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Abstract

The first general Zagreb index of a graph G is defined as Mα
1 (G) =

∑
u∈V (G) d(u)α,

where d(u) denotes the degree of the vertex u in G and α is an arbitrary real number

except 0 and 1. A graph is called unicyclic if it is connected and contains a unique

cycle. In this paper, we characterize all unicyclic graphs with the smallest, the second

and third smallest values of the first general Zagreb index. The same is done for

unicyclic graphs with the largest, the second and third largest values of this index.



1 Introduction

The original Zagreb indices, including the first Zagreb index M1 and the second

Zagreb index M2, were introduced 33 years ago [6]. These indices reflect the extent

of branching of the molecular carbon-atom skeleton and can be viewed as molecular

structure-descriptors [1, 11]. Recently, the Zagreb indices and their variants have

been used to study molecular complexity, chirality, ZE-isomerism and heterosystems

etc. The Zagreb indices are also used by various researchers in their QSPR and

QSAR studies. Mathematical properties of the Zagreb indices have also been studied

[3, 4, 10]. The development and use of the Zagreb indices were summarized in [5, 9].

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The

first Zagreb index of G is defined as

M1(G) =
∑

u∈V (G)

d(u)2,

where d(u) denotes the degree of the vertex u in G. In [8], Li and Zheng introduced

the concept of the first general Zagreb index of G as

Mα
1 (G) =

∑

u∈V (G)

d(u)α,

where α is an arbitrary real number except 0 and 1. Li and Zhao [7] characterized all

trees with the first three smallest and largest values of the first general Zagreb index

when α is any integers (including negative integers) or any of the fractions 1
k

for any

nonzero integer k.

A graph is called unicyclic if it is connected and contains a unique cycle. Our aim

in this paper is to consider the problem of determining the extremal values of the

first general Zagreb index of unicyclic graphs for general α, and characterizing the

corresponding extremal graphs.

Let G be a graph. By ∆(G) and δ(G), we denote its maximum degree and

minimum degree respectively, and by ni, we denote the number of vertices of degree

i. If G has ai vertices of degree xi (i = 1, 2, · · · , t), where ∆(G) = x1 > x2 >

· · · > xt = δ(G) and
∑t

i=1 ai = |V (G)|, we define D(G) = [xa1
1 , xa2

2 , · · · , xat
t ]. If

ai = 1, we use xi instead of xai
i for convenience. Usually, a path with end-vertices

u and v is denoted by P [u, v]. If C is a cycle, then a path P is called a C-path if
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|V (C)∩V (P )| = 1. Furthermore, a C-path P is called maximal if it is not a subpath

of any other C-path different from P . For notations and terminology not given here,

we refer to [2, 12].

The structure of this paper is as follows. In Section 2, we provide a lemma which

will be heavily used in the proofs of the main results of this paper. In Section 3,

we characterize all unicyclic graphs with the smallest, the second and third smallest

values of the first general Zagreb index. Similar results for unicyclic graphs with the

largest, the second and third largest values of this index are given in Section 4.

The problem we are concerned with in this paper would be trivial if the graphs

under consideration have fewer than 7 vertices. So in the following, we only consider

unicyclic graphs with at least 7 vertices.

2 A useful lemma

The following lemma will be frequently used in the proofs of the main results of this

paper.

Lemma 1. Let a and b be positive numbers such that a ≥ b+2, and α a real number

other than 0 and 1. Then

(i) aα + bα > (a− 1)α + (b + 1)α if α ∈ (−∞, 0) ∪ (1, +∞);

(ii) aα + bα < (a− 1)α + (b + 1)α if α ∈ (0, 1).

