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Abstract

The PI index is a graph invariant defined as the summation of the
sums of neu(e|G) and nev(e|G) over all the edges e = uv of a connected
graph G, i.e.,PI(G) =

∑
e∈E(G)[neu(e|G) + nev(e|G)], where neu(e|G)

is the number of edges of G lying closer to u than to v and nev(e|G)
is the number of edges of G lying closer to v than to u. A formula for
calculating the PI index of TUV C6[2p, q] is given.

1 Introduction

The structure of a molecule could be represented in a variety of ways. The
information on the chemical constitution of molecule is conventionally rep-
resented by a molecular graph. And graph theory was successfully provided

1This research is supported by the National Natural Science Foundation of
China(10471037) and the Department of Education of Hunan Province(04B047).



the chemist with a variety of very useful tools, namely, topological index.
The first reported use of a topological index in chemistry was by Wiener [1]
in the study of paraffin boiling points. Since then, in order to model various
molecular properties, many topological indices have been designed [2]. Such
a proliferation is still going on and is becoming counter productive.

In 1990s, Gutman [3] and coworkers [4] have introduced a generalization
of the Wiener index (W) for cyclic graphs called Szeged index (Sz). The main
advantage of the Szeged index is that it is a modification of W; otherwise,
it coincides with the Wiener index. In [5,6] another topological index was
introduced and it was named Padmakar-Ivan index, abbreviated as PI. This
new topological index, PI, does not coincide with the Wiener index. Deng [9]
gave a formula for calculating the PI index of catacondensed hexagonal sys-
tems and the extremal catacondensed hexagonal systems with the minimum
or maximum PI index. Ashrafi and Loghman [10] computed the PI index of
zig-zag polyhex nanotubes.

The primary aim of this article is to introduce the method for calcula-
tion of PI index for TUV C6[2p, q]. Our notation is mainly taken from [7,8].
Throughout this paper G = TUV C6[2p, q] denotes an armchair polyhex nan-
otube, see Figure 1.
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Figure 1. G = TUV C6[2p, q] with p=6 and q=9

2 The definition of PI index

Let G be a connected and undirected graph without multiple edges or loops.
By V (G) and E(G) we denote the vertex and edge sets, respectively, of G.

If G′ = (V ′, E ′) is a subgraph of G = (V, E) and contains all the edges of
G that join two vertices in V ′, i.e., E ′ is the set of edges between vertices of
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V ′, then G′ is an induced subgraph of G by V ′ and is denoted by G[V ′].
Let e = xy be an edge of G, X is the subset of vertices of V (G) which

are closer to x than y and Y is the subset of vertices which are closer to y
than x, i.e.,

X = {v|v ∈ V (G), dG(x, v) < dG(y, v)}
Y = {v|v ∈ V (G), dG(y, v) < dG(x, v)}

where dG(u, v) denotes the distance between vertices u and v of G. Let
G[X] = (X,E1) and G[Y ] = (Y, E2),

n1(e) = |E1|, n2(e) = |E2|

Here, n1(e) is the number of edges nearer to x than y and n2(e) is the number
of edges nearer to y than x.

Then the PI index of G is defined as

PI(G) =
∑

e∈E(G)

[n1(e) + n2(e)]

In all cases of cyclic graphs, there are edges equidistant to the both ends
of the edges. Such edges are not taken into account. Let [X,Y ] denote the
subset of edges between X and Y , n(e) = |[X,Y ]|. Then n(e) = |E(G)| −
(n1(e) + n2(e)) is the number of edges equidistant to the both ends of e for
a bipartite connected graph G (It includes the current edge e in n(e)). And

PI(G) = |E(G)|2 − ∑

e∈E(G)

n(e)

Therefore, for computing the PI index of a bipartite connected graph G, it
is enough to calculate n(e) for each e ∈ E(G).

To calculate n(e), we consider two cases that e is horizontal or vertical.

Lemma 1. Let e be any horizontal edge between columns j and j+1 in
G = TUV C6[2p, q], 1 ≤ j ≤ 2p, where 2p + 1 ≡ 1(mod2p).

(i)If q is odd, then n(e) =





q, if p is odd;
q + 1, if p is even and j is odd;
q − 1, if p is even and j is even.

