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Abstract.

Let G be either a benzenoid system (hexagonal system) or an
open-ended carbon nanotube (tubule) or a toroidal polyhex. G is said to be
k-resonant if, for 1<r<k, any ¢ disjoint hexagons of G are mutually
resonant, that is, there is a Kekule structure (or perfect matching) XK of G
such that each of the k hexagons is an K-alternating hexagon. A connected
graph G is said to be k-cycle resonant if, for 1 <1<k, any t disjoint cycles
in G are mutually resonant. The concept of k-resonant graphs is closely
related to Clar’s aromatic sextet theory, and the concept of k-cycle resonant
graphs is a natural generalization of 4-resonant graphs. Some necessary
and sufficient conditions for a benzenoid system or a tubule or a toroidal
polyhex (resp. a graph) to be k-resonant (resp. k-cycle resonant) have been
established. In this paper, we will give a survey on investigations of
k-resonant benzenoid systems, k-resonant tubules, k-resonant toroidal
polyhexes, and k-cycle resonant graphs.

* The Project Supported by NSFC.
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1. Introduction.

A benzenoid system (or hexagonal system) denotes the carbon atom
skeleton graph of a benzenoid hydrocarbon, which 1s a 2-connected plane
graph whose every interior face is bounded by a regular hexagon. An
open-ended carbon nanotube or a tubule is a part of some regular
hexagonal tessellation of a cylinder. A toroidal polyhex (or toroidal
graphitoid, torene) is a toroidal fullerenc which can be regarded as a
tessellation of entire hexagons on the torus. A Kekule structure K of a
graph G corresponds to a perfect matching (I-factor) of G. An edge of a
graph G is said to be allowed if it is in some perfect matching of G and
Jorbiden, otherwise. A connected graph G is elementary, if all the allowed
edges of G induce a connected spanning subgraph of GG. A cycle (or circuit)
Cin G is said to be conjugated or resonant if there is a Kekule structure K
of G such that C is a K-alternating cycle. In conjugated circuit model "%,
conjugated circuits with different sizes have different resonant energies. If
the size of a conjugated circuit is equal to 4n+2, then the smaller » the
larger resonant energy. So the conjugated hexagon has the largest encrgy.
On the other hand, from a purely empirical standpoint, Clar found that
various electronic properties of polycyclic aromatic hydrocarbons can be
predicted by appropriately defining an aromatic sextet for their Kekule
structures ", According to Clar’s aromatic sextet theory, a Clar formula
of a benzenoid system G is a set of mutually resonant sextets with the
maximum cardinal number, where sextets mean resonant hexagons and a
set of mutually resonant sextets means a set of disjoint hexagons for which
there is a Kekule structure K so that all of the disjoint hexagons are
K-alternating hexagons. The number of sextets in a Clar formula of G is
called the Clar number of G.

Fig. 1. A benzenoid system G with Clar number 5 and with two Clar formulae.
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For a benzenoid system G with Clar number ¢, Clar formulae of G
may be not unique, and, for 1<k <c, any & disjoint hexagons of G are not
certainly mutually resonant. Fig. 1 shows a benzenoid system G with Clar
number 5, which have two Clar formulae, and the hexagon s is not
resonant.

An interesting problem arises: under what conditions any & disjoint
hexagons of a benzenoid system G are mutually resonant? The same
problem arises for a tubule and a toroidal polyhex.

Let G be either a benzenoid system or a tubule or a toroidal polyhex.
If G satisfies such property, that is, for a positive integer kand 1< <k, any
¢ disjoint hexagons of G are mutually resonant, that is, there is a Kekule
structure K of G such that cach of the & hexagons is an K-alternating
hexagon, then G is said to be k-resonant or k-coverable.

1-resonant benzenoid systems are first introduced by 1. Gutman (241

and a sufficient condition for a benzenoid system to be 1-resonant was also
given. Some necessary and sufficient conditions for a benzenoid system to
be 1-resonant was given by F. Zhang and R. Chen "™, Later F. Zhang and
M. Zheng * gave a similar characterization for 1-resonant generalized
benzenoid systems, where a generalized benzenoid system is a
2-connected subgraph of a benzeneid system, which may have some holes.
F. Zhang progosed the concept of k-resonant benzenoid systems, and then
M. Zheng " further gave some pretty results for k-resonant benzenoid
systems with £ 22, and gave the lower bound of the Clar number of
k-resonant benzenoid system (& >3). Chen and Guo **, Lin and Chen "
generalized Zheng’s results to generalized benzenoid systems.

