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Abstract

The PI index is a graph invariant defined as the summation of the
sums of ney(€|G) and ney(e|G) over all the edges e = uv of a connected
graph G, i.e.,PI(G) = Yccpa)neu(e|lG) + nev(e|G)], where ney(e|G)
is the number of edges of G lying closer to u than to v and ne,(e|G)
is the number of edges of G lying closer to v than to uw. A formula for
calculating the PI index of TUV Cs[2p, q] is given.

1 Introduction

The structure of a molecule could be represented in a variety of ways. The
information on the chemical constitution of molecule is conventionally rep-
resented by a molecular graph. And graph theory was successfully provided

1This research is supported by the National Natural Science Foundation of
China(10471037) and the Department of Education of Hunan Province(04B047).
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the chemist with a variety of very useful tools, namely, topological index.
The first reported use of a topological index in chemistry was by Wiener [1]
in the study of paraffin boiling points. Since then, in order to model various
molecular properties, many topological indices have been designed [2]. Such
a proliferation is still going on and is becoming counter productive.

In 1990s, Gutman [3] and coworkers [4] have introduced a generalization
of the Wiener index (W) for cyclic graphs called Szeged index (Sz). The main
advantage of the Szeged index is that it is a modification of W; otherwise,
it coincides with the Wiener index. In [5,6] another topological index was
introduced and it was named Padmakar-Ivan index, abbreviated as PI. This
new topological index, PI, does not coincide with the Wiener index. Deng [9]
gave a formula for calculating the PI index of catacondensed hexagonal sys-
tems and the extremal catacondensed hexagonal systems with the minimum
or maximum PI index. Ashrafi and Loghman [10] computed the PI index of
zig-zag polyhex nanotubes.

The primary aim of this article is to introduce the method for calcula-
tion of PI index for TUV C4[2p, q]. Our notation is mainly taken from [7,8].
Throughout this paper G = TUV C[2p, ¢] denotes an armchair polyhex nan-
otube, see Figure 1.
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Figure 1. G = TUV C§[2p, q] with p=6 and q=9

2 The definition of PI index

Let G be a connected and undirected graph without multiple edges or loops.

By V(G) and E(G) we denote the vertex and edge sets, respectively, of G.
If G' = (V', E’) is a subgraph of G = (V, E) and contains all the edges of

G that join two vertices in V') i.e., E’ is the set of edges between vertices of
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V7, then G’ is an induced subgraph of G by V’ and is denoted by G[V'].

Let e = zy be an edge of G, X is the subset of vertices of V(G) which
are closer to z than y and Y is the subset of vertices which are closer to y
than z, i.e.,

X ={v|v e V(G),de(x,v) < da(y,v)}
Y = {v|v € V(G),da(y,v) < de(z,v)}

where dg(u,v) denotes the distance between vertices u and v of G. Let
GIX] = (X, Ey) and G[Y] = (Y, E»),

m(e) = |Enl, na(e) = | B

Here, ny(e) is the number of edges nearer to = than y and na(e) is the number
of edges nearer to y than x.
Then the PI index of G is defined as

PI(G) =} [m(e)+mnafe)]

e€E(G)

In all cases of cyclic graphs, there are edges equidistant to the both ends
of the edges. Such edges are not taken into account. Let [X,Y] denote the
subset of edges between X and Y, n(e) = |[X,Y]|. Then n(e) = |E(G)| —
(n1(e) + na(e)) is the number of edges equidistant to the both ends of e for
a bipartite connected graph G (It includes the current edge e in n(e)). And

PI(G) = [E(G)]* = > nle)

e€E(G)

Therefore, for computing the PI index of a bipartite connected graph G, it
is enough to calculate n(e) for each e € E(G).
To calculate n(e), we consider two cases that e is horizontal or vertical.

Lemma 1. Let e be any horizontal edge between columns j and j+1 in
G =TUVCg[2p,q], 1 < j < 2p, where 2p+ 1 = 1(mod2p).
q, if p is odd;
()If q is odd, then n(e) = ¢ ¢+ 1, if piseven and j is odd,;
q—1, if piseven and j is even.
(ii) If q is even, then n(e) = q.
(iii) Let H be the sum of n(e) over all horizontal edges in G. Then

g, q is even;
H=1{ p¢*+p, qisoddand p is even;
g, q and p are odd.