(ii) If q is even, then n(e) = q.
(iii) Let H be the sum of n(e) over all horizontal edges in G. Then

H =





pq2, q is even;
pq2 + p, q is odd and p is even;
pq2, q and p are odd.

Proof. Let xij be the vertex on row i and column j, e = xijxi,j+1. X is
the subset of vertices of V (G) which are closer to xij than xi,j+1 and Y is
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the subset of vertices which are closer to xi,j+1 than xij. It is obvious that
X consists of the vertices on columns j, j − 1, · · · , j − p + 1, and Y consists
of the vertices on columns j + 1, j + 2, · · · , j + p, where j ± k will be taken
j ± k(mod2p) if j ± k 6∈ {1, 2, · · · , 2p}. So, [X,Y ] is the set of the edges
between columns j and j+1 and the edges between columns j-p+1 and j+p.
Note that the number mj of the edges between columns j and j+1 is

mj =





q
2
, if q is even;

q+1
2

, if q is odd and j is odd;
q−1
2

, if q is odd and j is even.

So, we have

(i)if q is odd, then n(e) =





q, if p is odd;
q + 1, if p is even and j is odd;
q − 1, if p is even and j is even.

(ii) if q is even, then n(e) = q.
(iii) Let Hj be the sum of n(e) over all horizontal edges between columns

j and j+1.

If q is even, then Hj = q
2
× q = q2

2
, and H =

2p∑
j=i

Hj = 2p× q2

2
= pq2.

If q is odd and p is even, then

Hj =

{
(q+1)2

2
, j is odd;

(q−1)2

2
, j is even.

and H =
2p∑
j=i

Hj = p(q2 + 1).

If q and p are all odd, then

Hj =

{
q(q+1)

2
, j is odd;

q(q−1)
2

, j is even.

and H =
2p∑
j=i

Hj = pq2.

So, H =





pq2, q is even;
pq2 + p, q is odd and p is even;
pq2, q and p are odd.

To calculating n(e) for the vertical edges e, we need only calculate n(e)
for e = x11x21, so is n(e) for the vertical edges between rows 1 and 2 and the
vertical edges between rows q-1 and q by the symmetry of G, and n(e) can
also be calculated for the vertical edges between rows i and i+1 by using two
intersectional TUV C6s.
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3 The distances in TUV C6[2p, q]

For e = x11x21, we will give a formula for calculating the distances from x11

(or x21) in the following, and find the subset X of vertices of V (G) which are
closer to x11 than x21 and the subset Y of vertices which are closer to x21

than x11.
We first consider two graphs G1 and G2, where G1 is obtaining from

G = TUV C6[2p, q] by deleting the horizontal edges between columns 1 and
2p (see Figure 2) and G2 is obtaining from G = TUV C6[2p, q] by deleting the
horizontal edges between columns 1 and 2 (see Figure 3), and the distances
from x11 (or x21) in G is the minimum of the ones in G1 and in G2.
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Figure 2. G1 and the distances from the vertex x11 in G1.

Table 1. The values of d1(x11, xrt)− t.
1 2 3 4 5 6 7 8 9 10 11 12

1 -1 -1 1 1 3 3 5 5 7 7 9 9
2 0 0 0 2 2 4 4 6 6 8 8 10
3 1 1 1 1 3 3 5 5 7 7 9 9
4 2 2 2 2 2 4 4 6 6 8 8 10
5 3 3 3 3 3 3 5 5 7 7 9 9
6 4 4 4 4 4 4 4 6 6 8 8 10
7 5 5 5 5 5 5 5 5 7 7 9 9
8 6 6 6 6 6 6 6 6 6 8 8 10
9 7 7 7 7 7 7 7 7 7 7 9 9

Now, we calculate the distances from x11 in G1 as showing in Figure
2. And Table 1 lists the values of d1(x11, xrt) − t, where d1(x11, xrt) is the
distance between x11 and xrt in G1.
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From Table 1, we can see that

d1(x11, xrt)− t =





r − 2, 1 ≤ t ≤ r + 1;
2[ t

2
]− 2, t ≥ r + 2 and r is even;

2[ t−1
2

]− 1, t ≥ r + 2 and r is odd.