Proof. Let us calculate

aα + bα − [(a− 1)α + (b + 1)α] = [aα − (a− 1)α]− [(b + 1)α − bα]. (1)

Using Lagrange’s mean value theorem, we conclude that there is a number ξ1 ∈
(b, b + 1) such that (b + 1)α − bα = αξα−1

1 , and there is a number ξ2 ∈ (a− 1, a) such

that aα−(a−1)α = αξα−1
2 . Hence expression (1) transforms into α(ξα−1

2 −ξα−1
1 ). Note

that 0 < ξ1 < ξ2. Again, from Lagrange’s mean value theorem, there is a number

ξ ∈ (ξ1, ξ2) such that α(ξα−1
2 − ξα−1

1 ) = α(α − 1)ξα−2(ξ2 − ξ1). Clearly, ξα−2 and

(ξ2− ξ1) are positive. At the same time, α(α−1) is positive if α ∈ (−∞, 0)∪ (1, +∞)

and negative if α ∈ (0, 1). The result follows.
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3 Unicyclic graphs with the first three smallest

values of the first general Zagreb index

Theorem 1. Let G be a unicyclic graph with n ≥ 7 vertices and α a real number

with α ∈ (−∞, 0) ∪ (1, +∞). Then

(i) Mα
1 (G) attains the smallest value if and only if D(G) = [2n];

(ii) Mα
1 (G) attains the second smallest value if and only if D(G) = [3, 2n−2, 1];

(iii) Mα
1 (G) attains the third smallest value if and only if D(G) = [32, 2n−4, 12].

Proof. (i) By contradiction. Suppose Mα
1 (G) attains the smallest value and D(G) 6=

[2n]. Let C = u1u2 · · ·uku1 be the unique cycle in G. Then k < n and there is at

least one vertex ui with d(ui) ≥ 3. Without loss of generality, we assume d(u1) ≥ 3.

Choose a maximal C-path P [u1, v1] in G. Clearly d(v1) = 1. Let G′ = G−u1u2+u2v1.

Then by Lemma 1 (i), we have

Mα
1 (G)−Mα

1 (G′) = [d(u1)
α + d(v1)

α]− [(d(u1)− 1)α + (d(v1) + 1)α] > 0,

i.e., Mα
1 (G) > Mα

1 (G′), a contradiction.

(ii) Suppose Mα
1 (G) attains the second smallest value. Let Gs

1 and Gs
2 be unicyclic

graphs with D(Gs
1) = [2n] and D(Gs

2) = [3, 2n−2, 1].

Claim 1. ∆(G) = 3.

Proof. Let C = u1u2 · · ·uku1 be the unique cycle in G. From (i), we can choose

a maximal C-path, say P [u1, v1]. Set G′ = G − u1u2 + u2v1. By Lemma 1 (i),

we have Mα
1 (G) > Mα

1 (G′). Moreover, if ∆(G) ≥ 4, then ∆(G′) ≥ 3. From (i),

Mα
1 (G′) > Mα

1 (Gs
1). So we have Mα

1 (G) > Mα
1 (G′) > Mα

1 (Gs
1), a contradiction.

Claim 2. n1 = n3 = 1.

Proof. It follows from Claim 1 that n1 + n2 + n3 = n. On the other hand, by the

handshaking lemma, n1 + 2n2 + 3n3 = 2n. So we have n1 = n3. Then D(G) =

[3n3 , 2n−2n3 , 1n3 ].

If n3 ≥ 2, then

Mα
1 (G)−Mα

1 (Gs
2) = [n33

α + (n− 2n3)2
α + n3]− [3α + (n− 2)2α + 1]

= (n3 − 1)(3α + 1− 2 · 2α) > 0,
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i.e., Mα
1 (G) > Mα

1 (Gs
2). At the same time, it is easy to check that Mα

1 (Gs
2) > Mα

1 (Gs
1).

So Mα
1 (G) > Mα

1 (Gs
2) > Mα

1 (Gs
1), a contradiction.

By Claims 1 and 2, and the result in (i), we can easily see that Mα
1 (G) attains

the second smallest value if and only if D(G) = [3, 2n−2, 1].

