MATCH MATCH Commun. Math. Comput. Chem. 56 (2006) 457-476
C ications in Mathematical
and in Computer Chemistry ISSN 0340 - 6253

Z-transformation graphs of perfect matchings of plane bipartite
graphs: a survey*

Heping Zhang

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000,
P. R. China, e-mail address: zhanghp@lzu.edu.cn

(Received April 25, 2006)
Dedicated to Professor Fuji Zhang on the occasion of his 70th birthday

Abstract

From a mathematical point of view, in 1988 F. Zhang, X. Guo and R. Chen intro-
duced “Z-transformation graph” (Randié named after “resonance graph” in chemical
literature) of perfect matchings of hexagonal systems: from a perfect matching to
another is joined by an edge provided they only differ in a hexagon. Afterwards, this
concept was extended naturally to general plane bipartite graphs. Its nature can be
explained in many ways from chemical resonance to mathematical cycle space and
distributive lattice. We now survey rich theoretical results on this field made by
several groups in main directions: chemical application, basic properties, connec-
tivity, forcing edge, lattice structure, distance and median graphs, coding, as well
as some miscellaneous problems.

1 Introduction

A hezagonal system is a connected plane bipartite graph without cut vertices and each
interior face of which is surrounded by a regular hexagon of side length one. The carbon-
skeleton of a benzenoid hydrocarbon is a hexagonal system H with a Kekulé structure,
a set of pairwise disjoint edges that cover all vertices of H, which coincides with perfect
matching or 1-factor in graph theory. Varicus graph-thcoretical researches on benzenoid
hydrocarbons are referred to books [7, 8, 17, 18].

In 1988 Zhang, Guo and Chen [54, 55] introduced a kind of transformation graphs,
named after Z-transformation graph on the set of perfect matchings of hexagonal systems:
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from a perfect matching to another is joined by an edge provided they only differ in a
hexagon (cquivalently, the symmetric difference of these two perfect matchings is just the
hexagon), and revealed many basic properties and an application [60]. In mathematics,
it originates from perfect matching polyhedron [41]: two vertices are adjacent if and
only if their corresponding perfect matchings form a unique alternating cycle. Thus Z-
transformation graph of a hexagonal system is a spanning subgraph of its perfect matching
graph [38]. In chemistry, this idea originates from Herndon’s resonance theory |24} put
forward in 1973: RE = 2(x1m + xoy2)/ K, where v and 42 are constants, and x; and
X2 stand for the numbers of pairs of Kekulé structures which are transformed one into
the other by cyclically permuting 3 and 5 double bonds respectively. An example is
illustrated in Gutman and Cyvin [18]. In fact x; corresponds the number of edges of Z-
transformation graph. Then, Z-transformation graph has been introduced by Grundler
[15, 16], and Randié¢ [42, 43, 44] in 1997 under the name “resonance graph”; El-Basil
19, 10] carried on such transformations on partial hexagons (eg. end-hexagons of cata-
benzenoids) to produce lattice graph or hypercubes. In 1997 Randié¢ [43] showed that
the leading eigenvalue (A) of the resonance graphs correlates with the resonance energy
of benzenoids: RE = 0.78342) + 0.60682 with the coefficient of the correlation 0.9828,
the standard err of the estimate 0.072, and the Fisher ratio 686. This represents a quite
satisfactory correlation.

In 2003 J.C. Fournier [12] re-introduced Z-transformation graph under name “per-
fect matching graph” in investigating domino tiling spaces of Saldanha and Casarin [46].
Domino tilings and lozenge tilings of polygonal region in the plane are other sources of
perfect matchings. A polyomino is a polygonal region consisting of regular squares. A
domino tiling is a polyomino tiled or paved fully by dominoes (1 x 2 or 2 x 1 rectangles).
A domino tiling of a polyomino corresponds to a perfect matching of its inner dual. For
example, the domino tiling in Fig. 1 corresponds to a perfect matching of 3 x 3 chessboard.