F. Zhang and L. Wang P"! first investigated k-resonance of tubules.
They gave the construction method of A-resonant tubules for 4 =1 and
k>3, where the construction method of 1-resonant tubules is due to a
construction method of | -resonant plane graphs fl.given by H. Zhang and F.
Zhang %, In addition, F. Zhang and L. Wang Bt gave the lower bound of
Clar number of A(= 3 )-resonant tubules.

For k-resonant toroidal polyhexes, W. Shiu, P. Lam, and H. Zhang (33

gave a sufficient condition for some disjoint hexagons of a toroidal
polyhex to be mutually resonant, and characterized k-resonant toroidal
polyhexes for £ =1,23.

The concept of k-cycle resonant graphs was first introduced by X.
Guo and F. Zhang Y, which is a natural generalization of the concept of
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k-resonant benzenoid systems. Some properties and necessary and
sufficient conditions of k-cycle resonant graphs and planar k-cycle
resonant graphs were given P44,

In the paper, we will give a survey and review on investigations of
k-resonant benzenoid systems, k-resonant tubules, k-resonant toroidal
polyhexes, and k-cycle resonant graphs.

2. Fk-Resonant (or k-Coverable) Benzenoid Systems.

k-resonant benzenoid systems are also called A—coverable benzenoid
systems. A cover of a benzenoid system G is a set of disjoint hexagons of
G such that after deleting all the vertices on these hexagons the remainder
of G has a Kekule structure or is empty. A maximum cover of G is a cover
with maximum cardinal number, which is also called a Clar formula. In
other words, a cover of G is a set of mutually resonant hexagons of G, and
a maximum cover is a set of mutually resonant hexagons with the
maximum cardinal number.

For l-coverable benzenoid systems, Zhang and Chen gave the
following theorem.

Theorem 1% Let H be an hexagonal system. Then each hexagon of H

covers H iff either (1) H contains no fixed bond, or (2) there exist a perfect
matching M of H such that the contour of / is an M-alternating cycle.

A generalized benzenoid system G is said to be complete if each edge
of G is contained on a hexagon. For a complete generalized benzenoid
system H, Zhang and Zheng ** gave a similar necessary and sufficient
condition for A to be k-resonant.

Theorem 2 *°" Every hexagon of a complete generalized hexagonal

system H is resonant if and only if the boundaries of the infinite face and
non-hexagon faces of H are resonant.

A sufficient condition for a benzenoid system to be 2-resonant was
given by M. Zheng 27,

Theorem 3 *”. A benzenoid system H is 2-resonant if H is 1-resonant and
any pair of two disjoint hexagons of H with at least one boundary hexagon
are mutually resonant.

In a draft of a book *], the above sufficient condition is improved as
the following theorem.
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Theorem 4 ", A benzenoid system H is 2-coverable if and only if His
l-coverable and any two disjoint side hexagons of H form a cover of H.

A complete characterization of k(= 3) -resonant benzenoid systems
was given by M. Zheng 7.

Theorem 5“7, A benzenoid system is k(= 3)-resonant if and only if it is
3-resonant.
123 - nmln 12 3 .. nmlan
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Figure 2. Four k(> 3)-resonant bricks: (a) A single hexagon; (b)acrown; (¢) 7,, n21,
nisodd; (d) 7,, n>2, n is even. The edges in {¢,e,,e,} in a crown or a single
hexagon are attachable edges. The edges ¢,,¢, in T, are attachable edges.

Zheng defined four k(= 3)-resonant-bricks as shown in Fig. 2. If a
benzenoid system J{ can be constructed from the four types of bricks by
affixing them in attachable edges successively, H is said to have a k-r-brick
decomposition. A series of lemmas in ref. [27] imply the following
theorem.

Theorem 6 *". A benzenoid system / is k(> 3)-resonant if and only if /1
has a k-r-brick decomposition.

Chen and Guo ® | Lin and Chen B proved that the results of

theorems 5 and 6 are also valid for generalized benzenoid systems (see Fig.
3).

