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ABSTRACT 
Some properties of fully resonant azulenoids are compared with those of related benzenoid 

and other arenoid structures.  They are not particularly easy to deal with in terms of 

convenient, transparent and concise structural encoding, although, since they all have  a 

multiple of ten vertices, by always numbering vertices in the same way around each azulene, 

an unusually informative connection table may be generated.  On the other hand, certain sub-

classes can be concisely encoded,  most notably  certain toroidal forms that have a constant 

inter-azulene connection pattern,  by matching them to appropriate fully resonant toroidal 

benzenoids used as templates. 

 

 

1. INTRODUCTION 

1.1 Definition 

 

The azulene graph is a pentagon-heptagon pair, with one edge in common, that  can represent 

the bicyclic C10H8 hydrocarbon azulene (Figure 1).   Examples of a fully resonant benzenoid 

and a fully resonant azulenoid are shown in Figure 2.    The defining characteristic of the 

azulenoid is that a set of azulene subgraphs  (referred to hereafter as 'azulenes') can be traced 

in disjoint fashion to account for all the vertices.    In chemical terms the essential notion 



  

used is  a system that can, but need not, be drawn as a set of fully conjugated azulene nuclei  

interconnected by single bonds. 
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(a)                                                (b) 

 

Figure 1. Azulene in its usual representations as a conjugated hydrocarbon (a), and as a 
chemical graph (b).  (The vertex labelling used here differs from normal chemical 
convention.) 
 

 
 

A benzenoid.    A fully resonant benzenoid, where every vertex is part of a 
disjoint benzene (hexagon). 

 

 
 

An azulenoid.                              A fully resonant azulenoid, where every vertex is  
                                                                  part of a disjoint azulene (pentagon-heptagon pair). 
 

Figure 2. Example of a fully resonant benzenoid and a fully resonant azulenoid. 

 

1.2  Some points of comparison with benzenoids 

The networks discussed here can be considered analogous to the well known fully benzenoid 

or fully Clar structures (Figure 2). Many have worked in this area1-11 and on the generalised 

concept of fully arenoid structures.3, 12-18 The references cited here are examples, but 
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represent only a selection of relevant papers.   In the case of both benzenoid and azulenoid 

species of this class,  two  sets of rings or faces may be distinguished: those that constitute 

the defining set of disjoint rings, said to be the full set, and those that do not, the empty set. 

There are, however, some differences to be noted. 

 

(i) Every ring of a fully resonant  benzenoid, whether full or empty,  is a hexagon, but it can 

easily be verified that fully resonant azulenoids that are extensible in two dimensions cannot 

be constructed from pentagon-heptagon pairs alone, and so the azulenoid  networks directly 

analogous to a polyhex or graphitic sheet, namely pentaheptites,19 cannot be fully resonant in 

an azulenoid sense. 

 

(ii) While both benzenoids and azulenoids that are fully resonant have  2-factors consisting of 

a single cycle size (six and ten respectively), the corresponding  2-factor is sufficient to 

define the benzenoid but not the azulenoid case, because of azulene's bridging edge (3-9 in 

Figure 1.)  In fact the fully resonant azulenoids are rather more akin to fully resonant 

naphthalenoid structures.14, 17 

 

(iii)  However, while some fully naphthalenoids are essentially disconnected,  and therefore 

fall into the narrow class suggested by Knop et al.,20  these fully resonant azulenoids do not, 

for the fully conjugated azulene nuclei can be, but are not required to be,  connected to others 

by single bonds. This is illustrated with an example  in Figure 3.   We thus follow the 

(perhaps more widely used) general application of the concept, in which essential 

disconnection is a special case.  In fact we formulate the following conjecture. 

 

Conjecture 1: No fully resonant azulenoid as defined in this paper is essentially disconnected. 

 

(iv) Planar fully resonant azulenoids have a number of elementary mathematical properties 

that are very  similar to those recorded for planar benzenoids in general,21 but  some small 

differences are noted here.   In this context, the number of vertices of degree three is not 

affected by a change of ring size alone, but clearly the number of degree-two vertices is so 

affected.   A correction parameter (∆= ∑ (Ring size – 6) ) is therefore applied to take account 
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of  deviations from six of ring sizes.   The resultant equations, and their application to two 

azulenoid examples, are shown in Table 1.  