Fig. 1. Domino tiling and matching.
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We can use lozenge as a brick of tiling. A lozenge is a rhombus of side length 1 having
angles of 60° and 120°. A lozenge tiling is a triangulated region, composed of triangles
with all side lengths 1, is tiled fully by lozenges. A lozenge tiling of a triangulated region
corresponds to a perfect matching of its inner dual. For example, the lozenge tiling in
Fig. 2 (left) corresponds to a perfect matching of coronene (Fig. 2 (right)).

To date many theoretical researches on Z-transformation graphs have been made
by several groups in the following main directions: (i) cata-benzenoids and outplane
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Fig. 2. A lozenge tiling and matching

bipartite graphs, (ii) basic properties and extension to general plane bipartite graphs,
(iii) connectivity, (iv) orientation of Z-transformation graphs and lattice structure, (v)
distance, median properties and coding, as well as some miscellaneous problems (Hamilton
path, Fibonacci cubes and Clar number). In this article we summary such research
progresses on Z-transformation graphs with some open problems.

2 Plane bipartite graphs and resonance faces

Thorough this article we restrict our consideration on finite and simple plane bipartite
graphs with at least one perfect matching. Hexagonal systems, polyomino systems and
boron-nitrogen fullerenes (13, 6] are classical examples of plane bipartite graphs.

By a plane graph G we mean an embedding of a planar graph in the plane. This
embedding partitions the plane into an open set, every connected component of which is
a region, called a face of G; the infinite one is the outer face and the other ones are said
to be inner faces. A subgraph H of a given plane graph G is a plane graph, which can be
always regarded as a planar embedding restricted on G.

A bipartite graph means a graph for which the vertices are colored by white or black so
that two adjacent vertices receive different colors. For a bipartite graph, such a 2-coloring
(white-black) is always specified.

A plane graph is called an outerplane graph if all vertices lie on the boundary of the
exterior face. Some examples of outerplane bipartite graphs are illustrated in Fig. 3.
Catacondensed benzenoids [30, 32, 34, 42] are hexagonal systems that are a subclass of
outerplane bipartite graphs.

Fig. 3. Three examples of outerplane bipartite graphs.
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Let G be a plane bipartite graph and M a perfect matching of . A eycle C (resp. path P)
is M-alternating if the edges of C' (resp. P) appear alternately in M and E(G)\M. The
symmetric difference of two finite sets A and B is defined as A@ B := (AUB)\(ANB). This
operation can be defined among many finite sets in a natural way and obey associative
and commutative laws. Let M and M’ be distinct perfect matchings. The symmetric
difference M @ M’ consists of mutually disjoint M and M’-alternating cycles of G. 1f C
is an M-alternating cycle, then M & C' is also a perfect matching of G, where ' may be
regarded as its edge-set.

A bipartite graph G is called elementary or normal if G is connected and every edge
belongs to a 1-factor of G. Elementary bipartite graphs have many important equivalent
properties, see Lovasz and Plummer [38]. The complete graph Kz on two vertices is
a trivial elementary bipartite graph. A non-trivial plane elementary bipartite graph is
2-connected and every face is bounded by a cycle.

A subgraph H of a bipartite graph G is nice if G — V/(H) has a perfect matching.
It is obvious that a cycle C' of G is nice (or resonant) if and only if G has a perfect
matching M such that C' is M-alternating. A generalized hexagonal system means a
connected subgraph of a hexagonal system. The following elegant characterizations for
normal (generalized) hexagonal systems were obtained by Zhang, Chen and Zheng.

Theorem 2.1. [51] Let H be a heragonal system with perfect malchings. Then H is
normal if and only if the boundary of H 1s a nice cycle.

Theorem 2.2. [61] Let G be a generalized hezagonal system with perfect matchings. Then
G is normal if and only if the boundary of each non-hezagonal face is a nice cycle.

A face of a plane bipartite graph is resonant if its boundary is a nice cycle. Some
natural generalization on plane elementary bipartite graph can be described in terms of
resonant faces as follows.

Theorem 2.3. [70] Let G be a plane bipartite graph with perfect matchings. Then G is
elementary if and only if each face is resonant.

Theorem 2.4. [71] Let G be a plane bipartite graph the interior vertices of which are of
the same degree. Then G is elementary if and only if the exterior face of G is resonant.

From the theorem we can know that 2-connected outerplane bipartite graph is ele-
mentary because it has no interior vertices and its boundary is a nice cycle.