Proof. Let z;; be the vertex on row i and column j, e = x;;x; j11. X is
the subset of vertices of V(G) which are closer to z;; than ;4 and Y is
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the subset of vertices which are closer to ;1 than x;;. It is obvious that
X consists of the vertices on columns j,j —1,---,j —p+ 1, and Y consists
of the vertices on columns j + 1,5 + 2, -
Jj £ k(mod2p) if j £k ¢ {1,2,---,2p}.
between columns j and j+1 and the edges between columns j-p+1 and j+p.
Note that the number m; of the edges between columns j and j+1 is

-+, 7+ p, where j £ k will be taken
So, [X,Y] is the set of the edges

if q is odd and j is odd;
if q is odd and j is even.

if p is odd;
if p is even and j is odd,;

1 ) if q is even;
my=q 55
g=1
2 b
So, we have
q7
(1)if q is odd, then n(e) = ¢ ¢+1,
q-1,

(i) if q is even, then n(e) = g.

(iii) Let H; be the sum of n(e) over all horizontal edges between columns

j and j+1.

2p
Ifqiseven,thenHj:%qug,andH: ZHJ:prgzpq?
i=i

If ¢ is odd and p is even, then

if p is even and j is even.

j is odd;

j is even.

j is odd;

j is even.

(g+1)?
H :{ a1y?
2
2p
and H =y H; = p(¢* +1).
J=i
If ¢ and p are all odd, then
a(g+1)
H;= { a(@1)
2 b
2p
and H = Y H; = pg®.
j=i
g, q is even;
So, H=1{ pg*+p, qisodd and p is even;
g, q and p are odd.

To calculating n(e) for the vertical edges e, we need only calculate n(e)
for e = x11291, so is n(e) for the vertical edges between rows 1 and 2 and the
vertical edges between rows g-1 and ¢ by the symmetry of G, and n(e) can
also be calculated for the vertical edges between rows i and i+1 by using two

intersectional TUV Cgs.
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3 The distances in TUV Cg[2p, q]

For e = x11291, we will give a formula for calculating the distances from x1;
(or 1) in the following, and find the subset X of vertices of V(G) which are
closer to x1; than x9; and the subset Y of vertices which are closer to xg;
than T11-

We first consider two graphs G; and Gj, where G is obtaining from
G = TUV Cg[2p, g] by deleting the horizontal edges between columns 1 and
2p (see Figure 2) and G5 is obtaining from G = TUV Cg[2p, g] by deleting the
horizontal edges between columns 1 and 2 (see Figure 3), and the distances
from @17 (or x2;) in G is the minimum of the ones in G; and in Gb.

columnt=1 2 3 4 5 6 7 8 9 10 11 12=2p

row 1=1 09—t he—59 S99 12013 16s—17 20921
2 1e 20-3¢ G3—7e 10stis 14315 186198 208

3 2439 435¢ 8399 12013+ 16017 20021

4 3¢ 4359 Gp-7e 10ptls 1ds-15 180199 228

5 de-59 697+ Se-Oe 113 16017 2021

6 5% 637+ S+-93 10+t ‘L4e-15 15019 228

7 697 89—9¢ 10s—tie 128—13s 16e—17s 20021

8 7o S+-9¢ 100th 1213 14415 15019 2N
q=9 8e—0e 10s1le 126136 1ds-15e 16o17% 20v21

Figure 2. G; and the distances from the vertex 9;\11 in Gy.
Table 1. The values of dy(z11,2.¢) — t.