Fig. 3. A k-coverable generalized benzenoid system with k>3,
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3. k-resonance of open-ended carbon nanotubes

Using the language of graph theory, a Tubule T is defined to be a finite
section of a hexagonally tessellated cylinder produced by deleting two
disjoint edge cuts such that each edge of T belongs to at least one hexagon
of T.

In the following, a tubule 7T is drawn in such a way that its axis is
vertical. Denote the top and bottom perimeter of 7 by ¢, and ¢,
respectively.

For a graph G with perfect matchings, a cycle ¢ of G is nice if G — ¢ has
a perfect matching,.

Let G be a graph, and let x and y be two distinct vertices in G. Let P be
a path disjoint from G. Let (G + P),, ,, denote the graph obtained from G by

identifying the two end vertices of P with vertices x and y in G,
respectively. We also say that (G + P),, ,, is obtained from G by adding an

ear or a handle. If the attachment vertices of P in (G+ ), ,, may not be
mentioned, (G + P),, , may be simply denoted by G+P.

Letx be an edge. Let G, =x +P, +P,+ - -+P, be the graph obtained from
x by adding cars of odd length, P, P>, - -, P,, such that G, = x +P,
+Pyt: + -+P;, i=12,-,r, is bipartite. The decomposition G, = x +P,
+Py+- - -+P, is called an (bipartite) ear decomposition of G, .

H. Zhang and F. Zhang " investigated reducible face decomposition
and face resonance of plane elementary bipartite graphs.

An ear decomposition (G,Gy, . . .,G, = G) (equivalently, G=x+ P, +
P>+ -+ -+ P,)of aplanar elementary bipartite graph G is called a reducible
face decomposition, if G, is the boundary of an interior face of G and the

ith ear P; is exterior to G;- ; such that P; and a part of the periphery of G- ,
surround an interior face of G forall 2<i<r.
Theorem 7 ", Let G be a planar elementary bipartite graph other than K.

Then G has a reducible face decomposition starting with the boundary of
any interior face of G.

Corollary 8 ®?, Let G be a planar bipartite graph other than K3. Then G is
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elementary if and only if G has a reducible face decomposition.

Theorem 9 ! Let G be a planar bipartite graph with more than two

vertices. Then each face (including the infinite face) of G is 1-resonant iff
G is elementary.

Zhang and Wang P! first investigated k-resonant tubules. They first
gave necessary and sufficient condition for a I-resonant tubule to be
1-resonant, based on the above results.

Corollary 10 P, A tubule T is 1-resonant iff T'is elementary.
The above results can be also used to construct 1-resonant tubules.
For 2-resonant tubules, up to now, there is no simple procedure to
recognize them and the constructive procedure has not been found, either.

It seems to be a very challenging problem in the study of 2-resonant
tubules as well as for benzenoid systems.

For k(k = 3)-resonant tubules, Zhang and Wang B gave the following
results. Three small tubules are showed in Fig. 4.

a a a
& : : ;
a
b b (]

(a) (b} (©)

Figure 4. Three small tubules: (a) 4,, (b) 7} ,and (c) T,, where the edges or dangling
edges with the same label are identified.

The smallest armchair tubule A5 has no disjoint hexagon and each
hexagon is resonant. Thus A5 is k(k=1) -resonant. 7, and 7, are also
k(k 21)-resonant tubules. In fact, each hexagon and each pair of disjoint
hexagons of T, and 7, are resonant, and 7, and 7, have at most two
disjoint hexagons.

a a o a
b
[ c a .
b b

Figure 5. Three types of tubules formed by identifying the edges with the same label.
(@7T',nz4, niseven; (b) I,", n=2, niseven; (c) 7_; , where 7' and fb have no
chord, 7," has exactly one chord a.



-446-

An edge of a tubule T is a chord if its two ends arc on the
outer-perimeters (the top and bottom perimeters) ¢, and/or ¢; of T but
egc,Uc,. A chord e of a tubule T is of fype II if one end is on ¢, and the
other is on ¢;. A chord e of a tubule T is of fype I if its both ends of e are on
the same perimeter ¢, or ¢,.

Given a chord e of type I, T is seperated by e into two parts. One is a
tubule, say, 7(e) . The other is a benzenoid system, say, B(e). A chord e* of
type [ is maximal if for any chord e = e* of type I, B(e*) is not the subgraph
of B(e).