For non-elementary plane bipartite graphs G, elementary components of G mean com-
ponents of the subgraph obtained from G by the reroval of all forbidden edges (or fixed
single edges [58], those edges not contained in any perfect matchings). Further, G is called
weakly elementary [70, 36, 47] if every interior face of every clementary component of G
remains an interior face of the original G. It is known that hexagonal system, polyomino,
etc., are this kind of graphs. However, an example of non-weakly graphs is illustrated in
Fig. 4(a).
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Fig. 4. (a) A non-weakly elementary plane bipartite graph G. (b) two clementary
components, and (¢} Z-transformation graph Z(G).

Lemma 2.5. [70] Let G be a planc bipartite graph with a perfect matching. Then G is
weakly elementary if and only if for each nice cycle C, the subgraph of G formed by C
together with the interior is elementary.

3 Basic properties of Z-transformation graphs

Given a plane bipartite graph G with a perfect matching M. If the boundary of an inner
face is an M-alternating cycle C, a Z-transformation (twist, or flip) is an interchange
between the M-matching and non-matching edges on C; that is, it carries-once on the
symmetric difference M @ E(C) to give another perfect matching. For example, Fig. 5
gives Z-transformations of perfect matchings of chessboard and coronene along a square
and a hexagon respectively.
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Fig. 5. Nlustration for Z-transformation or twist for a square and hexagon.

Definition 3.1. Z-transformation graph, denoted by Z(G) (or resonance graph), of per-
fect matchings of G is a graph: the vertices are perfect matchings of G, and a pair of
vertices M) and M, are joined by an edge provided they can be obtained from each other
by a Z-transformation along an inner facial boundary.

For example, the Z-transformation graph of the cube graph Q3 is illustrated in Fig.
6(b); and the Z-transformation graph of the graph in Fig. 4(a) is the disjoint union of
two copies of Ky (cf. Fig. 4(c)). Randi¢ [43] ever drew Z-transformation graphs of quite
many cata-condensed benzenoids.

The following basic properties of Z-transformation graph were first obtained by Zhang
et al. [54] for hexagonal systems, then extended to general plane bipartite graphs.



-462-

T

I_.J *l .J . (‘j- -c\"‘;.
Tl S <
u o Y

(a) {b) (

»
c)
Fig. 6. (a) Perfect matchings M and My, (b) Z-transformation graph Z(Q), and (c)
Z-transformation digraph Z{(Q4).

Theorem 3.1. [5, 70] Let G be a plane bipartite graph with a perfect matching. Then
Z{G) is a bipartite graph.

Theorem 3.2. Let G be a plane elementary bipartite graph. Then
(1) [54, 70] Z(G) is connected,

(1) [54, 70] Z{G) has at most two vertices of degree one, and

(1) [68] the block-graph of Z(G) is a path.

Theorem 3.3. [54) Let H be a heragonal systems with perfect matchings. Then either
Z(H) s e path or Z(H) has girth § and Z(H) —V,, is 2-connected, where V,,, denotes the
set of monovalency vertices of Z(H).

Zhang et al. [54] completely determined hexagonal systems whose Z-transformation
graphs contain one monovalency vertex by establishing a coordinate system O-ABC,
which divides the plane into three areas AOB, BOC and COA; three equivalent proposi-
tions are obtained (for example, the boundaries in three areas are all monotone}; further
hexagonal systems whose Z-transformation graphs contain precisely two monovalency ver-
tices are just hexagonal benzenoids O(m, n, k) [57).

The concept of Z-transformation graph can be used to solve the forcing edge problem
of hexagonal systems proposed by Harary et al. [23]. An edge of a graph G is called a
forcing edge if it belongs to exactly one perfect matching of G. F. Zhang and X. Li [56]
provided an algorithm to recognize the hexagonal systems with forcing edges. Further the
same authors [57] showed that a hexagonal system H with perfect matchings has a forcing
edge if and only if Z(H) has a vertex M of degree one and the unique resonant hexagon
with respect to M is a boundary hexagon. A similar characterization was obtained by
Hansen and Zheng [20] independently. Enumeration [57, 53| for hexagonal systems with
forcing edges and Kekulé structure count [59] were discussed.

