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Abstract

The PI index is a graph invariant defined as the summation of the
sums of n1(e) and n2(e) over all the edges e = uv of a connected graph
G, i.e.,

PI(G) =
∑

e∈E(G)

[n1(e) + n2(e)]

where n1(e) is the number of edges of G lying closer to u than to v
and n2(e) is the number of edges of G lying closer to v than to u.
A formula for calculating the PI index of catacondensed hexagonal
systems is given from the structural parameters. Using the result, the
catacondensed hexagonal systems with the minimum and maximum
PI index are determined.

1 Induction

The first reported use of a topological index in chemistry was by Wiener [1]
in the study of paraffin boiling points. Since then, in order to model various
molecular properties, many topological indices have been designed [2]. Such
a proliferation is still going on and is becoming counter productive.
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In 1990s, Gutman [3] and coworkers [4] have introduced a generalization
of the Wiener index (W) for cyclic graphs called Szeged index (Sz). The
main advantage of the Szeged index is that it is a modification of W for
cyclic graphs; otherwise, it coincides with the Wiener index. In a attempt to
remove this lacuna, [5-6] introduced another topological index PI, recently.

The method for the calculation of PI indices for hexagonal chains was
also introduced in [5].

The primary aims of this article are to introduce another method for
calculating the PI indices of catacondensed hexagonal systems according to
the lengths of their segments, and to determine the catacondensed hexagonal
systems with minimum and maximum PI index.

2 Catacondensed hexagonal systems

Hexagonal systems are of great importance for theoretical chemistry because
they are the molecular graphs (or, more precisely, the graphs representing
the carbon-atom skeleton) of benzenoid hydrocarbons. The mathematical
theory of hexagonal systems is nowadays being greatly expanded.

Our standard reference for any terminology of hexagonal systems is [7].
A hexagonal system [7] is a connected plane graph without cut-vertices

in which all inner faces are hexagons (and all hexagons are faces), such that
two hexagons are either disjoint or have exactly one common edge, and no
three hexagons share a common edge.

The hexagonal systems are divided [7] into catacondensed and pericon-
densed hexagonal systems. In a pericondensed hexagonal system there exist
three hexagons share a common vertex; In catacondensed hexagonal systems
no three hexagons share a common vertex. The set of all catacondensed
hexagonal systems with h hexagons is denoted by CHSh.

Catacondensed hexagonal systems are further classified into non-branched
(in which no hexagon has more than two neighboring hexagons) and branched
(in which at least one hexagon has three neighboring hexagons). A catacon-
densed hexagonal system without branched hexagons is called a hexagonal
chain. The set of all hexagonal chains with h hexagons is denoted by HCh.

The linear chain Lh [7] with h hexagons is the catacondensed hexagonal
system without kinks (see Figure 1), where the kinks are the are branched
or angularly connected hexagons (see the page 252 in [7]).

.......

Figure 1. A linear chain Lh.
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Fibonacene chains (including helicene chains) [5,7] are the hexagonal
chains in which all hexagons, apart from the two terminal ones, are angularly
connected, for instance, the graphs G1, G2 and G3 of Figure 2.

...
..

...

G1 G2

....

G3 G4

Figure 2. Some full kinks hexagonal systems.

Full kink catacondensed hexagonal systems are the catacondensed hexag-
onal systems in which all hexagons, apart from the terminal ones, are kinks
(angularly connected or branched hexagons), for instance, all the graphs of
Figure 2. Clearly, all the Fibonacene chains are full kink catacondensed
hexagonal systems.

A segment [7] is a maximal linear chain in a catacondensed hexagonal
system, including the kinks and/or terminal hexagons at its end. The number
of hexagons in a segment S is called its length and is denoted by l(S). For
any segment S of G ∈ CHSh, 2 ≤ l(S) ≤ h. Particularly, a catacondensed
hexagonal system is a full kink catacondensed hexagonal system if and only
if the lengths of its segment are all equal to 2.

3 PI index

Let G be a connected and undirected graph without multiple edges or loops.
By V (G) and E(G) we denote the vertex and edge sets, respectively, of G.