(iii) Suppose Mα
1 (G) attains the third smallest value. Let Gs

3 be a unicyclic graph

with D(Gs
3) = [32, 2n−4, 12].

Claim 3. ∆(G) = 3.

Proof. By contradiction. Suppose ∆(G) = ∆ ≥ 4 and let C = u1u2 · · ·uku1 be the

cycle in G and γ = n− n1 − n2. We distinguish two cases.

Case 1. γ = 1.

Clearly, the vertex with the maximum degree must lie on C, and n1 = ∆ − 2,

n2 = n−∆ + 1. Then D(G) = [∆, 2n−∆+1, 1∆−2]. By Lemma 1 (i), we have

Mα
1 (G)−Mα

1 (Gs
3)

=[∆α + (n−∆ + 1)2α + ∆− 2]− [2 · 3α + (n− 4)2α + 2]

=(∆α − 3α)− (3α − 2α)− (∆− 4)(2α − 1)

=[(∆α − 3α)− (∆− 3)(2α − 1)]− [(3α − 2α)− (2α − 1)]

=(∆− 3)(∆α−1 + 3∆α−2 + · · ·+ 3α−1 − 2α + 1)− [(3α − 2α)− (2α − 1)]

≥(4− 3)(4α−1 + 3 · 4α−2 + · · ·+ 3α−1 − 2α + 1)− [(3α − 2α)− (2α − 1)]

=[(4α − 3α)− (2α − 1)]− [(3α − 2α)− (2α − 1)]

=(4α − 3α)− (3α − 2α) > 0,

i.e., Mα
1 (G) > Mα

1 (Gs
3). On the other hand, it is easy to check that Mα

1 (Gs
3) >

Mα
1 (Gs

2). Then we have Mα
1 (G) > Mα

1 (Gs
3) > Mα

1 (Gs
2), a contradiction.

Case 2. γ ≥ 2.

Case 2.1. All vertices with degree at least 3 lie on C.

Without loss of generality, assume that d(u1) ≥ 3 and d(ui) = ∆(G) ≥ 4 (i 6= 1).

Choose a maximal C-path P [u1, v1], and set G′ = G−u1u2 +u2v1. Then by Lemma 1
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(i), we have Mα
1 (G) > Mα

1 (G′). Moreover, ∆(G′) = d(ui) ≥ 4. From (ii), Mα
1 (G′) >

Mα
1 (Gs

2). So we have Mα
1 (G) > Mα

1 (G′) > Mα
1 (Gs

2), a contradiction.

Case 2.2. Not all vertices with degree at least 3 lie on C.

Let v be a vertex in V (G) \ V (C) with d(v) ≥ 3. Choose a maximal C-path, say

P [u1, v1] with v ∈ V (P [u1, v1]). Set G1 = G − u1u2 + u2v1. Then by Lemma 1 (i),

Mα
1 (G) > Mα

1 (G1). Clearly, the number of vertices with degrees at least 3 on the

unique cycle in G1 is not less than that of vertices with degree at least 3 on the unique

cycle in G, and the degree of u1 decreases by 1 in this process. If not all vertices with

degree at least 3 lie on the unique cycle of graph G1, repeating the above processes,

we can get a sequence of unicyclic graphs G2, G3, . . . , Gl, such that for each graph Gi

with 2 ≤ i ≤ l− 1, not all vertices with degrees at least 3 lie on its unique cycle, but

all vertices with degree at least 3 of Gl lie on its unique cycle. By Lemma 1 (i), we

have Mα
1 (G) > Mα

1 (G1) > · · · > Mα
1 (Gl).

If l = 1, then G1 has two vertices of degree 3 or a vertex of degree 4. In both

cases, we have Mα
1 (G) > Mα

1 (G1) > Mα
1 (Gs

2) > Mα
1 (Gs

1), a contradiction; If l = 2,

then G2 has a vertex of degree 3. Hence, Mα
1 (G) > Mα

1 (G1) > Mα
1 (G2) > Mα

1 (Gs
1),

a contradiction; If l = 3, then Mα
1 (G) > Mα

1 (G1) > Mα
1 (G2) > Mα

1 (G3), a contradic-

tion.