So, we have

Lemma 2. d1(x11, xrt) =





t + r − 2, 1 ≤ t ≤ r + 1;
t− 2 + 2[ t

2
], t ≥ r + 2 and r is even;

t− 1 + 2[ t−1
2

], t ≥ r + 2 and r is odd.

Lemma 2 can be easily proved by the inductive method on t, we omit
here.
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Figure 3. G2 and the distances from the vertex x11 in G2.

Table 2. The values of d2(x11, xrt′)− t′.
1 2 3 4 5 6 7 8 9 10 11 12

1 -1 -1 1 1 3 3 5 5 7 7 9 9
2 0 0 0 2 2 4 4 6 6 8 8 10
3 1 1 1 1 3 3 5 5 7 7 9 9
4 2 2 2 2 2 4 4 6 6 8 8 10
5 3 3 3 3 3 3 5 5 7 7 9 9
6 4 4 4 4 4 4 4 6 6 8 8 10
7 5 5 5 5 5 5 5 5 7 7 9 9
8 6 6 6 6 6 6 6 6 6 8 8 10
9 7 7 7 7 7 7 7 7 7 7 9 9

Similarly, we calculate the distances from x11 in G2 as showing in Figure
3. And Table 2 lists the values of d2(x11, xrt′) − t′, where d2(x11, xrt′) is the
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distance between x11 and xrt′ in G2 and

t′ =

{
1, t = 1
2p + 2− t, t ≥ 2

From Table 2, we can see that

d2(x11, xrt′)− t′ =





r − 2, 1 ≤ t′ ≤ r;

2[ t′−1
2

], t′ ≥ r + 1 and r is even;

2[ t′
2
]− 1, t′ ≥ r + 1 and r is odd.

So, we have

Lemma 3. d2(x11, xrt′) =





t′ + r − 2, 1 ≤ t′ ≤ r;

t′ + 2[ t′−1
2

], t′ ≥ r + 1 and r is even;

t′ − 1 + 2[ t′
2
], t′ ≥ r + 1 and r is odd.

and

d2(x11, xrt) =





2p + r − t, t ≤ 2p + 2− r(t=1 if r=1);
2p + 2− t + 2[2p+1−t

2
], t ≤ 2p + 1− r and r is even;

2p + 1− t + 2[2p+2−t
2

], t ≤ 2p + 1− r and r is odd.

Since the vertex xrt in G1 and the vertex xrt′ in G2 are identical, we have

Lemma 4. (i)If t = 1, then d1(x11, xrt) = d2(x11, xrt′) ;
(ii) If 2 ≤ t ≤ p + 1, then d1(x11, xrt) ≤ d2(x11, xrt′);
(iii) If p + 2 ≤ t ≤ 2p, then d1(x11, xrt) > d2(x11, xrt′).
Proof. (i) If t = 1, then t′ = 1 and d1(x11, xrt) = d2(x11, xrt′) from

Lemmas 2 and 3.
(ii) 2 ≤ t ≤ p + 1.
Case 1. t ≥ r+2. Then r+2 ≤ t ≤ p+1 and r ≤ p−1, t′ = 2p+2− t ≥

p + 1 ≥ r + 2.
(a) If r is even, then by Lemmas 2 and 3
d2(x11, xrt′)− d1(x11, xrt) = (t′ + 2[ t′−1

2
])− (t− 2 + 2[ t

2
])

= 4p + 6− 2t + 2([−t−1
2

]− [ t
2
])

≥ 4p + 4− 4t ≥ 0
.

(b) If r is odd, then by Lemmas 2 and 3
d2(x11, xrt′)− d1(x11, xrt) = (t′ − 1 + 2[ t′

2
])− (t− 1 + 2[ t−1

2
])

= 4p + 4− 2t + 2([−t
2

]− [ t−1
2

])
≥ 4p + 4− 4t ≥ 0

.

Case 2. 2 ≤ t ≤ r + 1.
(a) If t′ ≤ r, then by Lemmas 2 and 3
d2(x11, xrt′)− d1(x11, xrt) = (r + t′ − 2)− (r + t− 2)

= t′ − t = 2p + 2− 2t ≥ 0
.