If G′ = (V ′, E ′) is a subgraph of G = (V, E) and contains all the edges of
G that join two vertices in V ′, then G′ is an induced subgraph of G by V ′

and is denoted by G[V ′].
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Let e = xy be an edge of G, X is the subset of vertices of V (G) which
are closer to x than y and Y is the subset of vertices which are closer to y
than x, i.e.,

X = {v|v ∈ V (G), dG(x, v) < dG(y, v)}
Y = {v|v ∈ V (G), dG(y, v) < dG(x, v)}

where dG(u, v) denotes the distance between vertices u and v of G. Let
G[X] = (X,E1) and G[Y ] = (Y, E2),

n1(e) = |E1|, n2(e) = |E2|
Here, n1(e) is the number of edges nearer to x than y and n2(e) is the number
of edges nearer to y than x.

Then the PI index of G is defined as

PI(G) =
∑

e∈E(G)

[n1(e) + n2(e)]

In all case of cyclic graphs, there are edges equidistant to the both ends
of the edges. Such edges are not taken into account.

4 A formula for calculating the PI indices of

catacondensed hexagonal systems

A catacondensed hexagonal system G ∈ CHSh consists of a sequence of
segments S1, S2, · · · , Sn, n ≥ 1, with lengths l(Si) = li, i = 1, 2, · · · , n, where
l1 + l2 + · · ·+ ln = h + n− 1 since two neighboring segments have always one
hexagon in common. Then the PI index of G may be calculated from these
structural parameters.

...
.

.....
....

Si

Figure 3.

Theorem 1. Let G be a catacondensed hexagonal system with h
hexagons and consisting of n segments of lengths l1, l2, · · · , ln, n ≥ 1. Then

PI(G) = 25h2 + n− 1−
n∑

i=1

l2i .
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Proof. From the definition of PI(G) and the Figure 3, we observe that
for any edge e which the straight line Si cuts across, where the straight line Si

passes through the segment of length li. Such edges will be li +1 in numbers
and the contribution of such edges to PI(G) will be

n1(e) + n2(e) = (5h + 1)− (li + 1) = 5h− li

i = 1, 2, · · · , n, where 5h + 1 is the number of edges in G. And the other
edges will be (5h + 1) − (l1 + l2 + · · · + ln + n) = 4h − 2n + 2 in numbers.
Each of them will contribute

n1(e) + n2(e) = (5h + 1)− 2 = 5h− 1

to PI(G). Therefore, the sum of the contributions of all the edges will give
the PI index for G

PI(G) =
n∑

i=1
(5h− li)(li + 1) + (5h− 1)(4h− 2n + 2)

= 5h
n∑

i=1
(li + 1)− n∑

i=1
l2i −

n∑
i=1

li + (5h− 1)(4h− 2n + 2)

= 5h(h + 2n− 1)− n∑
i=1

l2i − (h + n− 1) + (5h− 1)(4h− 2n + 2)

= 25h2 + n− 1− n∑
i=1

l2i .

Particularly, if n = 1 and l1 = h, then G = Lh is the linear chain with h
hexagons.

Corollary 2([5]). PI(Lh) = 24h2.

If n = h − 1, l1 = l2 = · · · = ln = 2 and G has no branched hexagons,
then G is a Fibonacene chain.

Corollary 3([5]). For a Fibonacene chain G with h hexagons,

PI(G) = 25h2 − 3h + 2.

5 Extremal catacondensed hexagonal sys-

tems with respect to the PI index

In this section, we specify the extremal elements in catacondensed hexagonal
systems with respect to the PI index.

Theorem 2. For any catacondensed hexagonal system G with h
hexagons and any full kink catacondensed hexagonal system Fh with h
hexagons,

(i) PI(G) ≤ PI(Fh) with the equality if and only if G is also a full kink
catacondensed hexagonal system;
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(ii) PI(G) ≥ PI(Lh) with the equality if and only if G = Lh.
Proof. (i) Note that Fh consists of h−1 segments of length 2, by Theorem

1, we have

PI(Fh) = 25h2 + (h− 1)− 1− 4(h− 1)2 = 25h2 − 3h + 2.