Claim 4. n1 = n3 = 2.

Proof. From Claim 3, it is easy to see that n1 = n3 and n2 = n − 2n3. Then

D(G) = [3n3 , 2n−2n3 , 1n3 ].

If n3 ≥ 3, then

Mα
1 (G)−Mα

1 (Gs
3) = [n33

α + (n− 2n3)2
α + n3]− [2 · 3α + (n− 4)2α + 2]

= (n3 − 2)(3α + 1− 2 · 2α) > 0,

i.e., Mα
1 (G) > Mα

1 (Gs
3). On the other hand, it is easy to check that Mα

1 (Gs
3) >

Mα
1 (Gs

2). Then we have Mα
1 (G) > Mα

1 (Gs
3) > Mα

1 (Gs
2), a contradiction.

By Claims 3 and 4, and the results in (i) and (ii), we can easily see that Mα
1 (G)

attains the third smallest value if and only if D(G) = [32, 2n−4, 12].

- 432 -



Theorem 2. Let G be a unicyclic graph with n ≥ 7 vertices, α a real number with

α ∈ (0, 1), and g(n) = (n− 2)α − (n− 3)α − (2α − 1)2 . Then

(i) Mα
1 (G) attains the smallest value if and only if D(G) = [n− 1, 22, 1n−3];

(ii) Mα
1 (G) attains the second smallest value if and only if D(G) = [n− 2, 3, 2, 1n−3];

(iii) If g(n) < 0, then Mα
1 (G) attains the third smallest value if and only if D(G) =

[n−2, 23, 1n−4]. If g(n) > 0 and the unique root of the equation g(n) = 0 is n0(α), then

Mα
1 (G) attains the third smallest value if and only if D(G) = [n− 3, 4, 2, 1n−3] when

7 ≤ n < n0(α), D(G) = [n−2, 23, 1n−4] when n > n0(α), and D(G) = [n−3, 4, 2, 1n−3]

or [n− 2, 23, 1n−4] when n = n0(α) in the case n0(α) is an integer.

Proof. (i) Suppose Mα
1 (G) attains the smallest value. Let C = u1u2 · · ·uku1 be the

unique cycle in G.

Claim 1. There is at least one vertex ui ∈ V (C) with d(ui) = ∆(G).

Proof. Assume there is no vertex on C with the maximum degree in G. Choose a

maximal C-path, say P [u1, v1], such that v ∈ V (P [u1, v1]) and d(v) = ∆(G). Set

G′ = G− u1u2 + u2v. Then by Lemma 1 (ii), we have

Mα
1 (G)−Mα

1 (G′) = [d(u1)
α + d(v)α]− [(d(u1)− 1)α + (d(v) + 1)α] > 0,

i.e., Mα
1 (G) > Mα

1 (G′), a contradiction.

Claim 2. |V (C)| = 3.

Proof. Suppose d(u1) = ∆(G). If |V (C)| ≥ 4, set G′ = G − u3u4 + u1u3. Then by

Lemma 1 (ii), we have Mα
1 (G) > Mα

1 (G′), a contradiction.

Claim 3. ∆(G) = n− 1.

Proof. Suppose d(u1) = ∆(G). Obviously, ∆(G) > 2. If ∆(G) ≤ n − 2, then by

Claims 1 and 2, there is at least one vertex v ∈ V (G) with d(v) = 1 and u1v 6∈ E(G).

Denote the neighbor of v by w and set G′ = G − vw + u1v. Then by Lemma 1 (ii),

we have Mα
1 (G) > Mα

1 (G′), a contradiction.

By Claims 2 and 3, we can easily see that Mα
1 (G) attains the smallest value if and

only if D(G) = [n− 1, 22, 1n−3].

