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Abstract

The Randi¢ index R(G) of a graph G is the sum of the weights (d(u)d(v))~1/? of
all edges uv of G, where d(u) denotes the degree of the vertex u. In this paper, we give
sharp lower bounds of Randi¢ index of unicyclic graphs with n vertices and k pendant
vertices.

1. Introduction

The Randi¢ index of an organic molecule whose molecular graph is G is defined in [19]

as

R(G) =Y (d(u)d(v)) ™"/,

w0
where d(u) denotes the degree of the vertex u of G and the summation goes over all pairs
of adjacent vertices of G. The research background of Randi¢ index together with its
generalization appears in chemistry or mathematical chemistry and can be found in the
literature (see [10, 11]).

Recently, finding bounds for the Randi¢ index or the general Randi¢ index of graphs,

as well as related problem of finding the graphs with maximum or minimum value of the
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corresponding index, attracted the attention of many researchers and many results are
obtained (see [1,3-9,12-18,20-22]). Among these results, Gao and Lu [6] obtained the sharp
bounds on the Randi¢ index of unicyclic graphs; Wu and Zhang [21] gave some results on
the unicyclic graphs with minimum general Randi¢ index, and later Li, Wang and Zhang
[12] completely solve such a minimum problem; Liu, Lu and Tian [16] gave some bounds
on the general Randi¢ index of trees with n vertices and k pendant vertices.

Here, unicyclic graphs with n vertices and k pendant vertices are considered, and the
lower bounds of their Randi¢ index are given.

First we introduce some graph notations used in this paper. We only consider finite,
undirected and simple graphs. Other undefined terminologies and notations may refer to
[2]. For a vertex z of a graph G, we denote the neighborhood and the degree of z by N(z)
and d(z), respectively. The maximum degree of a graph G is denoted by A(G). The star
of order n is denoted by S,,. Let S be a set of vertices of G, we will use G — S to denote
the graph that arises from G by deleting the vertices in S together with their incident
edges. If S = {v}, we write G — v for G — {v}. Unicyclic graphs are connected graphs
with n vertices and n edges. A pendant vertez is a vertex of degree 1. A pendant chain
of a graph G is a sequence of vertices vy, v1, - - -, vs such that vy is a pendant vertex of G,
d(vi) =+ =d(vs—1) = 2 (unless s = 1) and d(vs) > 3. Let %, = {G: G is a unicyclic
graph with n vertices and k pendant vertices}, where 0 < k <n — 3.

Let U} (see Fig. la) be a unicyclic graph with n vertices created from a cycle Cj,_j
of length n — k by attaching k pendant edges to one vertex of C,,_r. Let U(n,k,p) (see
Fig. 1b) be a unicyclic graph of order n obtained from a path P,y = vovy---vp (p > 1)

by attaching & pendant edges to vg and a cycle Cp,_j_, to vy, respectively.

(b)
Fig. 1. (a) U (b) U(n, k,p)

Denote p(n, k) = "’TH + % The main result of this paper is stated in the following
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theorem.

Theorem 1. Let G € % n . Then
R(G) = ¢(n, k) @
and equality in (1) holds if and only if G = U
2. Proof of Theorem 1

We first give some lemmas that will be used in the proof of our result.
z—1+-L
Lemma 1. Let f(z) := z+£—2 and g(z) = \/;‘/5, where © > 2. Then both f(z) —

f(x+1) and g(x — 1) — g(z) are strictly monotone increasing.

Proof. Since )
¢f@) _ %rﬁ"/? [x +3(2— x/i)] <0

—
and
d’g(x) 1 52 V2
=——z r+3(1—— 0
e yid x +3( 5 )| <
as x > 2, Lemma 1 follows. ]
Lemma 2. Forx >2, (i) T/J;%f”;ng@ >0

(ii) g — =222 > 0.