Che and Chen [3] recently introduce a novel concept ‘forcing hexagon’: a hexagon h
of a hexagonal system H is called a forcing heragon if H — h has exactly one perfect
matching, and show that
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Fig. 7. (a) A crossed polyomino T, (b) Z(T).

Theorem 3.4. [3] A hexagonal system has a forcing hexagon if and only if it has a foreing
edge.

A general consideration on forcing edges of plane bipartite graphs was made in terms
of reducible face construction and ear decomposition [38]. The details are referred to [70].

4 Connectivity of Z-transformation graphs

The connectivity of a graph G is the least integer & such that it is less than the number of
vertices of G and it remains connected by deletion of fewer than & vertices. For hexagonal
systems and polyomino graphs, the connectivity of their Z-transformation graphs was
determined completely; see the following theorems.

Theorem 4.1. [55] For a hezagonal system H, the connectivity of Z(H) equals its min-
imum degree.

Theorem 4.2. [62] For a polyomino graph P, the connectivity of Z(P) equals its mini-
mum degree except Z(T') and Z(T') x Ky (sce Fig. 7).

Wang {50} showed that the Z-transformation graph of plane bipartite cubic graphs are
connected. In general, a simple characterization for connected Z-transformation graphs
was obtained by Fournier [12] and Zhang et al. [72] independently.

Theorem 4.3. [12, 72] Let G be a plane bipartite graph with a perfect matching. Then
Z(G) is connected if and only if G is weakly elementary.

Fournier also gave a criterion of determining whether two perfect matchings of G
belong to the same component of Z(G). Along this line, further descriptions can be
found in next section and ref. [63].

We now define the restricted Z-transformation graphs. Let G be a plane bipartite
graph with perfect matchings. Let F(G) and Fy(G) denote the sets of all faces and inte-
rior faces of G respectively.

Definition 4.1. For F' C F(G), the Z-transformation graph of G with respect to F,
denoted by Zy (@), is defined as a graph in which the vertices are the perfect matchings
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(a) (b} (c)
Fig. 8. (a) Clockwise orientation of faces of cube Q3, (b) proper My-alternating face Cy and
improper Mgy-alternating face €, and (¢) Z,(Q3).

of G and two vertices M, and M, are joined by an edge provided they can be obtained
from each other by a Z-transformation along a face of G belonging to F.

In particular, if F' = Fy(G), the restricted Z-transformation graph Zp(G) with respect
to F'is the usual Z-Transformation graph Z(G) previously defined; if F' = F(G), Zp(G),
however, is the total Z-transformation graph of G, denoted by Z,(G) [69].

Theorem 4.4. [72] Let G be a plane elementary bipartite graph and let F C F(G). If
G has at least two faces not belonging to F, then the restricted Z-transformation graph
Zp(G) is not connected.

From Lemma 2.5, G is said to be second-weakly elementary if for every nice cycle C
of G, the subgraph of G formed by C together with either the interior or the exterior is
elementary. For the total Z-transformation graph, we have the following results.

Theorem 4.5. [72] Let G be a plane bipartite graph with a perfect matching. Then Z,(G)
1s connected if and only if G is second-weakly elementary.

Theorem 4.6. [72] Let G be a 2-connected plane bipartite graph with perfect matchings.
Then either Z,(G) or each component of Z,(G) is 2-connected.

Corollary 4.7. For plane elementary bipartite graph G with more than one cycle, Z,(G)
is 2-connected.

Since every plane bipartite cubic graph is elementary, the corollary can be used to
deduce 2-connection of matching transformed graphs due to Bau and Henning [1].

Let G be a plane bipartite graph with a perfect matching M. An M-alternating cycle
C (resp. face f) of G is called proper [67] if each edge of C (resp. of the boundary
of f) belonging to M goes from the white end-vertex to the black end-vertex along the
clockwise orientation of C' (resp. f) to be suppressed, where the clockwise of face f means
an orientation of its boundary such that the face f always lies on the right side when one
goes along the direction; Otherwise C (resp. f) is called #nproper. For example, see Fig.
8(a) and (b).
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Definition 4.2. For F' € F(G), the Z-transformation digraph Zp(G) with respect to F
is an orientation of Zp(G): an edge MM, of Zn(G) becomes an are from M, to M, if
and only if M, & M, forms a proper M;- and improper M,-alternating cycle.

