D). Thus, there
exists a (2m,m; 4)-labeling of D. The proof is complete. O

Algorithm 2.9.

Let D be a directed graph. Input E(D). Output S = {£,,---,E,}.

Step 0. S:=0,i:=1and E := E(D).

Step 1. If E = 0, then stop.

Step 2. (Find E;.)

(0) Let e € E.

(1) Find F® for e. (F* contains e.) (F") is an arc subset of E(D), the head of each arc of which
is the same to the head of a given arc. F®) is also an arc subset of E(D), the tail of each arc of which is
the same to the tail of a given arc.)

(2) For any ¢ € F, find F") and obtain |J F(!) and F0) := | J F(1),

(3) E;:= FOUF® §:=(E,--- E}, E:= E - E;,i:=i+1 and return Step 1.

It is casy to verify that the algorithin 2.9 is a polynomial-time one, We have the following.

Theorem 2.10. The output § = {Ey, -+, E,} of Algorithm 2.9 is a partition of E(D) for a given
DNA graph D. Moreover, for any i € {1,---,n}, E; is an equivalence class under the equivalence relation
¥~" mentioned in Theorem 2.7.

Proof. Clearly, it is sufficient to prove that F; is an equivalence class under the equivalence relation
"7, Let e; be the arc chosen in Step 2 (0) of Algorithm 2.9 for E;, i = 1, ,n. It is easy to see that
e ¢ Eyif j >i.

Let e € F;. If e and ¢; have the same tail or head, then it follows that ¢; ~ e from the definition of ~.
Suppose there exists an arc, say e, such that e; and e have the same tail, and e and ¢’ have the same
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head. Since ' {x) NI (y) # B = 't (x) = I'"(y), we know that e and ¢; are in a closed friend trail of
length 4, which implies e; ~ e. Therefore every pair of arcs in E; is equivalent.

Without loss of generality, assume j > 4. Suppose that e; ~ e;. If e; and e; have the same tail or
head, then e; € E; by Algorithm 2.9, a contradiction. Hence, e; and ¢; are in a closed friend trail of
length 4. Then there exists an arc e such that e; and e have the same tail, and ¢; and e have the same
head. This implies e; € E;, a contradiction again. Therefore, e; and e; are not equivalent and so & and
" are not equivalent for any ¢ € B¢ € E;. The proof is complete. O

Theorem 2.11(Berge [9]). A 1-graph I} is a directed line-graph if and only if the following holds for
any pair «,y € V(D)
DHo) Nl (y) # 0= I (z) =" ().

By Theorem 2.8 and 2.11, we have the following.
Corollary 2.12. A digraph is a DNA graph if and only if it is a directed line-graph.

Acknowledgements

The authors would like to thank Prof. Gue Xiaofeng for many useful suggestions. The authors are
appreciative of the suggestions given by the referee.

References

[1] Leonard M. Adleman, Molecular computation of solutions to combinatorial problems, Science
266(1994) 1021-1024.

[2] Qi Ouyang, Peter D. Kaplan, Shumao Liu and Albert Libchaber, DNA solution of the maximal
clique problem, Science 278(1997) 446-449.

[3] Qinghua Liu, Liman Wang, Anthony G. Frutos, Anne E. Condon, Robert M. Corn, Lloyd M. Smith,
DNA computing on surfaces, Nature 403(2000) 175-179

[4] Ravinderjit S. Braich, Nickolas Chelyapov, Cliff Johnson, Paul W, K. Rothemund, Leonard Adleman,
Solution of a 20-variable 3-SAT problem on a DNA computer, Science 296(2002) 499-502.

[5] Yachun Liu, Jin Xu, Lingiang Pan and Shiying Wang, DNA solution of a graph coloring problem,
Journal of Chemical Information and Computer Sciences 42(2002) 524-528.

[6] Shiying Wang, DNA computing of bipartite graphs for maximum matching, Journal of Matheraatical
Chemistry 31(3)(2002) 271-279.

[7] G. Rozenberg, H. Spaink, DNA computing by blocking, Theoretical Computer Science 292(2003)
653-665.

[8] Shiying Wang, Aiming Yang, DNA solution of integer linear programming, Applied Mathematics
and Computation 170(1}(2005) 626-632.
[9] J. Blazewicz, A. Hertz, D. Kobler and D. de Werra , On some properties of DNA graphs, Discrete
Applied Mathematics 98 (1999) 1-19.
{10] L. Lovasz and M. D. Plummer, Matching Theory, Elsevier Science Publishing Company, Inc., New
York, 1986.



