ISSN 0340 - 6253

UPPER BOUNDS FOR ZAGREB INDICES OF CONNECTED GRAPHS¹

Bolian Liu[†] and Ivan Gutman[‡]

[†]Department of Mathematics, South China Normal University Guangzhou 510631, P. R. China e-mail: liubl@scnu.edu.cn

[‡]Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia & Montenegro e-mail: gutman@kg.ac.yu

(Received May 2, 2005)

Abstract

For a (molecular) graph, the first Zagreb index M_1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M_2 is equal to the sum of products of degrees of pairs of adjacent vertices. New upper bounds for M_1 and M_2 of connected graphs are obtained, in terms of the number of vertices, number of edges, and diameter.

INTRODUCTION

Let G = (V, E) be a simple graph with vertex set $V = \{1, 2, ..., n\}$, and edge set E, such that |E| = m. Sometimes we refer to G as an (n, m) graph. For $i, j \in V$, if i is adjacent to j then we write $i \sim j$, otherwise $i \not\sim j$. The degree of the vertex i is denoted by d_i or d(i).

 $^{^1\}mathrm{This}$ work was supported by the NNSF of China (10331020) and the NFS of Guangdong province (04010389).

In what follows D = D(G) and g(G) denote the diameter (the greatest distance between two vertices) and the girth (the size of the smallest cycle), respectively, of G.

For a graph G, the first and the second Zagreb indices, M_1 and M_2 , respectively, are defined as:

$$M_{1} = M_{1}(G) = \sum_{i=1}^{n} d_{i}^{2}$$
$$M_{2} = M_{2}(G) = \sum_{i \sim j} d_{i} d_{j}$$

The Zagreb indices M_1 and M_2 were introduced in [1,2]. They reflect the extent of branching of the underlying molecular structure [1–5]. Their main properties were recently summarized in [6–8]. Also recently, numerous bounds for M_1 and M_2 were obtained [7–15].

In this note, we focus our attention on connected graphs and offer a few new upper bounds for M_1 and M_2 in terms of the number of vertices (n), number of edges (m), and graph diameter (D).

UPPER BOUNDS FOR M_1

Up to now, several upper bounds for M_1 in terms of m and n have been obtained:

Theorem A [9]. $M_1(G) \le m(m+1)$, with equality attained, for example, by $K_{1,n-1}$ and K_3 .

Theorem B [9–11]. $M_1(G) \leq m [2m/(n-1) + n - 2]$, with equality holding if and only if $G \cong K_n$ or $G \cong K_{1,n-1}$ or $G \cong K_1 \cup K_{n-1}$.

Theorem C [12]. $M_1(G) \le n (2m - n + 1)$, with equality holding if only if $G \cong K_n$ or $G \cong K_{1,n-1}$ or $G \cong m K_2$.

Theorem D [12]. Let G be a triangle-free (n, m) graph. Then $M_1(G) \leq mn$.

In this paper we consider connected graphs and first establish the following Lemmas.

Lemma 1. Let G = (V, E) be a connected (n, m) graph with n > 3. Then $M_1(G) = m(m+1)$ if and only if $G \cong K_{1,n-1}$.

Proof. If $M_1(G) = m(m+1)$, then for any $\{i, j\} \in E$

$$d(i) + d(j) = m + 1 . (1)$$

Suppose that the opposite is true and assume that there exists an edge $\{u_1, v_1\} \in E$, such that $d(u_1) + d(v_1) \neq m + 1$. For obvious reasons, for all $\{u, v\} \in E$, it must be $d(u) + d(v) \leq m + 1$. Thus, our assumption is that $d(u_1) + d(v_1) < m + 1$.

If so, then we have

$$\sum_{u \sim v} [d(u) + d(v)] < \sum_{u \sim v} (m+1)$$

i. e.,

$$M_1(G) < m(m+1)$$
, contradiction.

From Eq. (1) we conclude that each edge $\{u, v\}$ of a graph G with n > 3 vertices, satisfying the relation $M_1(G) = m(m+1)$, has exactly an endpoint that is adjacent to m-1 (or n-2) pendent edges. Therefore, $G \cong K_{1,n-1}$. \Box

Lemma 2. If G is a connected (n,m) graph with D = 1, then $M_1(G) = n(n-1)^2$.

Proof. The unique connected *n*-vetrex graph with diameter 1 is the complete graph K_n . Each of its vertices is of degree n - 1. \Box

Lemma 3. Let G = (V, E) be a connected (n, m) graph with girth $g(G) \ge 4$. Then $M_1(G) \le m^2$. Equality holds if and only if $G \cong C_4$.