(b) If t′ ≥ r + 1, i.e., 2p + 2− t ≥ r + 1, then r + t ≤ 2p + 1.
When r is even, by Lemmas 2 and 3 we have
d2(x11, xrt′)− d1(x11, xrt) = (t′ + 2[ t′−1

2
])− (r + t− 2)

≥ (r + 1 + 2[ r
2
])− (2r − 1) > 0

.
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When r is odd, by Lemmas 2 and 3 we have
d2(x11, xrt′)− d1(x11, xrt) = (t′ − 1 + 2[ t′

2
])− (r + t− 2)

≥ (r + 2[ r+1
2

])− (2r − 1) > 0
.

(iii) p + 2 ≤ t ≤ 2p. Then 2 ≤ t′ = 2p + 2− t ≤ p.
Case 1. t′ ≥ r + 1. Then r + 1 ≤ t′ ≤ p, r ≤ p − 1, t = 2p + 2 − t′ ≥

p + 2 ≥ r + 3.
(a) If r is even, then by Lemmas 2 and 3
d1(x11, xrt)− d2(x11, xrt′) = (t− 2 + 2[ t

2
])− (t′ + 2[ t′−1

2
])

= (2p− t′ + 2([2p+2−t′
2

])− (t′ + 2[ t′−1
2

])

= 4p + 2− 2t′ + 2([−t′
2

]− [ t′−1
2

])
≥ 4p + 2− 4t′ > 0

.

(b) If r is odd, then by Lemmas 2 and 3
d1(x11, xrt)− d2(x11, xrt′) = (t− 1 + 2[ t−1

2
])− (t′ − 1 + 2[ t′

2
])

= 4p + 4− 2t′ + 2([−t′−1
2

]− [ t′
2
])

≥ 4p + 2− 4t′ > 0

.

Case 2. 2 ≤ t′ ≤ r.
(a) If t ≤ r + 1, then by Lemmas 2 and 3
d1(x11, xrt)− d2(x11, xrt′) = (r + t− 2)− (r + t′ − 2)

= t− t′ = 2p + 2− 2t′ > 0
.

(b) If t ≥ r + 2, then by Lemmas 2 and 3
d1(x11, xrt)− d2(x11, xrt′) = (t− 2 + 2[ t

2
])− (r + t′ − 2)

≥ (r + 2[ r+2
2

])− (2r − 2) > 0
when r is even; and
d1(x11, xrt)− d2(x11, xrt′) = (t− 1 + 2[ t−1

2
])− (r + t′ − 2)

≥ (r + 1 + 2[ r+1
2

])− (2r − 2) > 0
when r is odd.

Now by Lemma 4, we can directly give a formula of calculating the
distances from x11 in G = TUV C6[2p, q].

Theorem 1. (i) d(x11, xrt) = d1(x11, xrt) if 1 ≤ t ≤ p + 1;
(ii) d(x11, xrt) = d2(x11, xrt) if p + 2 ≤ t ≤ 2p.

Next, we consider the distances from x21. Using the same methods as
above, we can calculate the distances from x21 in G1 as showing in Figure 4
and list the values of d1(x21, xrt)− t in Table 3.
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Figure 4. G1 and the distances from the vertex x21 in G1.

Table 3. The values of d1(x21, xrt)− t.
1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 2 2 4 4 6 6 8 8 10 10
2 -1 1 1 3 3 5 5 7 7 9 9 11
3 0 0 2 2 4 4 6 6 8 8 10 10
4 1 1 1 3 3 5 5 7 7 9 9 11
5 2 2 2 2 4 4 6 6 8 8 10 10
6 3 3 3 3 3 5 5 7 7 9 9 11
7 4 4 4 4 4 4 6 6 8 8 10 10
8 5 5 5 5 5 5 5 7 7 9 9 11
9 6 6 6 6 6 6 6 6 8 8 10 10

If r ≥ 2, we can see that from Table 3

d1(x21, xrt)− t =





r − 3, 1 ≤ t ≤ r − 1;
2[ t

2
]− 1, t ≥ r and r is even;

2[ t−1
2

], t ≥ r and r is odd.