From the result in ref. [29], it can see that for a k(k 2 3)-resonant
coronoid system there are at least two chords. But in the present case, there
are 3-resonant tubules having no chord (7, and 7 in figure 5) and there

are 3-resonant tubules having exactly one chord (7" in figure 5). This fact
shows the difference between the coronoid systems and tubules again.

A tubule without a chord of type I is a pure tubule. The construction
method of 3-resonant pure tubules was given by Zhang and Wang.

Theorem 11 Y, Let 7 be a 3-resonant pure tubule. Then

(1) if T has no chord, then Tis 7,’, T, or T,;

(2) if T has exact one chord, then Tis 7" or T;;

(3) if 7 has more than one chord (of type II) arranged clockwise as
e,e,,e,, then T can be splitted into sections: T(e,e,,), i=12,n
(mod #), such that each section is either 7}, or a crown, or a hexagon,
and the attachable edges ¢; and e;,; of which constitute an attachable
combination.

Theorem 12 ', A pure 3-resonant tubule must be k(k > 3)-resonant.

In general case, a 3-resonant tubule 7 may have chords of type I. Let T
be a tubule with maximal chords of type I: ¢*,e,*,---,e, *. It is clear that
T =T(e*)NT(e,*)N---NT(e,*) is a pure tubule and B(e*) is a 3-resonant
benzenoid system. Thus, Zhang and Wang can give a construction method

of 3-resonant tubules based on 3-resonant benzenoid systems and
3-resonant pure tubules.

Theorem 13 ©Y, Let T be a tubule with chord of type I, ¢',e,,---e," be
maximal chords of type I. Then T'is k(k > 3)-resonant, iff B(e'), i=12,---,m,
is a k(k > 3)-resonant benzenoid system and 7 =T(¢, YN 7 (e, )N---NT(e,’) is
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a k(k >3)-resonant pure tubule.

Corollary 14 B A 3-resonant tubule must be k(k > 3)-resonant.

4. k-Resonance in Toroidal Polyhexes

A toroidal polyhex is a 3-regular (cubic or trivalent) graph embedded
on the torus such that each face is a hexagon, described by three parameters
p, g and ¢ , denoted by H(p, g, 1) 10411 "and drawn in the plane (equipped
with the regular hexagonal lattice L) using the representation of the torus
by a pxg-parallelogram P with the usual boundary identification (see
figure 6): each side of P connects the centers of two hexagons, and is
perpendicular to an edge-direction of L, both top and bottom sides pass
through p vertical edges of L while two lateral sides pass through ¢ edges.
First identify its two lateral sides, then rotate the top cycle ¢ hexagons,
finally identify the top and bottom at their corresponding points. From this
one get a toroidal polyhex H(p, g, £) with the torsion 7 (0<r< p—-1).

6 7.1 2 3 45

1 2 3 4 5 6 7
Figure 6. A toroidal polyhex H(p, ¢, f) forp=7,g=5,1=2.

k-resonance of benzenoid systems and open-ended carbon nanotubes
were naturally extended to toroidal polyhexes by Shiu, Lam, and Zhang
[30**]

The vertex-transitivity of toroidal pol?'hexes were respectively given
by Thomassen 149 Marusic and Pisanski *'.

Lemma 15 "% H(p, g, 1) is vertex-transitive.

In ref. [33], the authors defined some hexagon-preserving
automorphisms of H(p,q,7), and showed the hexagon-transitivity of
toroidal polyhexes.

Lemma 16 !, H(p, ¢, 1) is hexagon-transitive.
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Some sufficient and necessary conditions or sufficient conditions for
H{(p,q,t) to be k{ <3)-resonant were also given in ref. [33].

Theorem 17 ™. A toroidal polyhex #(p.q.t) (p.q=2)is l-resonant if and
only if (p,q.0)#(2,2,0).

Lemma 18 ™, 1(p.g.1) is 2-resonant for p>3 and ¢=3.

Lemma 19 ¥’ For p>4, H(p,2.1) is 2-resonant if and only if ¢ is neither 0
nor p22 .

Lemma 20 **, For g>1, H(2,q,t) 1s not 2-resonant.