Theorem 4.8. [72] Let G be a plane bipartite graph with at least two perfect malchings.
Then Zl(G) is strongly connected if and only of G 1s elementary.

5 Lattice structure

The concepts for posets and lattices are referred to Birkhoff [2], Gratzer [14] or Stanley
(48).

Let G be a plane bipartite graph with a perfect matching and M(G) the set of all
perfect matchings of G. For M € M(G), an M-alternating cycle C of G is proper M-
alternating if and only if it is improper M & C-alternating.

. " o M,
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Fig. 9. Directed Z-transformation from M, to M,.

Recall directed Z-transformation graphs from Definition 4.2: An orientation of Z-
transformation graph Z(G), denoted by Z(G), is defined as follows: an edge MM, is
ariented from M to M, if and only if M, & M, is proper M,-alternating (and thus
improper M,-alternating). For example, see Figs. 6(c) and 9.

The Cartesian product of digraphs D, and D, is a digraph on V(D) x V(D;) such
that there exists an arc from (u,v) to («',v') if and only if either u = v’ and (v,v’) is an
arc of Dy or (u,u’) is an are of Dy and v = ',

Lemma 5.1. [63] Let G\, ..., Gy denote the elementary components of G. Let F; denote
the set of inner faces of G; belonging to Fyo(G). Then

Z(G) = Zr(Gh) x - -+ x Zg (Cy).
Lemma 5.2. [68, 63] Z(G) has no directed cycles.

Definition 5.1. A binary relation < on M(G) is defined as: M; < My, My, M, € M(G),
if and only if Z (G) has a directed path from M, to M;.

Lemma 5.3. [37, 63] (M(G), =) is a poset and its Husse diagram corresponds the Z-
transformation digraph.
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We first consider plane elementary bipartite graphs . Put JF = Fy((), the set of all
inner faces of G, and let M the root perfect matching of G, i.e. without proper alternating
cycles. For any M € M(G), we define a function ¢y on F as follows: lor f € F, éa{f)
denotes the number of cycles in M & M with f in their interiors. In fact, such cycles
are proper M-alternating and pairwise disjoint. In particular, ¢, = 0 € (Z)*, each
component is indexed by an inner face in F, where Z* = {0,1,2,...} Is a lincar order
with the usual order. For example, we consider 1-factors M, (left) and M; (middle) of
the coronene in Fig. 10.

& e B, 1o M ™
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Fig. 10. Examples of function ¢y for the coronene.

Mapping ¢ : M +— ¢y defines an embedding of the poset M(C) into (Z1)*. Since
the image ¢(M(G)) is a sublattice of (Z*)”, we have the following main result.

Theorem 5.4. [37] Let G be a plane elementary bipartite graph. Then M(G) is a finite
distributive lattice.

Fig. 11. A positive unit with respect to a perfect matching M (the set of thick lines),
unit region (shadow part) with clockwise orientation.

The main approach is to propose unit region and unit decomnposition of the M and
M’-alternating cycle system C = M @ M’, which has the unique decomposition C = U,C*
into positive or negative units. For example, Fig. 11 illustrates a positive unit and its
region. An equivalent form can be introduced. For M, M’ € M(G), let wharar(f) be the
number of proper M-alternating cycles in C := M & M’ with f in their interiors minus
the number of improper M-alternating cycles in C with f in their interiors.

Lemma 5.5. For M, M' € M(G), éx — b = ¥nnr.

The height (or rank) of M(G), denoted by h{M(G)), is the length of a maximal chain
between the greatest and least elements, that is, the length of a directed path of 7 (&)
from the source to sink. The diemeter of a connected graph H, denoted by d(f), is the
maximum value of lengths of shortest paths between all pairs of vertices.
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Theorem 5.6. [63] Let G be a plane elemeniary bipartite graph with n wnner faces. Then

A2(©) = hm(e)) < (12,

This upper bound enables one to design an efficient. algorithm O(n?) for generating
the root perfect matching.