Proof. Since $g(G) \ge 4$, the graph G must contain an r-membered cycle C_r , $r \ge 4$. For any $\{u, v\} \in E$, $d(u) + d(v) \ne m + 1$, i. e., $d(u) + d(v) \le m$. Then

$$M_1(G) = \sum_{u \sim v} [d(u) + d(v)] \le \sum_{u \sim v} m = m^2$$
.

Assume that $M_1(G) = m^2$. Then d(u) + d(v) = m holds for any $\{u, v\} \in E$. This implies that the only graph with $g(G) \ge 4$ and the property $M_1(G) = m^2$ is C_4 . \Box

Theorem 1. Let G be an (n, m) graph with diameter D. Then

$$\begin{split} M_1(G) &= n(n-1)^2 & \text{if } D = 1 \quad (\text{Lemma } 2) \\ M_1(G) &\leq m^2 - m(D-3) + (D-2) & \text{if } D > 1 \; . \end{split}$$

If D = 2 then equality in (2) holds if only if either $G \cong K_{1,n-1}$ or $G \cong K_3$. If $D \ge 3$ then equality in (2) holds if and only if $G \cong P_{D+1}$ (the path of order D+1).

Proof. We need to consider only the case D(G) > 1. If D(G) > 1 then there exists a path P of length D in G. Let $P = u_0, u_1, u_2, \ldots, u_{D-1}, u_D$, where $u_i \in V(G)$, $i = 1, 2, \ldots, D$. Then

$$d(u_0) + d(u_1) \leq m - (D - 3)$$

$$d(u_i) + d(u_{i+1}) \leq m - (D - 4) \text{ for } i = 1, 2, \dots, D - 2$$

$$d(u_{D-1}) + d(u_D) \leq m - (D - 3).$$

If $V(G) \setminus V(P) \neq \emptyset$, then for any two vertices $u, v \in V(G)$, of which at least one belongs to $V(G) \setminus V(P)$, the condition $d(u) + d(v) \leq m - (D - 3)$ is satisfied. Consequently,

$$\sum_{u \sim v} [d(u) + d(v)] \leq \sum_{u \sim v} [m - (D - 3)] + (D - 2)$$

$$M_1(G) \leq m^2 - (D - 3) m + (D - 2) .$$

Equality in (2) will hold if and only if all the above relations are equalities. It is not difficult to check that for D = 2 this happens if either $G \cong K_{1,n-1}$ or $G \cong K_3$, whereas for $D \ge 3$, if $G \cong P_{D+1}$. \Box

Remark 1. The bound given in Theorem 1 is the best possible in its class. When D = 2, then $M_1 \le m^2 + m$. When D = 3, then $M_1 \le m^2 + 1$. When D = 4, then $M_1 \le m^2 - m + 2$.

Remark 2. If we consider bounds for M_1 in terms of the girth of G, then for $g(G) \leq 3$ (including the case when the graph is acyclic), the bound stated in Theorem 1 is applicable. When $g(G) \geq 4$, then by Lemma 3, $M_1 \leq m^2$.

Remark 3. In fact, the condition $g(G) \ge 4$ in Lemma 3 can be replaced by the condition that G contains an elemental circuit of length at least 4.

UPPER BOUNDS FOR M_2

The following upper bounds for M_2 have been obtained.

Theorem E [13]. Let G be an (n, m) graph. Then

$$M_2(G) \le m \left(\sqrt{2m + \frac{1}{4}} - \frac{1}{2}\right)^2$$

with equality holding if and only if G is the union of a complete graph and isolated vertices.

Theorem F [8]. Let G be an (n, m) graph with minimal vertex degree δ . Then

$$M_2(G) \le 2m^2 - (n-1)m\delta + \frac{1}{2}(\delta - 1)M_1(G)$$
.

Theorem G [11]. Let G be an (n, m) graph and let λ_1 be the greatest Laplacian eigenvalue. Then

$$M_2(G) \le \frac{\lambda_1}{2} M_1(G) \le \frac{n}{2} (2m - n + 1)^{3/2}.$$

By Theorems F, G, and 1, we have:

Theorem 2. Let G be a connected (n, m) graph with diameter D > 1. Then

$$M_2 \leq 2m^2 - (n-1)m\delta + \frac{1}{2}(\delta - 1)[m^2 - m(D-3) + (D-2)]$$

$$M_2 \leq \frac{1}{2}[m^2 - m(D-3) + (D-2)]\sqrt{2m - n + 1}.$$

Examples show that the bounds in Theorem 2 are better than those in Theorems E and G.