Theorem 21 ™. For p>2 and ¢>2, a toroidal polyhex H(p,q,1) is
2-resonant if and only if one of the following cases appears:

(1) min(p,q) 23,

(2) p24, g=2and re{0,p-2},

(3) (p.9)=(3,2) or (2.3),

(4) (pg.N=(221).

Lemma 22 ¥, For P.g >4, H(p,q,t) 1s not 3-resonant.

Lemma 23 %, For g=>2, H(3,q,t) is 3-resonant.

Lemma 24 " For p2a ., H(p3n is 3-resonant if and only if
t=0,p=-3,p=-20r p-1.

1331

Lemma 25 For p=3, H(p2¢t) is 3-resonant if and only if

t=Lp-3,p-1.

Theorem 26 ", For p>2 and ¢>2, a toroidal polyhex H(p,q.1) is
3-resonant if and only if one of the following cases appears

(1) (p.g.y=(22.1),

(2) pz2 and ¢=3,

(3) p=3and ¢=2,

(4) p24, g=2and tefl,p-3,p-1},

5. p24,g=3and re{0,p-3,p-2,p—1}.

5. k-Cycle Resonant Graphs.

X. Guo and F. Zhang ®¥ generalized the concept of k-resonant graphs
to general cases to introduce the concept of k-cycle resonant graphs.

The following theorems were given in ref. [34].
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Theorem 27 P Let G be a k-cycle resonant graph. Then,

(1) G is bipartite;

(2) for 12¢<k and any ¢ disjoint cycles C,,C,...C, in G, 6-|J C
contains no odd component;

(3) any two 2-connected components in G have no common vertex.

Theorem 28 *. Let G be a k-cycle resonant graph. Then G is elementary
or 1-extendable if and only if G is 2-connected.

Theorem 27 (1) and (2) give some necessary conditions for a graph to
be k-cycle resonant. Theorem 3.1 in ref. [34] asserts that the necessary
conditions are also sufficient. However the theorem has a negligence. In
fact, the sufficient and nccessary conditions are valid if G is 2-connected or
G has a perfect matching.

The correct sufficient and necessary conditions were given in ref.
[35].
Theorem 29 5l A 2-connected graph G with at least k disjoint cycles is
k-cycle resonant if and only if G is bipartite and, for 1< <k and any ¢

disjoint cycles C,,C,,....C, in G, G—U:EIC,. contains no odd component.

For general cases, we have the following.

Theorem 30 *L A connected graph G with at least £ disjoint cycles is
k-cycle resonant if and only if G is a bipartite graph with perfect matchings
and, for 1</ <k and any ¢ disjoint cycles C,.C,....C, in G, G-|J ¢
contains no odd component.

From Theorems 27(3), 28, 30, it is not difficult to see that the following
theorem 31 holds.

Theorem 31'%%, Let Gbea k-cycle resonant graph. Then,

(1) fora 2-connected component G' of G with the maximum number £* of
disjoint cycles, if i*<k, G' is k*-cycle resonant, otherwise G' is
k-cycle resonant;

(2) the forest induced by all the vertices of G not in any 2-connected
component of G has a perfect matching.

The above theorems imply that a non-2-connected k-cycle resonant
graph with & 23 can be constructed from some disjoint 2-connected k*(or
k)-cycle resonant graphs and a forest with perfect matching by adding
some edges between the 2-connected graphs and the forest so that the
resultant graph is connected and the added edges are cut edges. Hence we
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need only to consider 2-connected k-cycle resonant graphs. However, in
general cases, the construction of 2-connected 4-cycle resonant graphs is
still an open problem.

The necessary and sufficient conditions in Theorem 30 is simple and
formally graceful. However, when it is used to determine whether or not a
graph to be k-cycle resonant, one need to check any ¢ disjoint cycles. It is
obviously tedious. This is why we need to find new simpler necessary and
sufficient conditions for planar graphs to be k-cycle resonant.

For a class of planar graphs, k-cycle resonant hexagonal systems, we
obtained the following theorems.

A path Pin a graph G is said to be a chain if all internal vertex of P are
of degree 2 in G and the degree of any end vertex of P is not equal to two in
G. A hexagonal system is said to a catacondensed hexagonal system if any
vertex of it lies on the boundary.

Theorem 32 U A hexagonal system H is 1-cycle resonant if and only if
H is a catacondensed hexagonal system.