So, we have

Lemma 5. If r ≥ 2, then

d1(x21, xrt) =





t + r − 3, 1 ≤ t ≤ r − 1;
t− 1 + 2[ t

2
], t ≥ r and r is even;

t + 2[ t−1
2

], t ≥ r and r is odd.
and d1(x21, x1t) = d1(x21, x3t) if r = 1.
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Also, we can calculate the distances from x21 in G2 as showing in Figure
5 and list the values of d2(x21, xrt′)− t′ in Table 4.
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Figure 5. G2 and the distances from the vertex x21 in G2.

Table 4. The values of d2(x21, xrt′)− t′.
1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 2 2 4 4 6 6 8 8 10
2 -1 -1 1 1 3 3 5 5 7 7 9 9
3 0 0 0 2 2 4 4 6 6 8 8 10
4 1 1 1 1 3 3 5 5 7 7 9 9
5 2 2 2 2 2 4 4 6 6 8 8 10
6 3 3 3 3 3 3 5 5 7 7 9 9
7 4 4 4 4 4 4 4 6 6 8 8 10
8 5 5 5 5 5 5 5 5 7 7 9 9
9 6 6 6 6 6 6 6 6 6 8 8 10

If r ≥ 2, we can see that from Table 4

d2(x21, xrt′)− t′ =





r − 3, 1 ≤ t′ ≤ r;

2[ t′−1
2

]− 1, t′ ≥ r + 1 and r is even;

2[ t′
2
]− 2, t′ ≥ r + 1 and r is odd.

So, we have

Lemma 6. If r ≥ 2, then
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d2(x21, xrt′) =





t′ + r − 3, 1 ≤ t′ ≤ r;

t′ − 1 + 2[ t′−1
2

], t′ ≥ r + 1 and r is even;

t′ − 2 + 2[ t′
2
], t′ ≥ r + 1 and r is odd.

and d2(x21, x1t′) = d1(x21, x3t′) if r = 1.

As in Lemma 4, we can prove the following result by using Lemmas 5
and 6.

Lemma 7. (i)If t = 1, then d1(x21, xrt) = d2(x21, xrt′) ;
(ii) If 2 ≤ t ≤ p, then d1(x21, xrt) < d2(x21, xrt′);
(iii) If p + 1 ≤ t ≤ 2p, then d1(x21, xrt) ≥ d2(x21, xrt′).

And now, we can give a formula of calculating the distances from x21 in
G = TUV C6[2p, q] by Lemma 4.

Theorem 2. (i) d(x21, xrt) = d1(x21, xrt) if 1 ≤ t ≤ p;
(ii) d(x21, xrt) = d2(x21, xrt) if p + 1 ≤ t ≤ 2p.

4 A formula for calculating PI index of

TUV C6[2p, q]

In this section, we first find the subset X of vertices of V (G) which are closer
to x11 than x21 and the subset Y of vertices which are closer to x21 than x11

in G, and give the formula of calculating n(e) for all vertical edges e. And
then we calculate the PI index of TUV C6[2p, q].

Let X = {xrt|xrt ∈ G, d(x11, xrt) < d(x21, xrt)}, and Y = {xrt|xrt ∈
G, d(x11, xrt) > d(x21, xrt)}. Since G is a bipartite graph, Y = V (G)−X.

A example for p = 6 and q = 9 is showed in Figure 6, where X is the set
of large dots and Y is the set of small dots.

Lemma 8. (i) If p is even, then

X = {xrt|1 ≤ r ≤ t ≤ p and r ≤ q}⋃{xr,p+1|r = 2, 4, · · · , p and r ≤ q};

(ii) If p is odd, then

X = {xrt|1 ≤ r ≤ t ≤ p and r ≤ q}⋃{xr,p+1|r = 1, 3, · · · , p and r ≤ q};

(iii) n(e) =

{
2p, q ≥ p + 1
2(q − 1), q ≤ p.

where e = x11x21.
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Figure 6.

Proof. Let ∆ = d(x11, xrt)− d(x21, xrt).
Case 1. t ≤ p. Then by Theorems 1 and 2, ∆ = d1(x11, xrt)−d1(x21, xrt).
Case 1.1. If r ≤ t− 2, then r ≤ p− 2, t′ = 2p + 2− t ≥ p + 2 ≥ r + 4.

From Lemmas 2 and 5,

∆ =

{
(t− 2 + 2[ t

2
])− (t− 1 + 2[ t

2
]), r is even;

(t− 1 + 2[ t−1
2

])− (t + 2[ t−1
2

]), r is odd
= −1 < 0.