- 433 -



(ii) Suppose Mα
1 (G) attains the second smallest value. Let Gs

1 and Gs
2 be unicyclic

graphs with D(Gs
1) = [n − 1, 22, 1n−3] and D(Gs

2) = [n − 2, 3, 2, 1n−3]. It is easy to

check that Mα
1 (Gs

2) > Mα
1 (Gs

1). Let C = u1u2 · · ·uku1 be the unique cycle in G.

Claim 4. There is at least one vertex ui ∈ V (C) with d(ui) = ∆(G).

Proof. Assume there is no vertex on C with the maximum degree in G. Then, choose

a maximal C-path, say P [u1, v1], such that v ∈ V (P [u1, v1]) and d(v) = ∆(G). Set

G′ = G−u1u2+u2v. By Lemma 1 (ii), we have Mα
1 (G) > Mα

1 (G′). Let C ′ be the cycle

in G′. Then |V (C ′)| > |V (C)| ≥ 3, i.e., |V (C ′)| ≥ 4. From (i), Mα
1 (G′) > Mα

1 (Gs
1).

So Mα
1 (G) > Mα

1 (G′) > Mα
1 (Gs

1), a contradiction.

Claim 5. |V (C)| = 3.

Proof. Assume |V (C)| ≥ 4. We distinguish two cases.

Case 1. |V (C)| = 4.

Let C = u1u2u3u4u1 and d(u1) = ∆(G). Then d(u1) ≤ n− 2.

Case 1.1. One of d(u2), d(u3) and d(u4) is greater than 2.

Set G′ = G − u3u4 + u1u3. From Lemma 1 (ii), it is easy to see that Mα
1 (G) >

Mα
1 (G′). Clearly, D(G′) 6= D(Gs

1). Then from (i), we have Mα
1 (G′) > Mα

1 (Gs
1). So

Mα
1 (G) > Mα

1 (G′) > Mα
1 (Gs

1), a contradiction.

Case 1.2. All of d(u2), d(u3) and d(u4) are 2.

If d(u1) = n− 2, then D(G) = [n− 2, 23, 1n−4]. It is easy to check that Mα
1 (G) >

Mα
1 (Gs

2) > Mα
1 (Gs

1), a contradiction. If d(u1) < n − 2, set G′ = G − u3u4 + u1u3.

It follows from Lemma 1 (ii) that Mα
1 (G) > Mα

1 (G′). On the other hand, ∆(G′) ≤
n − 2. From (i), we have Mα

1 (G′) > Mα
1 (Gs

1). So Mα
1 (G) > Mα

1 (G′) > Mα
1 (Gs

1), a

contradiction.

Case 2. |V (C)| ≥ 5.

Set G′ = G− u3u4 + u1u3. It is easy to check that Mα
1 (G) > Mα

1 (G′) > Mα
1 (Gs

1),

a contradiction.

This completes the proof of Claim 5.
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Claim 6. ∆(G) = n− 2.

Proof. From Claims 4 and 5, and (i), ∆(G) ≤ n − 2. If ∆(G) < n − 2, let d(u1) =

∆(G). From |V (C)| = 3, there is one vertex v with d(v) = 1 and u1v 6∈ E(G). Denote

the neighbor of v by w. Set G′ = G−vw+u1v. Then Mα
1 (G) > Mα

1 (G′) and ∆(G′) ≤
n − 2. From (i), we have Mα

1 (G′) > Mα
1 (Gs

1). So Mα
1 (G) > Mα

1 (G′) > Mα
1 (Gs

1), a

contradiction.

Claim 7. n2 = 1.

Proof. From Claims 4, 5 and 6, it is easy to see that n2 ≤ 3. If n2 = 2, then G is not

a unicyclic graph. If n2 = 3, then D(G) = [n − 2, 23, 1n−4]. It is easy to check that

Mα
1 (G) > Mα

1 (Gs
2) > Mα

1 (Gs
1), a contradiction.