If some specific inner face fj, in addition to the outer face, is forbidden in Z-transformation
or twist, by Theorem 4.4 we can sce that the restricted Z-transformation digraph or the
corresponding poset is not connected. In fact, by Theorem 2.3, there exist 1-factors M
and M, such that M @ My is just the boundary of f,. Then M and M, belong to different
components of the restricted Z-transformation graph. For example, see Fig. 12. For
F C Fy(G), let Mp(G) be the poset implied by Zp(G) as Definition 5.1

Me
. M e
r . e 4 N T, P k\
! 1 o
Pl “ = N
M M, ks
’ L ]

Fig. 12. The restricted Z-transformation digraph, f is forbidden.

Theorem 5.7. Let G be a plane elementary bipartite graph and F C Fy(G). Then
Mp(G) is direct sum of distributive lattices.

It is well known that direct sum and product among posets obey distributive laws [48,
page 102] and the Cartesian product of distributive lattices is also a distributive lattice
(2, page 22]. Further, by Lemma 5.1 we have the following general result.

Theorem 5.8. [63] Let G be a plane bipartite graph with a perfect matching. Then M(G)
is direct sum of distributive lattices (see Fig. 4(c)); M(G) itself is distributive laitice if
and only if G is weakly elementary.

It can be easily shown from the above method that the theorem still holds for a
plane bipartite graph G that may have no perfect matchings, by extending naturally
Z-transformation digraph on the set of maximum matchings of G [66].

A distributive lattice is called #rreducible if it cannot be expressed as the Cartesian
product of non-trivial distributive lattices.

Theorem 5.9. [64] Let G be a plane elementary bipartite graph. Then distributive lattice
M(G) is irreducible.
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A distributive lattice on the set of orientations of a graph with a given flow difference
was established by Propp [40] and Pretzel [39]. In particular, similar lattice structures on
the f-factors of plane bipartite graphs and the flows, Eulerian orientations, spanning trees
and Schnyder woods from planar graphs were found [40, 11, 28]. Rooted tree structures
on the set of perfect matchings of plane bipartite graphs were given in [5, 67].

6 Distance formulae and Median graph

Given a connccted graph H with vertices u and v, the interval Iy (u, v) (or simply I{u,v))
between u and v consists of all vertices on shortest paths between u and v. A median of
vertices u, v and w is a vertex that lies in I(w,v) N I{u,w) N I{v,w). A graph is called a
median graph if every triple of its vertices has a unique median (cf. [27]). Every median
graph is a partial cube, i.e. it can be isometrically embedded in a hypercube. Various
characterizations and recognitions for median graphs can be found in Imrich and Klavzar
[27). Accordingly, Klavzar, Zigert and Brinkmann [33] showed (2002) the following result.

Theorem 6.1. [33] The Z-transformation graphs of catacondensed benzenoids ure median
graphs

By the established distributive lattice on the set of perfect matchings and the developed
techniques (cf. Theorem 5.4, or [37]), Lam, Shiu and Zhang showed that the above result
holds generally for plane weakly-elementary bipartite graphs (i.c. we only require that
the resonance graph is connected).

Theorem 6.2. [36] The Z-transformation graph of a plane weakly-elementary bipartite
graph G is a median graph.

To prove the theorem three explicit formulae of distance dzq)(M, M"), the length of
a shortest path between a pair of vertices M and M’ in Z-transformation graph Z(G),
were deduced.

Theorem 6.3 (Distance Formula 1). [36] dz(c)(M, M") = 3 5 |dm(f) = dare(£)]-

The above distance formula shows that the embedding ¢ : M(G) — (Z*)* is also
distance-preserving.

Corollary 6.4 (Distance Formula 2). [36] dzcy(M, M') = dge)(M v M', M A M').
Corollary 6.5 (Distance Formula 3). [36] dz(c)(M, M") = 3 ;¢ [¥nar (F)]-
Lemma 6.6. [96] For any My, My € M(G), Lzic)(My, Ma) = Lnaeey(MyV My, My A M,).

The above distance formulas imply Lemma 6.6. This shows every triple M, M,y and
M; in M(G) has a unique median:

(My A M) Vv (Ma A M)V (My A Ms) = (M V M2) A (Ma vV Ma) A (M v M),
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Fig. 13. lustration for generation of M and labelling of the perfect matchings.

which can imply Theorem 6.2.