So, d(x11, xrt) < d(x21, xrt), and xrt ∈ X.
Case 1.2. If t − 1 ≤ r ≤ t, then t′ = 2p + 2 − t ≥ p + 2 ≥ r + 2. From

Lemmas 2 and 5,

∆ =

{
(r + t− 2)− (t− 1 + 2[ t

2
]) = r − 1− 2[ t

2
], r is even;

(r + t− 2)− (t + 2[ t−1
2

]) = r − 2− 2[ t−1
2

], r is odd
< 0.

So, d(x11, xrt) < d(x21, xrt), and xrt ∈ X.
Case 1.3. If r ≥ t + 1, then by Lemmas 2 and 5,

∆ = (t + r − 2)− (t + r − 3) = 1 > 0.

So, d(x11, xrt) > d(x21, xrt), and xrt 6∈ X.
Case 2. t = p + 1. Then by Theorems 1 and 2, ∆ = d1(x11, xrt) −

d2(x21, xrt).
Case 2.1. If r ≤ t− 2, then t′ ≥ r + 4. From Lemmas 2 and 6,
∆ = (t− 2 + 2[ t

2
])− (t′ − 1 + 2[ t′−1

2
]) = −1 + 2([ t

2
]− [ t−1

2
])

=

{
−1, p is even (i.e., t is odd);
1, p is odd (i.e., t is even)

when r is even; and
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∆ = (t− 1 + 2[ t−1
2

])− (t′ − 2 + 2[ t′
2
]) = 1 + 2([ t−1

2
]− [ t

2
])

=

{
1, p is even (i.e., t is odd);
−1, p is odd (i.e., t is even)

when r is odd.
So, xr,p+1 ∈ X if and only if the pairity of r and p are the same.
Case 2.2. If r = t− 1, then t′ = r + 1. From Lemmas 2 and 6,
∆ = (r + t− 2)− (t′ − 1 + 2[ t′−1

2
]) = r − 1− 2[ t−1

2
]

=

{
−1, t = r + 1 (i.e., p = t− 1 = r is even);
1, t = r (i.e., p = t− 1 = r − 1 is odd)

when r is even; and
∆ = (r + t− 2)− (t′ − 2 + 2[ t′

2
]) = r − 2[ t

2
]

=

{
−1, t = r + 1 (i.e., p = t− 1 = r is odd);
1, t = r (i.e., p = t− 1 = r − 1 is even)

when r is odd.
So, xp,p+1 ∈ X, xp+1,p+1 6∈ X. (Thus, xr,p+1 ∈ X if and only if the pairity

of r and p are the same.)
Case 2.3. If r ≥ t, then t′ ≤ r, by Lemmas 2 and 6,

∆ = (t + r − 2)− (t′ + r − 3) = 1 > 0.

So, xr,p+1 6∈ X, r ≥ p + 1.
Case 3. t ≥ p + 2. Then by Theorems 1 and 2, ∆ = d2(x11, xrt) −

d2(x21, xrt). From Lemmas 3 and 6, we have

∆ = 1 > 0.

So, xr,t 6∈ X when t ≥ p + 2.
Summarizing above-mentioned, (i) and (ii) hold.
Since n(e) = |[X,Y ]| and Y = V (G)−X, (iii) holds from (i) and (ii).

In the following, we calculate n(e) for vertical edges er = xr1xr+1,1 and
2 ≤ r ≤ q−2. Let TUV C6[2p, r+1] be the polyhex nanotube consisting of the
first r + 1 rows of TUV C6[2p, q] and TUV C6[2p, q− r +1] the one consisting
of the last q − r + 1 rows of TUV C6[2p, q]. Then the edge er = xr1xr+1,1 in
TUV C6[2p, q] can be viewed as the vertical edge at row 1 and column 1 in
TUV C6[2p, r + 1] and also in TUV C6[2p, q − r + 1]. By Lemma 8 (iii), we
have

n1(er) =

{
2p, r ≥ p
2r, r ≤ p− 1.

in TUV C6[2p, r + 1]. And

n2(er) =

{
2p, q − r ≥ p
2(q − r), q − r ≤ p− 1.

in TUV C6[2p, q − r + 1]. Since n(er) = n1(er) + n2(er) − 2, 2 ≤ r ≤ q − 2,
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and using Lemma 8 for r = 1, we have the following result.