By Claims 4, 5, 6 and 7, and the result in (i), we can easily see that Mα
1 (G) attains

the second smallest value if and only if D(G) = [n− 2, 3, 2, 1n−3].

(iii) Suppose Mα
1 (G) attains the third smallest value. Let Gs

2 be the unicyclic

graph with D(Gs
2) = [n − 2, 3, 2, 1n−3], and C = u1u2 · · ·uku1 be the unique cycle

in G. If |V (C)| ≥ 5, suppose d(u1) ≥ d(u5) and set G′ = G − u4u5 + u1u4. Then,

Mα
1 (G) > Mα

1 (G′) and the girth of G′ is 4. From (ii), Mα
1 (G′) > Mα

1 (Gs
2). So

Mα
1 (G) > Mα

1 (G′) > Mα
1 (Gs

2), a contradiction. Thus, we have |V (C)| ≤ 4.

In the following, by Gs1
3 , Gs2

3 and Gs3
3 we denote the unicyclic graphs with D(Gs1

3 ) =

D(Gs2
3 ) = [n − 2, 23, 1n−4] and D(Gs3

3 ) = [n − 3, 4, 2, 1n−3] such that the girth of Gs1
3

is 4 and that of Gs2
3 and Gs3

3 are 3.

Claim 8. If |V (C)| = 4, then G ∼= Gs1
3 .

Proof. If there is no vertex with the maximum degree on C in G, then ∆(G) ≤ n−4.

Choose a maximal C-path, say P [u1, v1], such that v ∈ V (P [u1, v1]) and d(v) = ∆(G).

Set G′ = G − u1u2 + u2v. Then, Mα
1 (G) > Mα

1 (G′) and ∆(G′) ≤ n − 3. From (ii),

Mα
1 (G′) > Mα

1 (Gs
2). So Mα

1 (G) > Mα
1 (G′) > Mα

1 (Gs
2), a contradiction.

If there is at least one vertex ui ∈ V (C) with d(ui) = ∆(G), then, without loss of

generality, assume d(u1) = ∆(G). If G 6∼= Gs1
3 , then d(u1) < n− 2. So there must be

at least one vertex v ∈ V (G) with d(v) = 1 and u1v 6∈ E(G). Denote the neighbor

of v by w and set G′ = G − vw + u1v. Then, Mα
1 (G) > Mα

1 (G′) and the girth of

- 435 -



G′ is still 4. From (ii), Mα
1 (G′) > Mα

1 (Gs
2). So Mα

1 (G) > Mα
1 (G′) > Mα

1 (Gs
2), a

contradiction.

Claim 9. If |V (C)| = 3, then G ∼= Gs2
3 or G ∼= Gs3

3 .

Proof. By contradiction. Suppose that G 6∼= Gs2
3 and G 6∼= Gs3

3 .

If there is no vertex on C with the maximum degree in G, then, choose a maximal

C-path, say P [u1, v1], such that v ∈ V (P [u1, v1]) and d(v) = ∆(G). Set G′ = G −
u1u2 + u2v. Then Mα

1 (G) > Mα
1 (G′) and the girth of G′ is at least 4. From (ii),

Mα
1 (G′) > Mα

1 (Gs
2). So Mα

1 (G) > Mα
1 (G′) > Mα

1 (Gs
2), a contradiction.

If there is at least one vertex on C with the maximum degree in G and ∆(G) ≤ n−
4, then there must be at least one vertex v ∈ V (G) such that d(v) = 1 and u1v 6∈ E(G).

Denote the neighbor of v by w. Set G′ = G − vw + u1v. Then, Mα
1 (G) > Mα

1 (G′)

and ∆(G′) ≤ n− 3. From (ii), Mα
1 (G′) > Mα

1 (Gs
2). So Mα

1 (G) > Mα
1 (G′) > Mα

1 (Gs
2),

a contradiction.