1 2 3 45 6 7 8 9 10 11 12
1/-1 -1 1.1 3 35 5 7 7 9 9
20 0 0 2 2 4 4 6 6 8 8 10
3/t 1113 355 7 7 9 9
412 2 2 2 2 4 46 6 8 8 10
5(3 3 333 3 5 5 7 7 9 9
614 4 4 4 4 4 46 6 8 8 10
7|5 5 5 55 5 565 5 7 7 9 9
86 6 6 6 6 6 6 6 6 8 8 10
9o\7v v 7T 7T 7 7T T T 7T 7 9 9

Now, we calculate the distances from x1; in G as showing in Figure
2. And Table 1 lists the values of dy(z11,x,) — t, where dy(z11, ) is the
distance between x;; and z,; in G;.
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From Table 1, we can see that

r—2, 1<t<r+1;
di(mi1, @) —t =4 2[f] -2, ¢t>r+2andris even;
2[5 =1, t>r+2andris odd.

So, we have

t+r—2, 1<t<r+1;
Lemma 2. di(z11,3) = t—2+2[], t>r+2andriseven;
t—1+2[5, t>r+2andris odd.

Lemma 2 can be easily proved by the inductive method on t, we omit
here.

#=12 1110 9 8 7 6 5 4 3 2 1
=2 3 4 5 6 7 & 9 10 11 12 1
r=1 23 20019 16150 12He Se—7e de—3e 0
2 22821s 189178 149138 10494 6454 29—t
3 23 20010 16415 1% e 8¢ 74 43 3¢ 24
4 220219 18037 149138 1099 Ge—5e 4¢3
5 236 204198 16150 120 S979 Ge—5e 4
6 220219 186178 140138 10894 S9—7¢ G35
T 23 20910 16945 1% s 10599 879 6
8 224-21s 18417 1413 120t 10+Ge Se—7
0 23 200106 164158 1dei3 126 1069+ 8o

Figure 3. G, and the distances from the vertex 11 in G.

Table 2. The values of da(z11,z0) — t'.

1 2 3 45 6 7 8 9 10 11 12
1(-1 -1 1.1 3 35 5 7 7 9 9
210 0 0 2 2 4 46 6 8 8 10
311113 35 5 7 7 9 9
412 2 2 2 2 4 46 6 8 8 10
5(3 3 3 3 3 3 5 5 7 7 9 9
614 4 4 4 4 4 46 6 8 8 10
7TI5 5 5 5 5 5 5 5 7 7 9 9
86 6 6 6 6 6 6 6 6 8 8 10
9o\7v v 7T T 7 0T T T 7 9 9

Similarly, we calculate the distances from z1; in G as showing in Figure
3. And Table 2 lists the values of dy(z11,z,4) — t', where dy(x11, 2,4) is the
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distance between x1; and x,4 in Gy and

Y 1, t=1
Tl 2p+2-t, t>2
From Table 2, we can see that

r—2, 1<t <

do(T11, ) — ' = 2[t/g1], t'>r+1andris even;

2[%] —1, ¢ >r+1andrisodd.

So, we have
t+r—2, 1<t <

Lemma 3. dy(z11,20) =4 U+ 2[*;1], t'>r+1andris even;
t'—1+42[%], ¢ >r+1andrisodd.

and
2p+r —t, t<2p+2—r(t=1if r=1);
dy(z11,200) =4 2p+2—t+ 2[%}, t<2p+1—randris even;
2p+1—t+2[%}, t<2p+1—randrisodd.