Proof. (i) Let

T+ o 2 —2
()= VB _whV2 V62,
vr+1 Vax+2 2

Then

dh(zx)
dx

3
2

= %[(JC+1)’%_($+2)7% +274\/§(x+1)*%_2*2\/§

1 - 2—2 E 2—/2
= Z<‘5+ 4\[(95-&-1)_%— 2\[

1. 3 2-+v2 3 2—v2
: 4‘f(x+2)*%— 2‘[

3 2-4/2

4

(x+2)"

wlw

(x+2)"
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(z+2)”
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5 (x+2)72
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where ¢ € (z + 1,2 +2). Thus h(z) > h(2) > 0.
(#%) Since /x > 0 and vz + 1 > 0, to prove Lemma 2 (i7), it just needs to check that

v/ > Vr+ 1z — 2+ V?2),
that is,

@ > (x+ 1)@ -2+ V2)%

(3-2v2)z2 +2(V2 — 1)z — (2—V2)? > 0.

Note that the above inequality holds by = > 2, and hence —% 2=26V2 5 ) holds. m
Lemma 3. Let G € U ny, then A(G) <k +2.

Proof. Since G is unicyclic graph, we have |E(G)| = n. Assume that A(G) > k+ 2.
Then

Mm=20E(G)|= Y dv)>2mn-k-1)+k+A>2n—k-1)+k+(k+2)=2n,
veV(G)
a contradiction. Thus A(G) <k + 2. ]
Lemma 4. Let G € % 1. Then

R(G) > ¢(n,1). (2)

Furthermore, the equality in (2) holds if and only if G = U}".

Proof. First we note that if G = U}", then the equality in (2) holds.

Now, we prove that if G € %1, then (2) holds and the equality in (2) holds only if
G = U Since G € %1, by Lemma 3, it is easy to see that G is isomorphic to the graph
obtained from a cycle C}, by attaching a path of length n — p to a vertex of Cp. Then if
G 2 U, we have

R(G) - RUM) =1/V2+1/V6-1/2—-1/V3 > 0.

Thus the lemma follows. n
Proof of Theorem 1. We apply induction on k. For k =0, %, = {Cy,} and so the
theorem holds obviously. By Lemma 4, Theorem 1 holds for £ = 1. So in the following

proof, we assume k > 2.
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Let Vo = {v : v is a pendant vertex of G}, Vi = U,ey, N(v) and Vo = V(G) \ (VoUW1).
Case 1. There exists some u € V; such that |[N(u) \ Vo| > 2.

Let d(u) = t. Then t = [N(u)| > 3 and by Lemma 3, t < k + 2. Denote N(u) NVy =
{v1,--+,v,} and N(u) \ Vo = {@1, -+, 24—} Then t —r = |[N(u) \ V| > 2 and all
d(z;) =d; > 2. Let G’ = G —v1. Then G' € %,—1 j—1. Thus

, T 1 1
R(G) = R(G>+%fﬁ+;‘ﬁl<J m)
— t—r 1 1
> RO+ - f(%’ﬁ)
= R(G’)Jr\/zf\/tfljt(tfr)(\% 1><1t >
> pn-Lk-1)+Vi-—Vi—1+(t—r) <771> 77 t71>
E+vV2—1 k+v2 t4+V2-2 t+v2-
> p(n,k) + G e v \/— )

Let f(z) := “7\‘/2’2 Then, by (3), we have

R(G)

Y

e k) +[f(k+1) = f(k+2)] = [f(t=1) = ()]
o(n, k).

\

The last inequality follows by Lemma 1 as t < k + 2.

In order for the equality to hold, all inequalities in the above argument should be

equalities. Thus we have
R(G')=¢n—-1,k—1), t=k+2, t—r=2 and dy =dy =2.

By the induction hypothesis, G’ = U::ll. Note that U~ 11 has a unique vertex of degree
greater than 2. Hence G = U} and it is easy to check R(U}) = ¢(n, k).

Case 2. For every u € Vq, [N(u) \ Vo| = 1.

Choose a vertex u € Vi. Let d(u) =¢. Then ¢t < k+ 1 since G € U n .- We consider

two subcases.
Subcase 2.1. t =k + 1.