Theorem 33 B A hexagonal system H is 2-cycle resonant if and only if
(1) H contains at least two disjoint cycles, and

(2) H is a catacondensed hexagonal system with no chain of even length.

Theorem 34 Y. Let Hbea 2-cycle resonant hexagonal system, and let k*
be the maximum number of disjoint cycles in . Then H is k*-cycle
resonant.

Theorem 35 " A hexagonal system H with &*>2 is k *-cycle resonant if
and only if A is a catacondensed hexagonal system with no chain of even
length, where £* 1s the maximum number of disjoint cycles in H.

It was pointed out in ref. [34] that in the hexagonal systems with A
hexagons obtained from a same parent hexagonal system with A-1
hexagons, k*-cycle resonant hexagonal systems have greater resonance
encrgies than 1-cycle resonant hexagonal systems, also 1-cycle resonant
hexagonal systems have greater resonance energies than hexagonal
systems not being 1-cycle resonant, where 4* is the maximum number of
disjoint hexagons of a hexagonal system.

For general planar k-cycle resonant graphs, their characterization is
more difficult. However for the cases of k=1/,2, we had given some new
necessary and sufficient conditions for a graph to be planar 1-cycle
resonant graphs or planar 2-cycle resonant graphs 1351
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Before stating these results, we need to give some terminology and
notations

Let G be a connected graph, and / a subgraph of G. A vertex in H is
said to be an attachment vertex of I if it is incident with an edge in
G- E(H). The set of all attachment vertices of /1 is denoted by V,(H). A
bridge B of H in G is either an edge in G- E(H) with two end vertices
being in /4, or a subgraph of G induced by all the edges in a connected
component B’ of G -V (H) together with all the edges with an end vertex in
B' and the other in H. The vertices in ¥(B)N V(H) are also attachment
vertices of B to H. A bridge with & attachment vertices is called a k-bridge.

The attachment vertices of a k-bridge B of a cycle Cin G divide C into
k edge-disjoint paths, called the segments of B. Two bridges of C avoid one
another if all the attachment vertices of one bridge lie in a single segment
of the other bridge, otherwise they overlap. Two bridges B and B* of C are
skew if there are four distinct vertices on C, in the cyclic order u, u*, v, v*
such that » and v are attachment vertices of B, u* and v* are attachment
vertices of B*.

For a bipartite graph G, we always colour vertices of G white and
black so that any two adjacent vertices have different colours.

We first gave scveral equivalent propositions.

Theorem 36 **, Let G be a 2-connected bipartite planar graph. Then the

following statements are equivalent:

(1) G is 1-cycle resonant.

(2) For any cycle C in G, G-¥(C) has no odd component.

(3) For any cycle C in G, any bridge of C has exactly two attachment
vertices which have different colours.

(4)For any cycle C in G, any two bridges of C avoid one another.
Moreover, for any 2-connected subgraph B of G with exactly two
attachment vertices, the attachment vertices of B have different colours.

From the above theorem, we can give the following necessary and
sufficient conditions for a graph to be planar 1-cycle resonant.

Theorem 37 %, A 2-connected graph G is planar 1-cycle resonant if and
only if G is bipartite and, for any cycle Cin G, any bridge of C has exactly
two attachment vertices which have different colours.

Theorem 38 **. A 2-connected graph G is planar 1-cycle resonant if and
only if G is bipartite and, for any cycle C in G, any two bridges of C avoid
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one another and, for any 2-connected subgraph B of G with exactly two
attachment vertices, the attachment vertices of B have difterent colours.

A vertex u of a graph G is said to be cycle-related to another vertex v of
G ifw is contained in a 2-connected block of G and any cycle containing u
must also contain v. If v is also cycle-related to u, then u and v are mutually
cycle-related.

Property 1 " If a vertex » of a connected graph G is cycle-related to

another vertex v of G, then & and v belong to a same 2-connected block B in
G and all the edges in B-v incident with u are cut edges of G-v.

For a chain P in a graph G, let V,(P) denote the set of internal vertices
of P. For a subgraph B of G, let B denote the subgraph of G induced by
E(GY\E(B). The necessary and sufficient conditions for a planar graph to
be 2-cycle resonant were also given in ref. [30].