Since the vertex z,4 in G and the vertex x,4 in G5 are identical, we have

Lemma 4. ()If t = 1, then dy (211, 2¢) = do(211, T ;
(i) f 2 <t < p+1, then dy (211, 2) < do(T11, T10);
(iii) If p+ 2 < t < 2p, then di(x11, ) > do(@11, Trpr)-
Proof. (i) If t = 1, then ¢ = 1 and dy(z11, %) = do(z11, 2,0) from
Lemmas 2 and 3.
({)2<t<p+1l
Casel. t >r+2 Thenr+2<t<p+landr<p—1,t'=2p+2—1t>
p+1l>r+2.
(a) If r is even, then by Lemmas 2 and 3
d2(z117wrt’) — dl(zlhwrt) = (t/ + 2[%]) - (t -2+ 2[%])
=4p+6—2+2([=5L] - [2]) .
Sdp+4—4t>0
(b) If r is odd, then by Lemmas 2 and 3
do(wn, ) = di(wn, 2p) = (¢ =14 2[5]) = (t = 1+ 2[5])
=dp+4-2t+2(5] - [F)])
Sdp+4—4t>0
Case 2. 2<t<r+1.
(a) If ' <, then by Lemmas 2 and 3
dQ(,’L’]h,’L’Tﬂ) - dl(zllywrt) = (’f' +tl - 2) - (7' +t— 2)
= —t=2p+2-2t>0
(b)Ift'>r+1,ie,2p+2—t>r+1,thenr+t<2p+1.
When r is even, by Lemmas 2 and 3 we have
da(w11, Tper) — di (211, 000) = (¢ + 2[%]) —(r+t-2)
>(r+1+2E) - @2r—1)>0"
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When r is odd, by Lemmas 2 and 3 we have
dz([[]l, -Trt’) — dl(zllx, -Trt) = (t/ -1 + 2[%}) — (7' + t— 2)
>(r+252)-@r-1)>0 "
(i) p+2<t<2p. Then2 <t =2p+2—t<p.
Case 1. ! >r+1. Thenr+1 <t <p,r<p-—-1,t=2p+2—-t >
p+2>r+3.
(a) If r is even, then by Lemmas 2 and 3
(211, 8r0) = do(wn, o) = (8= 2+ 2[8])) — (¢ + 2[%51))
= (2=t 2P = (1 + 255
=dp+2-2t +2(F] - [%3) '
>4dp+2—4t' >0
(b) If r is odd, then by Lemmas 2 and 3
di(@11, 2ry) = do(zn, aw) = (E=1+2[F]) — ('~ 1+ ?[%D
—dp+4— 20+ 27 - [4)
>dp+2—4t' >0
Case 2. 2<t' <.
(a) If t <7+ 1, then by Lemmas 2 and 3
dl(ilill, .’L’Tt) — dg(fljlh ZETt/) = (7' +t— 2) — (7’ + t— 2)
=t—t'=2p+2-2t'>0 "~
(b) If ¢ > r + 2, then by Lemmas 2 and 3
dl(il']l, .’f,«t) — dg(fL‘n7 ZZ'”!) = (t -2+ 2[%]) - (7” + t— 2)
>(r+252]) - (@2r-2)>0
when r is even; and
dl(l’]l, ,’L’Tt) — dg(iljlh ZL'Tf/) = (t -1+ 2[%]) - (7' + t— 2)
>(r+1+2(5) - (2r—2)>0
when r is odd.

Now by Lemma 4, we can directly give a formula of calculating the
distances from zy; in G = TUV Cs[2p, ql.

Theorem 1. (i) d(z11,2y¢) = di(z11,20) f 1 <t < p+1;
(ii) d(z11, Tpe) = do(@11, ) if p+2 < < 2p.

Next, we consider the distances from x9,. Using the same methods as
above, we can calculate the distances from z5; in Gy as showing in Figure 4
and list the values of d;(z21,2,¢) — ¢ in Table 3.
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columnt=1 2 3 4 5 6 7 8 9 10 11 12=2p

row r=1 1e—29 5e—6¢ Oe—10s 13e—tde 17918 2192
2 0¢ 3949 Te—8¢ 11812 156168 196208 234
3 1e—2¢ 586+ 0¢—10% 13e—tds 17018 21¢—2
4 2¢ 3e—4¢ Te—8e 11312 159160 198—20¢ 23
5 3e—4% 5e—6¢ 0108 13+—de 17318 2132
6 4% 5e—6¢ Te—8e 11312 150160 198—20e 23
7 5969 Te—Se Qe—10s 13e—tde 17018 21929
8 6¢ Te—8¢ Os—10s 11312 150160 198—20e 23
q=9 T7e—8e Qe—1fe [1e—42e 13e—tde [Te—18s 2162

Figure 4. G; and the distances from the vertex zo in Gj.

Table 3. The values of dy (@21, ) — t.