If there is at least one vertex on C with the maximum degree in G and ∆(G) =

n − 3, then, it is easy to see that D(G) = [n − 3, 32, 1n−3], [n − 3, 3, 22, 1n−4], or

[n − 3, 24, 1n−5]. In each case, we can prove that Mα
1 (G) > Mα

1 (Gs3
3 ) > M1(G

s
2) and

Mα
1 (G) > Mα

1 (Gs2
3 ) > M1(G

s
2), a contradiction.

For a given α ∈ (0, 1), let g(n) = Mα
1 (Gs1

3 )−Mα
1 (Gs3

3 ) = Mα
1 (Gs2

3 )−Mα
1 (Gs3

3 ) =

(n− 2)α − (n− 3)α − (2α − 1)2. Then by Lemma 1 (ii), we have

g(n + 1)− g(n)

=[(n− 1)α − (n− 2)α − (2α − 1)2]− [(n− 2)α − (n− 3)α − (2α − 1)2]

=[(n− 1)α − (n− 2)α]− [(n− 2)α − (n− 3)α] < 0,

when n is an integer not less than 7. So g(n) is a strictly decreasing function.

Thus, if g(n) < 0, then Mα
1 (Gs1

3 ) = Mα
1 (Gs2

3 ) < Mα
1 (Gs3

3 ). By Claims 8 and 9,

G ∼= Gs1
3 or Gs2

3 . So we have D(G) = [n − 2, 23, 1n−4]. If g(n) > 0, denote the

unique root of the equation g(n) = 0 by n0(α). When 7 ≤ n < n0(α), Mα
1 (Gs1

3 ) =

Mα
1 (Gs2

3 ) > Mα
1 (Gs3

3 ). It follows from Claims 8 and 9 that D(G) = [n− 3, 4, 2, 1n−3].

When n > n0(α), Mα
1 (Gs1

3 ) = Mα
1 (Gs2

3 ) < Mα
1 (Gs3

3 ). It follows from Claims 8 and 9

that D(G) = [n − 2, 23, 1n−4]. If n0(α) is an integer, then D(G) = [n − 3, 4, 2, 1n−3]

or [n− 2, 23, 1n−4] when n = n0(α).

- 436 -



The result follows from (i) and (ii) immediately.

4 Unicyclic graphs with the first three largest val-

ues of the first general Zagreb index

The following results can be proved with arguments similar to that used in Theorems

1 and 2.

Theorem 3. Let G be a unicyclic graph with n ≥ 7 vertices , α a real number with

α ∈ (−∞, 0) ∪ (1, +∞), and g(n) = (n− 2)α − (n− 3)α − (2α − 1)2. Then

(i) Mα
1 (G) attains the largest value if and only if D(G) = [n− 1, 22, 1n−3];

(ii) Mα
1 (G) attains the second largest value if and only if D(G) = [n− 2, 3, 2, 1n−3];

(iii) If g(n) > 0, then Mα
1 (G) attains the third largest value if and only if D(G) =

[n − 2, 23, 1n−4]. If g(n) < 0 and the unique root of the equation g(n) = 0 is n0(α),

then Mα
1 (G) attains the third largest value if and only if D(G) = [n − 3, 4, 2, 1n−3]

when 7 ≤ n < n0(α), D(G) = [n − 2, 23, 1n−4] when n > n0(α), and and D(G) =

[n− 3, 4, 2, 1n−3] or [n− 2, 23, 1n−4] when n = n0(α) in the case n0(α) is an integer..

Theorem 4. Let G be a unicyclic graph with n ≥ 7 vertices and α a real number

with α ∈ (0, 1). Then

(i) Mα
1 (G) attains the largest value if and only if D(G) = [2n];

(ii) Mα
1 (G) attains the second largest value if and only if D(G) = [3, 2n−2, 1];

(iii) Mα
1 (G) attains the third largest value if and only if D(G) = [32, 2n−4, 12].
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