Lemma 9. Let e = xr1xr+1,1 be a vertical edge between row r and row
r + 1 in TUV C6[2p, q], 1 ≤ r ≤ q − 1.

(i) If q ≤ p, then n(e) = 2q − 2.
(ii) If p + 1 ≤ q < 2p, then

n(e) =





2p + 2r − 2, 1 ≤ r ≤ q − p;
2q − 2, q − p + 1 ≤ r ≤ p− 1;
2p + 2(q − r)− 2, p ≤ r ≤ q − 1.

(iii) If q ≥ 2p, then

n(e) =





2p + 2r − 2, 1 ≤ r ≤ p− 1;
4p− 2, p ≤ r ≤ q − p;
2p + 2(q − r)− 2, r ≥ q − p + 1.

Using Lemma 1 and 9, we can give a formula for calculating PI index of
TUV C6[2p, q].

Theorem 3. The PI index of G = TUV C6[2p, q] is as follows:
If q is even, then

PI(G) =

{
9p2q2 − 12p2q + 4p2 − 5pq2 + 8pq − 4p, q ≤ p;
9p2q2 − 20p2q + 4p3 − pq2 + 8p2 + 4pq − 4p, q ≥ p + 1.

If q is odd, then

PI(G) =





9p2q2 − 12p2q + 4p2 − 5pq2 + 8pq − 4p, q ≤ p and p is odd;
9p2q2 − 20p2q + 4p3 − pq2 + 8p2 + 4pq − 4p, q ≥ p + 1 and p is odd;
9p2q2 − 12p2q + 4p2 − 5pq2 + 8pq − 3p, q ≤ p and p is even;
9p2q2 − 20p2q + 4p3 − pq2 + 8p2 + 6pq − 5p, q ≥ p + 1 and p is even;

Proof. Let N1 =
q−1∑
r=1

n(er) be the sum of n(er) over all vertical edges er

of column 1 in TUV C6[2p, q]. By Lemma 9,
(i) If q ≤ p, then N1 = 2(q − 1)2;
(ii) If p + 1 ≤ q < 2p, then

N1 =
q−p∑
r=1

(2p + 2r − 2) +
p−1∑

r=q−p+1
(2q − 2) +

q−1∑
r=p

(2p + 2(q − r)− 2)

= 4(q − p)(p− 1) + 2(q − p)(q − p + 1) + 2(q − 1)(2p− q − 1)
= 4pq − 2p2 − 2p− 2q + 2

(iii) If q ≥ 2p, then

N1 =
p−1∑
r=1

(2p + 2r − 2) +
q−p∑
r=p

(4p− 2) +
q−1∑

r=q−p+1
(2p + 2(q − r)− 2)

= 4(p− 1)2 + 2(p− 1)p + 2(2p− 1)(q − 2p + 1)
= 4pq − 2p2 − 2p− 2q + 2
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If N is the sum of n(er) over all vertical edges er in TUV C6[2p, q], then

N = 2pN1 =

{
4p(q − 1)2, q ≤ p;
4p(2pq − p2 − p− q + 1), q ≥ p + 1.

And PI(G) = |E(G)|2 − ∑
e∈E(G)

n(e) = (3pq − 2p)2 − (H + N). From

Lemma 1, if q is even, then

PI(G) =

{
9p2q2 − 12p2q + 4p2 − 5pq2 + 8pq − 4p, q ≤ p;
9p2q2 − 20p2q + 4p3 − pq2 + 8p2 + 4pq − 4p, q ≥ p + 1.

and if q is odd, then

PI(G) =





9p2q2 − 12p2q + 4p2 − 5pq2 + 8pq − 4p, q ≤ p and p is odd;
9p2q2 − 20p2q + 4p3 − pq2 + 8p2 + 4pq − 4p, q ≥ p + 1 and p is odd;
9p2q2 − 12p2q + 4p2 − 5pq2 + 8pq − 5p, q ≤ p and p is even;
9p2q2 − 20p2q + 4p3 − pq2 + 8p2 + 4pq − 5p, q ≥ p + 1 and p is even.
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