1 2 3 4 5 6 7 8 9 10 11 12
110 0 2 2 4 4 6 6 8 8 10 10
2/-1 113 3 5 5 77 9 9 11
3/0 0 2 2 4 4 6 6 8 8 10 10
411 11 3 3 5 5 7 7 9 9 11
512 2 2 2 4 4 6 6 8 &8 10 10
63 33 3 3 5 5 77 9 9 11
714 4 4 4 4 4 6 6 8 8 10 10
85 5 5 5 5 5 5 7 7 9 9 11
9,6 6 6 6 6 6 6 6 8 8 10 10

If r > 2, we can see that from Table 3

r—3, 1<t<r-1
]—1, t>randris even;
(5, t>7andris odd.

So, we have

Lemma 5. If r > 2, then
t+r—3, 1<t<r—1;
dy(za1, ) =< t—14 2[%], t > r and r is even;
t+2[5, t>randrisodd
and dl(IQ],?L‘u) = dl(IQ],fL‘Bt) if r=1.
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Also, we can calculate the distances from x9; in G5 as showing in Figure
5 and list the values of da(x91,2,4) — ¢’ in Table 4.

5 4 3 2 1

=12 11 10 9 8 7
7 9 10 11 12 1

t=2 3 4 5 6

r=]  22¢ 19e—18 15e—14e 1le—10y Te—69 3029 1
2 21620 170169 130—12¢ 9e—8¢ 5He—4e 1e—§
3 22¢ 19¢—18¢ 15e—14e 1le—10e Te—6¢ 4929 19
4 219208 176168 130126 9e—8¢ 5959 3Je2
5 22¢ 19018 150—14e 11910 Te—69 36—4e 3
6 219208 176168 13012 100—8¢ 7e69 Heo—+4
T 226 19018 150—14e 11s—1tie 9e—8¢ Te 69 5
8 219208 176168 130126 Oe—16r 9989 Te6
9 22¢ 19818 15e—14e 13612 1le—1he Je—Fe Te

Figure 5. G5 and the distances from the vertex xs; in Gs.

Table 4. The values of dy(2a1, Tpe) — t'.

1 2 3 45 6 78 9 10 11 12
110 0 0 2 2 4 4 6 6 8 8 10
2(-1 -1 113 3 5 5 7 7 9 9
310 0 0 2 2 4 4 6 6 8 8 10
411 1 11 3 3 5 5 7 7 9 9
512 2 2 2 2 4 46 6 8 8 10
63 3 33 3 35 5 7 7 9 9
714 4 4 4 4 4 4 6 6 8 8 10
85 5 5 5 5 5 5 5 7 7 9 9
96 6 6 6 6 6 6 6 6 8 & 10

If r > 2, we can see that from Table 4

r—3, 1<t <
dy(To1, Tpr) — ' = 2["'%1] —1, ¥>7r+1andris even;
28] =2, ¢ >r+1andrisodd.

So, we have

Lemma 6. If r > 2, then
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t'+r—3, 1<t <
dy(zo1,20) = U/ — 1+ 2[“%1]7 t'>r+1andris even;
t'—2+2[%}, t'>r+1andris odd.
and dz(I217Z1U) = dl(Z217I3L/) if r=1.

As in Lemma 4, we can prove the following result by using Lemmas 5
and 6.

Lemma 7. ()If t = 1, then dy (221, 2y¢) = do(Ta1, Ty ;
(i) If 2 < t < p, then dy (w21, Tre) < da(@21, Tyy);
(i) If p 4+ 1 <t < 2p, then dy(v21, Tpe) > da(w21, Trr).

And now, we can give a formula of calculating the distances from z9; in
G =TUVCg[2p, g] by Lemma 4.

Theorem 2. (i) d(z21, %) = di (a1, z0¢) if 1 <t < p;
(il) d(wa1, ) = do(To1,20¢) fp+1 <t < 2p.

4 A formula for calculating PI index of
TUV Cs2p, ]

In this section, we first find the subset X of vertices of V(G) which are closer
to x11 than zo; and the subset Y of vertices which are closer to xo; than x1;
in G, and give the formula of calculating n(e) for all vertical edges e. And
then we calculate the PI index of TUV Cs[2p, ¢].

Let X = {zn|ve € G, d(z11,204) < d(xo1,204)}, and Y = {zpt|z,e €
G, d(z11, zr¢) > d(xa1,24)}. Since G is a bipartite graph, Y = V(G) — X.