Conversely, it is natural to ask what median graphs are Z-transformation graphs. Vesel
[49] characterized Z-transformation graphs of catacondensed benzenoids and provided an
recognition algorithm O(mn), where m and n denote the numbers of edges and vertices
of a given median graph respectively.

7 Labellings for perfect matchings

Based on Lemma 5.3 and Theorem 5.4, Ref. [36] gives a generation procedure of lattice
M(G). The main principle is the well-known Jordan-Dedekind thecrem in finite Distribu-
tive lattice: all maximal chains between a pair of elements have the same length. That
is, all directed paths between any pair of vertices Z (G) are of the same length whenever
they exist. From Lemma 5.5, we immediately arrive in the following result.

Lemma 7.1. For M, M’ € M(G), M covers M" if and only if dp(f) — dar(f) =1 for
f = fo, where fy is an inner face bounded by the cycle M & M’, and 0 for the other faces
in F.

Recall that mapping ¢ : M + ¢y defines an embedding of the poset M(G) into (Z+)*
and $(M(G)) is a sublattice of (Z+)”. The vector or function ¢ on F can be regarded
as a labelling of length |F|, the number of inner faces of G, for a perfect matching M.
Lemma 7.1 also enables one to give the embedding ¢ of M(G) into (Z*)”.
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[ig. 14. The coronene and the distributive lattice on the I-factors with labelling.

We now deseribe an outline. First construct the root 1-factor M and let éay, = 0.
The inductive procedure is as follows: suppose that a 1-factor M and its labelling ¢y
have been already given. Check each improper M-alternating face fo: M & fo is another
1-factor covering M; while ¢aap,(fo) = éar(fo) + 1 and the others remain nnchanged.
Note in the M & f, operation, fy is always regarded as the set of edges bounding the face.
For example, sce Figs. 13 and 14.

The following result determines when ¢ is a binary coding for perfect matchings of
hexagonal systems.

Theorem 7.2. [36] Let G be a hexagonal systemn. Then ¢ s an embedding of M(G) into
{0,1}F (i.e. Boolean algebra Byr|) if and only if G has no coronene as its nice subgraph.

For a catacondensed benzenoid G with d hexagons, there are 2¢ different ways by which
the resonance graph can be isometrically embedded into a d-hypercube; for example,
Refs. [29, 30] gave different binary codings. But ¢ is both order-preserving and distance-
preserving embedding. Ref. [36] designed a simple algorithm to generate such a binary
coding by modifying Klavzar et al.’s method [30].

If ¢ > 2, G has a hexagon that share exactly one edge with the remainder of G when
removing the hexagon. This hexagon corresponds to a mono-valency vertex of its inner
dual graph (tree). Hence G has a sequence of hexagons hy, hy, ..., hy, so that cach h;
shares one cdge (say e;) with exactly one hexagon (say hugy) of hy, ..., by, We call it a
normal sequence of hexagons of G.

For a given hexagon, the three thick edges in Ilig. 15 are said to be in proper positions,
the other thin edges in improper positions. So the common edge of two adjacent hexagons
is in a proper position of one hexagon and in an improper position of the other one.
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Fig. 15. Proper and improper positions of a hexagon.
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Fig. 16. An example for implementing Algorithm 7.3.

Algorithm 7.3. [36] Input: A calacondensed benzenoid graph G with a normal sequence
of hexagons hy, by, ..., hq(d > 1),

Output: A binary coding ¢ for all perfect matchings of G.

Step 0. i := 1, L; := {0, 1}.

Step 1. Ift = d, stop.

Step 2. Let eiyy be the common edge of hiyy with one (say haiyyy) of I, ..., hi. If epy lies
in a proper position, sct Liyy i= {20 :x € L} U{al : & € L; and 2,41y = 1}; Otherwise,
set Lipg = {2l 0 € L} U {20: 2 € L; and x,5.,y = 0}

Step 3. i :==1i+ 1, go to Step 1.

Theorem 7.4. [35] Algorithm 7.3 determines the binary coding ¢y for all perfect match-
ings M of a catacondensed benzenoid G.