In this subcase, it is not difficult to see that G = U(n, k,p) for some 1 <p <n—k—3.
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If2<p<n-—k—3, by Lemma 2 (), then

E+ L B
R(U(n, k,p)) — ¢(n, k) = %_%p@? 2

0.

If p=1, then
R(U(n,k, 1)) = R(U(n, k,2)) = (% - %) <\/% - %> -

and hence R(U(n, k,1)) > R(U(n, k,2)) > ¢(n, k).

Subcase 2.2. t # k+ 1.

In this subcase, |V1] > 2. Then there exists some v € V; such that |[N(v) N V| < g
Without loss of generality, assume that [N (u) N Vp| < &. Then ¢ = [N(u)| < & + 1.

Denote N(u) N'Vo = {v1,---,ve—1}, N(u) \ Vo = {z1} and d(z1) = di > 2.

If t = 2, then let P = ugu; - --us be a pendant chain with ug = vy, u1 = u, ug = x1,
s> 2and d(us) > 3. Let G' = G — {up,u1,---,us—1} and d(us) = d, then G' € U 511
and d < k + 2 by Lemma 3. Denote N(us) \ {us—1} = {y1,y2, -+, ¥a—1}. Then d(y;) > 2
for each i = 1,2,---,d — 1 (Otherwise, if there exists some ¢ such that d(y;) = 1. If
N(us) "V ={y1,y2,-,Ya—1}, then G is isomorphic to a graph obtained from a star Sy,
and the path P = ugu; - - - us by identify us, the terminus of P, with the central vertex of
Sk, a contradiction to G € %, 1. Then |N(us) N V| < d—2. Hence [N (uy) \ Vo| > 2, again

a contradiction to our assumption in Case 2). Thus

d—1
1 s—2 1 1 1 1
R(G) = R(G)+—+ +—=+ (—f )
@ (@) V22 2d o /d(y) \Vd  Vd-1
d—1
1 s—-2 1 1 1 1
> —sk—1)+—+ — — -
> p(n—s ) 7z 3 20 L d(%)( = d71>
d—1
11 1 1 1
= onk)+—=— =+ —+ ——
ol k) V2 2 V2d o d(y,)< d dfl)
E—14V2 k+V2
VE+1 k42
1 1 1 d—1/(1 1 E—1+v2 k+V2
> KAt =t —— = — + -
= k) V2 o2 2d 2 ( d d—1 k+1 k+2
11 1 E—1+v2 k+V2
= k) +—=—-4+—=(Vd-Vd—1) + ——=—
p(n.k) V2 2 \/5( ) VE+1 k+2
1 1 1 k—1+v2 k+V2
> k) +—=— -+ —= (VE+r2—VE+1)+ -
z elmh) V2 o2 2( ) E+1 k+2
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> p(n,k).

Otherwise, t > 3. Let G” = G — v;. Then G” € %,_1 —1. Thus

o t—1 -2 1 1 1
ne) = me+ 7 - e (G ve)
o t—1 -2 1 /1 1
> m@+ - G (G )
Rt S IS PR BN B
=¥ ’ Vi V=T V2 VE Vi

1 1
k_l_;’_\/i k_;'_\/i t_1+ﬁ7t_2+ﬁ

= e+t - e =
k—1+v2 k+v2 5+t s5-1+
> o(n, k) + — + _
’ YR AN SN
k 1 1
B W(nyk)JrKHﬁ)(ﬁ_l)} (\/k+1_\/k+2>
Lk km2e2
V2 \VE+1 Vi
i 1 k k—24+v2
>“’<"”‘”ﬁ<m’ i )
> ¢(n,k),

where the last and last but third inequalities follow by Lemma 2 (i¢) and Lemma 1, re-

spectively.

The proof of the theorem is complete. u
3. Remarks

It is easy to check that o(n, k) is strictly monotone decreasing in k > 0. Note that the
set of all unicyclic graphs with n vertices is Uz;g U n ;- Then, by Theorem 1, U]}_5 has the
minimum Randi¢ index among unicyclic graphs with n vertices, which is the main result

in [6].
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