Theorem 39 **), A 2-connected graph G is planar 2-cycle resonant if and

only if,

(1) G is planar l-cycle resonant,

(2) for a chain P with even length and end vertices v; and v,, G-V(P) has
exactly two blocks each of which is 2-connected and v, and v, are
cycle-related to the common vertex of the two blocks,

(3) forachain P with odd length and end vertices v; and v, such that G-¥(P)
is not 2-connected, either (@) G-V(P) has exactly three blocks, each of
which is a 2-connected, and cach of v, and v, is cycle-related to the
other attachment vertex of the block containing it, and the attachment
vertices of the third block are mutually cycle-related in the third block,
or (b) any two 2-connected blocks of G-Vi(P) are disjoint,

(4) for a 2-connected subgraph B, of G with exactly two attachment
vettices, if B is not 2-connected and every block of B, is 2-connected,
then B has exactly three blocks, say B,,B,,B,, and the attachment

vertices of each of B,,8,,B,,B, arec mutually cycle-related in the block.

Based on the above necessary and sufficient conditions, the
constructions and decompositions of planar 1-cycle resonant and 2-cycle
resonant gra_Phs were respectively investigated by Xu and Guo B4 Zhao
and Guo "™ Guo and Zhang ™). Some efficient algorithms for
recognizing whether or not a 2-connected graph to be planar l-cycle
resonant or 2-cycle resonant were developed.

Particularly, in ref. [39], Guo and Zhang investigated 1-cycle resonant
reducible (simply 1-CR reducible) chains and ear decompositions of
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1-cycle resonant graph G, where a 1-CR reducible chain of G is a maximal
chain P in G such that G-¥(P) (simply, G- P) is still 1-cycle resonant.
Theorem 39 P Let G be a 2-connected planar |-cycle resonant graph
with cyclomatic number w(G)>2 . Then G has at least w(G)+1
1-CR-reducible chains.
Theorem 40 ™. Let G be a 2-connected 1-cycle resonant graph. Then G
has at most 3v(G)+1 -CR-reducible chains.
Theorem 41 ™. Let G be a 2-connected planar 1-cycle resonant graph
with cyclomatic number v(G)22. Then G has an ear decomposition
G=C,+P+P+--+P_ such that ¢, is a cycle and, for i=1,2,---,v-1,
G =C,+B+P,+---+ P, is a 2-connected planar 1-cycle resonant graph.
Theorem 42 "’ Let G be a 2-connected planar 1-cycle resonant graph,
and P a path disjoint from G. Then (G+ P),, , is planar 1-cycle resonant if
and only if (i) P is of odd length, (ii) x and y have different colours in G, (iii)
either x and y are adjacent in G or {x,y} is a vertex cut of G.
Let G be a planar 1-cycle resonant graph, P a path disjoint from G, and

*=(G+P),, If (G+P),, satisfies the conditions in Theorem 42, we

say that G * is obtained from G by a 1-CR-operation.

(.

Theorem 43 "%, Let G be a planar 1-cycle resonant graph with cyclomatic
number v(G)>=2. Then G can be constructed from a cycle by using
1-CR-operations successively.

k-cycle resonant hexagonal systems are a special class of planar k-cycle
resonant graphs, the construction of which was completely characterized in
ref. [34]. For general planar k-cycle resonant graphs, their construction is
more complex. Further investigations are needed.

5, Conclusion.

Investigations of k-resonant graphs (such as k-resonant benzenoid
systems, k-resonant tubules, A-resonant toroidal polyhexes) and k-cycle
resonant graphs have obtained great advance. The above many results are
very interesting. The classes of graphs not only have strong chemistry
background, but are also natural topics in matching theory. In the
investigation of matching theory, Lovasz et. al "**! introduced and
investigated elementary graphs, I-extendable graphs, and n-extendable
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graphs etc. A graph G is said to be n-extendable if any » independent edges
of G is contained in a perfect matching of G. We can similarly call k-cycle
resonant graphs as k-cycle extendable graphs, and call k-resonant graphs as
k-hexagon extendable graphs. The above investigations are also a new
advance of matching theory research. There are still some open problems
for further investigations.

Problem 1. The construction and recognition of 2-resonant (generalized)
benzenoid systems, 2-resonant tubules.

Problem 2. The characterization of k(>3)-resonant toroidal polyhexes.

Problem 3. The construction and recognition of k-cycle resonant graphs.
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