Let G be a catacondensed hexagonal system consisting of n segments
of lengths l1, l2, · · · , ln, where l1 + l2 + · · · + ln = h + n − 1 and li ≥ 2,
i = 1, 2, · · · , n. Then

PI(G) = 25h2 + n− 1−
n∑

i=1

l2i

by Theorem 1. From Jensen’s Inequality with f(x) = x2 (or Root Mean
Square-Arithmetic Mean Inequality), we have

l21 + l22 + · · ·+ l2n
n

≥ (
l1 + l2 + · · ·+ ln

n
)2,

then

l21 + l22 + · · ·+ l2n ≥
1

n
(h + n− 1)2 = n + (h− 1)2 1

n
+ 2(h− 1).

Let f(n) = n + (h− 1)2 1
n

+ 2(h− 1), 1 ≤ n ≤ h− 1, we have

f(n) ≥ f(h− 1) = 4(h− 1)

since f ′(h− 1) = 0 and f ′′(h− 1) > 0. And

l21 + l22 + · · ·+ l2n ≥ 4(h− 1)

with the equality if and only if n = h− 1 and l1 = l2 = · · · = ln = 2. So,

PI(Fh)− PI(G) = (25h2 − 3h + 2)− (25h2 + n− 1− n∑
i=1

l2i )

=
n∑

i=1
l2i − n− 3h + 3

≥ n∑
i=1

l2i − 4(h− 1) (since n ≤ h− 1)

≥ 0

with the equality if and only if n = h− 1 and l1 = l2 = · · · = ln = 2, i.e., G
is a full kink catacondensed hexagonal system.

(ii) For any positive real numbers x, y ≥ 2, we have (x − 1)(y − 1) ≥ 1,
i.e., xy − (x + y) ≥ 0. If n > 1, then

[l21 + l22 + · · ·+ l2n]− [l21 + · · ·+ l2n−2 + (ln−1 + ln − 1)2]
= 2(ln−1 + ln)− 2ln−1ln − 1 < 0
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and

l21 + l22 + · · ·+ l2n < l21 + · · ·+ l2n−2 + (ln−1 + ln − 1)2

< l21 + · · ·+ l2n−3 + (ln−2 + ln−1 + ln − 2)2

< · · ·
< (l1 + l2 + · · ·+ ln − n + 1)2 = h2.

P I(Lh)− PI(G) = 24h2 − (25h2 + n− 1− n∑
i=1

l2i )

=
n∑

i=1
l2i − h2 − n + 1

≤ n∑
i=1

l2i − h2 (since n ≥ 1)

≤ 0

with the equality if and only if n = 1, i.e., G = Lh.
This result shows that the linear chain Lh is the unique catacondensed

hexagonal system with the minimum PI index, and the full kink catacon-
densed hexagonal systems Fh are the catacondensed hexagonal systems with
the maximum PI index among all the catacondensed hexagonal systems with
h hexagons. Since HCh ⊆ CHSh and the Fibonacene chains are also the full
kink catacondensed hexagonal systems, the linear chain Lh is the unique
hexagonal chain with the minimum PI index, and the Fibonacene chains are
the hexagonal chains with the maximum PI index among all the hexagonal
chains with h hexagons.
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[2] N. Trinajstić, Chemical Graph Theory (2nd revised ed.), CRC Press,
Boca Raton, FL, 1992.

[3] I. Gutman, A formula for the Wiener number of trees and its extension
to graphs containing cycles, Graph Theory Notes New York 27, (1994),
9-15.

[4] P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I.
Gutman and G. Dömötör, The Szeged index and an analogy with
the Wiener index, J. Chem. Inform. Comput. Sci. 35, (1995), 547-550.

[5] P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar
and V. K. Agrawal, Novel PI indices of hexagonal chains, J. Math.
Chem. 29, (2001), 143-150.

- 459 -



[6] P. V. Khadikar, S. Karmarkar and V. K. Agrawal, A novel
PI index and its applications to QSRP/QSAR studies, J. Chem. Inf.
Comput. Sci. 41(4), (2001), 934-949.

[7] A. A. Dobrynin, I. Gutman, S. Klavžar, and P. Žigert,
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