A example for p = 6 and ¢ = 9 is showed in Figure 6, where X is the set
of large dots and Y is the set of small dots.

Lemma 8. (i) If p is even, then

X={zu/l<r<t<pandr < g} U{z,prilr =2,4,---,pand r < ¢};
(i) If p is odd, then

X={zu/l<r<t<pandr < g} U{z,plr=1,3,---,pand r < ¢};
. >
(i) n(e) = { 2 o azp+l

2(¢—-1), ¢<p.
where e = 11291
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Figure 6.

Proof. Let A = d(x11,2r) — d(zo1, Tpt).
Case 1. t < p. Then by Theorems 1 and 2, A = dy (211, Trt) — di (221, Tpr).
Case 1.1. If r<t—2,thenr <p—2, ¢ =2p+2—t>p+2>r+4.
From Lemmas 2 and 5,
A (t—242[L]) — (t —1+2[L]), ris even;
(t—1+2[5) — (t+2[51]), risodd
=—-1<0.
So, d(x11,2rt) < d(xo1,xyt), and x4 € X.
Case 1.2. Ift —1 <r <t ,thent' =2p+2—t>p+2>r+2 From
Lemmas 2 and 5,
A (r+t—2)—(@—1+2[L))=r—1-2[f], riseven;
(r+t—2)—(t+2[5]) =r—-2-2[51], risodd
< 0.
So, d(x11, %) < d(x91, %), and 4 € X.
Case 1.3. If r > ¢t + 1, then by Lemmas 2 and 5,

|

A=({t+r—2)—(t+r—-3)=1>0.

So, d(z11,xrt) > d(xo1, Tyt), and x4 & X.
Case 2. ¢ = p+ 1. Then by Theorems 1 and 2, A = dy(z11, %) —
d2(1?217 Irt)-
Case 2.1. If r <t —2, then ¢ > r + 4. From Lemmas 2 and 6,
A= (t—24202) - (¢ — 1+ 20%5) — —1+ 2(5) - [51)
_ { —1, piseven (ie., tis odd);
| 1, pisodd (ie., tis even)
when 1 is even; and
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A=(t=1+2055) - (¢ —2+2(5) =1+ 2(51] - [3])
_ [ 1, piseven (ie., tis odd);
] -1, pisodd (i.e., t is even)
when r is odd.
So, &y p+1 € X if and only if the pairity of r and p are the same.
Case 2.2. If r =t —1, then ¢’ = r + 1. From Lemmas 2 and 6,
A=(r+t—2)—(t'—1+2[55 ) =r—1-2[5
| =1, t=r+1(e,p=t—1=riseven);
11, t=r(e,p=t—1=r—1isodd)
when r is even; and
A=(r+t—2)—(t'—2+2[5]) =r—2[}]
-1, t=r+1(e,p=t—1=risodd);
1, t=r(ie,p=t—1=r—1iseven)
when r is odd.
S0, Zppt1 € X, Tpr1pt1 € X. (Thus, 2,41 € X if and only if the pairity
of r and p are the same.)
Case 2.3. If r > ¢, then t' < r, by Lemmas 2 and 6,

A=@t+r—2)—t+r—-3)=1>0.

S0, Zrpi1 & X, 72 p+ 1.
Case 3. t > p+ 2. Then by Theorems 1 and 2, A = dy(211, %) —
dy (291, 2¢). From Lemmas 3 and 6, we have

A=1>0.

So, x4 ¢ X when t > p+ 2.
Summarizing above-mentioned, (i) and (ii) hold.
Since n(e) = [[X,Y]| and Y = V(G) — X, (iii) holds from (i) and (ii).

In the following, we calculate n(e) for vertical edges e, = x; 12,41, and
2 <r < q—2. Let TUV Cg[2p, r+1] be the polyhex nanotube consisting of the
first 7 + 1 rows of TUV Cs[2p, q] and TUV Cg[2p, ¢ — r + 1] the one consisting
of the last ¢ — 7 + 1 rows of TUV Cs[2p, ¢]. Then the edge e, = 12,411 In
TUV Cg[2p, g] can be viewed as the vertical edge at row 1 and column 1 in
TUV Cg[2p,r + 1] and also in TUV Cg[2p,q — r + 1]. By Lemma 8 (iii), we
have

2p, r=p

m(er) = 2r, r<p-—1.
in TUVCg[2p,r + 1]. And
2p, q—r=zp

m) = afg—r), q-r<p-1.
in TUVCs[2p,q — 7 + 1]. Since n(e,) = ni(e,) +nale,) — 2,2 <r < q—2,
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and using Lemma 8 for r = 1, we have the following result.