In what follows we derive a few relations connecting the second Zagreb index of a graph G and of its complement \overline{G} .

Lemma 4. Let \overline{G} be the complement of the (n,m) graph G. Then

$$M_1(G) - M_1(\overline{G}) = 2(n-1)(m-\overline{m}) \tag{3}$$

where $\overline{m} = \binom{n}{2} - m$ is the number of edges of \overline{G} .

Proof.

$$\begin{split} M_1(G) + M_1(\overline{G}) &= \sum_{i=1}^n d_i^2 + \sum_{i=1}^n (n-1-d_i)^2 \\ &= \sum_{i=1}^n \left[d_i^2 + (n-1)^2 - 2(n-1) \, d_i + d_i^2 \right] \\ &= 2 \sum_{i=1}^n d_i^2 + n(n-1)^2 - 2(n-1) \cdot 2 \, m \\ &= 2 \, M_1(G) + n(n-1)^2 - 4 \, m \, (n-1) \; . \end{split}$$

Simplifying, we arrive at Eq. (3). \Box

Lemma 5. Let the notation be the same as in Lemma 4. Then

$$\frac{1}{2}M_1(G) - (n-1)M_1(\overline{G}) + M_2(G) + M_2(\overline{G}) = 2m^2 - (n-1)^2\overline{m}.$$
 (4)

Proof. Denote by $\overline{d_i}$ the degree of the vertex i in \overline{G} .

$$\begin{split} M_1(G) &= \sum_{i=1}^n d_i^2 = \left(\sum_{i=1}^n d_i\right)^2 - 2\sum_{\substack{i,j \in V \\ i \neq j}} d_i d_j \\ &= 4m^2 - 2\left(\sum_{i \sim j} d_i d_j + \sum_{i \neq j} d_i d_j\right) \\ &= 4m^2 - 2\left[M_2(G) + \sum_{i \neq j} \left(n - 1 - \overline{d_i}\right)\left(n - 1 - \overline{d_j}\right)\right] \\ &= 4m^2 - 2\left[M_2(G) + \sum_{i \neq j} (n - 1)^2 - (n - 1)\sum_{i \neq j} (\overline{d_i} + \overline{d_j}) + \sum_{i \neq j} \overline{d_i} \overline{d_j}\right] \\ &= 4m^2 - 2M_2(G) - 2(n - 1)^2\left[\binom{n}{2} - m\right] + 2(n - 1)M_1(\overline{G}) - 2M_2(\overline{G}) \;. \end{split}$$

Eq. (4) follows. \Box

Combining the identities (3) and (4) we obtain:

$$M_2(G) = 2m^2 - (n-1)^2 (2m - \overline{m}) + \left(n - \frac{3}{2}\right) M_1(G) - M_2(\overline{G})$$

which together with Theorem 1 and the obvious relation $M_2(\overline{G}) \geq \overline{m}$ yields a further upper bound for M_2 :

Theorem 3. Let G be an (n, m) graph, n > 1, with diameter D. Then

$$M_2(G) \leq 2m^2 - (n-1)^2 (2m - \overline{m}) \\ + \frac{1}{2} (2n-3)[m^2 - m(D-3) + (D-2)] - \overline{m}$$

In spite of its neat form, the inequality given in Theorem 3 is significantly weaker than those in Theorem 2. We stated it just because of completeness.

References

- I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* 17 (1972) 535–538.
- [2] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
- [3] A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure–activity correlations, *Topics Curr. Chem.* **114** (1983) 21–55.
- [4] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- [5] I. Gutman, D. Vidović, Two early branching indices and the relation between them, *Theor. Chem. Acc.* 108 (2002) 98–102.
- [6] S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
- [7] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
- [8] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103–112.
- [9] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, *Kragujevac J. Math.* 25 (2003) 31–49.

- [10] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discr. Math. 185 (1998) 245–248.
- [11] J. S. Li, Y. L. Pang, De Caen's inequality and bounds on the largest Laplacian eigenvalus of a graph, *Lin. Algebra Appl.* **328** (2001) 253–163.
- [12] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113–118.
- [13] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998) 225– 233.
- [14] P. Hansen, H. Mélot, I. Gutman, Variable neighborhood search for extremal graphs 12. A note on the variance of bounded degrees in graphs, *MATCH Commun. Math. Comput. Chem.* 54 (2005) 221–232.
- [15] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239.