8 Miscellaneousness

8.1 Hamitonian path

A path of a graph G is called Hamilton path if it included all vertices of G. Chen and
Zhang discovered the following result.

Theorem 8.1. f4] The Z-transformation graph of a catacondensed benzenoid has a Hamil-
ton path.

Based on this Hamiltonian path, Klavzar et al. [29] designed an algorithm for gener-
ating all perfect matchings. An extension to outerplane bipartite graphs was described
as follows.
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Theorem 8.2. [73] The Z-transformation graph of an outerplane bipartite graph with a
perfect matching has o Hamilton path.

8.2 Fibonacci cubes

The Fibonacci cube, T, introduced in [25, 26} as a model for interconnection networks,
is a graph: the vertices are the binary strings b6, - - - b, containing no two consccutive
ones, and two vertices are adjacent if they differ in precisely one bit. So it is an induced
subgraph of n-hypercube. Klavzar and Zigert [31] showed that Fibonacci cubes are the
Z-transformation graphs of zigzag hexagonal chains, called Fibonaccenes.

A non-branched catacondensed hexagonal system is called a Fibonaccene (or zigzag
chain) if two vertices of degree 2 lying in each non-terminal hexagon are adjacent. Chem-
ical graph theory of Fibonacenes was surveyed by Gutman and Klavzar [19].

Theorem 8.3. [31] Let G be a Fibonaccene with n hezagons. Then Z(G) is isomorphic
to the Fibonacei cube I'y,.

Vesel further characterized Fibonacci cnbes by applying ©-class and obtained the
following result.

Theorem 8.4. [49] Fibonacci cubes can be recognized in O(mn) times.

8.3 Clar number

A set S of disjoint inner faces of G is called a resonant pattern if G has a perfect matching
M such that the boundaries of all faces in S are M-alternating cycles. The maximum
number of faces in resonant patterns of G is called the resonant number of G, denoted by
res(G). The resonant number of a hexagonal system is the so-called Clar number 21, 22].

Theorem 8.5. [34, 65] Let G be a plane elementary bipartite graph. Then the dimension
of a largest hypercube of Z(G) equals the resonant number of G.

For a catacondensed benzenoid G, Klavzar and Zigert [32] found a min-max result:
the smallest number of elementary cuts that cover G equals the dimension of a largest
induced hypercube of the resonance graph of . According to this method, Klavzar et al.
[34] gave a simple computation to the Clar number of a catacondensed benzenoid. Zhang
et al. [65] extended their results to 2-connected outerplane bipartite graph by applying
Dilworth’s min-max theorem on poset and by generalizing “elementary cut”. Salem et al.
[45] established a relation between the hypercubes in Z-transformation graph Z(G) and
the resonant patterns of G.

Theorem 8.6. [45] Let H be o hexagonal system with perfect matchings. Then there
exists a surjective map [ from the set of hypercubes of Z(H) to the set of all resonant
patterns of H such that for each k-hypercube QQ, f(Q) 1is a resonant pattern of k hexagons.
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8.4 Open problems

(1) Characterize Z-transformation graphs of plane bipartite graphs?

(2) For a given elementary bipartite graph & that is planar, what relations have the total
Z-transformation graphs of different planar embeddings of G

(3) For a plane clementary bipartite graph G, determine the connectivity of Z-transformation
graph Z(G).

(4) For a plane clementary bipartite graph &, the length of each directed cycle of the
total Z-transformation digraph Z(C) is divisible by the number f of faces of G. Can the
lengths of all directed eycles of Z,(G) compose of consecutive times of f (for example,
F2F 3 F )

(5) For a plane elementary bipartite graph G, determine the smallest integer m such
that M(G) can be embedded into (Z*)™, the Cartesian product of m copies of Z* =
{0,1,2,...} with the usual order. We may conjecture that the such smallest integer m is
equal to the resonant number of G. For coronene, Fig. 14 shows that the conjecture holds
since its resonant number equals 3.

(6) For a gencral hexagonal system G, how to design an algorithmn as Algorithm 7.3 to
generate ¢y, labelling of length || for all 1-factors M, avoiding the generation of lattice

M(G)?
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