Lemma 9. Let e = 2,142,411 be a vertical edge between row 7 and row
r+1inTUVCs2p,q], 1 <r <gq—1.
(i) If ¢ < p, then n(e) = 2¢ — 2.
(i) If p+ 1 < ¢ < 2p, then
2p+2r — 2, 1<r<qg—rp;
ne) =1 2¢—2, g—p+1<r<p-1;
2p+2(q—r)—2, p<r<qg-1.
(ili) If ¢ > 2p, then
2p +2r — 2, 1<r<p-—-1,
ne) =4 4p -2, p<r<q-p
2p+2(q—r)—2, r>q—p+1.
Using Lemma 1 and 9, we can give a formula for calculating PI index of
TUV Cq[2p, q.

Theorem 3. The PI index of G = TUV Cg[2p, q] is as follows:
If ¢ is even, then
9p°¢* — 12p*q + 4p*> — 5pg® + 8pq — 4p, 1< p;
Pl (G) = 2 2 2 32 2 _
9p7¢" — 20p°q +4p° — pg” +8p° +4pg —4dp, ¢=p+1.

If ¢ is odd, then

9p%¢* — 12p°q + 4p* — 5pg® + 8pg — 4p, ¢ < pand p is odd;
PI(G) = 9p°q* — 20p*q + 4p® — pg® + 8p® + dpg —dp, ¢ =p+1and pis odd;
] 9P — 120%q + 4p® — 5pg® + 8pg — 3p, ¢ < p and p is even;

9p2q® — 20p*q + 4p® — pg® + 8p* + 6pg — 5p, ¢ > p+ 1 and p is even;

a1
Proof. Let N; = ¥ n(e,) be the sum of n(e,) over all vertical edges e,

r=1
of column 1 in TUV C[2p, q]. By Lemma 9,
(i) If ¢ < p, then Ny = 2(q — 1)%
(i) If p+ 1 < ¢ < 2p, then
q—p p—1 q—1
Mo o=@+ -2+ ¥ (20-2+ Z(2p+2Ag-1)-2)

r=q—p+

=4(g-p)p-1)+2¢-plg-p+1)+2(¢-1)(2p—q¢—1)
=dpg— 2> —2p—2¢+2

(ili) If ¢ > 2p, then

p—1 q—p q—1

N, = T21(2p +2r —2) + TZp(4p —-2)+ . qu+1(2p +2(q—r)—2)
=4(p -1’ +2(p—-1)p+22p—1)(g—2p+1)
=dpg— 2> —2p—2¢+2
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If N is the sum of n(e,) over all vertical edges e, in TUV Cg[2p, g], then

p(g — 1), q<p;
N =2pN, = f
P {4p(2pq—pz—p—tJ+1), g=p+1

And PI(G) = |[E(G)]* = ¥ n(e) = (3pg — 2p)* — (H + N). From
ecE(GQ)
Lemma 1, if ¢ is even, then
PI(G) — 9p?q® — 12p°q + 4p* — 5pg* + 8pg — 4p, q<p;
9p%q* — 20p°q +4p° — pg® + 8p* +dpg —4p, q=p+1.
and if ¢ is odd, then

Ip?q® — 12p%q + 4p* — 5pqg® + 8pq — 4p, g < p and p is odd;
PI(G) 9p2q® — 20p%q + 4p> — pg® + 8p® +4pg — 4p, ¢ > p+ 1 and p is odd;
) 9p%q® — 12p%q + 4p* — 5pg® + 8pg — 5p, q < pand p is even;

Ip?q® — 20p%q + 4p® — pg® + 8p® +4pg — dp, ¢ > p+ 1 and p is even.
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