 

 
(a)                                           (b) 

 

 
 

(c)                                (d)                             (e) 

 

Figure 3.  An example of where  an  azulenoid  differs from its similarly-structured 
naphthalenoid  counterpart.  The fully naphthalenoid (a) has nine 1-factors (Kekulé 
structures) including (b), but in no case is either of the inter-naphthalene bridging edges 
involved, so that the two naphthalene units are said to be essentially disconnected.21    The 
fully resonant azulenoid (c), however, besides structures of type (d) can also be drawn as (e), 
and therefore is not essentially disconnected. See Conjecture 1. 
 

When computing the value of ∆, the fully resonant azulenes can be ignored, since 

each unit is equivalent  to two hexagons.  It follows that when the empty rings are all 

hexagons, (e.g. Figure 4), this is a special case and requires no adjustment. It can be treated 

as a benzenoid – as if every ring were a hexagon. 

   

1.2 Nomenclature 

Clar and Zander1 introduced the concept of fully benzenoid structures, and since then many 

papers have been written on this and the extended concept of fully arenoid structures, using 

various terminologies.   Here we point out that work reported here originally started16 with 

use of the term 'fully azulenoid', in obvious parallel with 'fully benzenoid'.  Subsequently  

 

- 366 -



  

 

   

 

 

 

 

Parameter 
Equation for 

benzenoids21 

Equation for non-

benzenoids 
Values Σ Values Σ 

∆  

(correction 

parameter) 

 ∑ (Ring size – 6) -2  1  

# vertices, n 4 2 ih n+ −  4 2 iR n+ − + ∆  24+2-4-2 20 28+2-1+1 30 

# edges m 5 1 ih n+ −  5 1 iR n+ − + ∆  30+1-4-2 25 35+1-1+1 36 

# edges m 1n h+ −  1n R+ −  20+6-1 25 30+7-1 36 

# v3 internal in  in  4 4 1 1 

# v3 external 2 2 ih n− −  2 2 iR n− −  12-2-4 6 14-2-1 11 

# v3  (total) 2 2h −  2 2R −  12-2 10 14-2 12 

# v2 

(external) 
2 4 ih n+ −  2 4 iR n+ − + ∆  12+4-4-2 10 14+4-1+1 18 

# edges, 

internal 
1 ih n− +  1 iR n− +  6-1+4 9 7-1+1 7 

#(3,3)-edges, 

external b b  2  4 

# (2,2) edges 6b +  6b + + ∆  2+6-2 6 4+6+1 11 

# (2,3)-edges 4 4 2 2 iR b− − − n n 

 
4 4 2 2 iR b− − −
 

24-4-4-8 8 28-4-8-2 14 

Perimeter 

size 

= v external 

= m external 

4 2 2 ih n+ −  4 2 2 iR n+ − + ∆
 

24+2-8-2 16 28+2-2+1 29 

Table 1. Comparison of some simple relationship formulae for benzenoids21 and non-
benzenoids, with two worked examples for the latter.  Each system has n vertices (ni of them 
internal) and m edges.  Benzenoids have h hexagons, while non-benzenoids have R rings of 
variable size. 
 
however, it seemed better, if somewhat clumsy, to expand the term to  'fully resonant 

azulenoid', to avoid confusion with structures that are merely tilings by (non-disjoint) 

azulenes,18, 19  often called pentaheptites,  but which have sometimes been referred to as 

being fully azulenoid.19   In this context there is a precedent for the term 'resonant' in the 

work of Dias, who has referred to, for example, 'total resonant sextet benzenoid 
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hydrocarbons'.9  Dias also used the term 'azulenoid', (as we did later, for pentaheptite 

structures or fragments).22  In what follows, by default the term 'network', when unqualified, 

means such a fully-resonant-azulenoid network. 

 

1.3 Generation 

Extensive work on programs for generating 3-valent networks in general has been done by 

others; by Brinkmann and Dress23 for example.  For this particular subset, besides systematic 

enumeration of the connection possibilities for very small systems, or  simply drawing by 

trial and error, the author has found two specific methods to be fruitful. These are (i) rotation 

of subgraphs within certain larger subgraphs of a benzenoid network (in the manner of the 

Stone-Wales transformation) and (ii) conversion of an existing fully resonant networks by 

'sliding' rows of azulenes relative to one another.16, 18  Although this involves an element of 

subjective judgement, we know of no currently available method that both is simple to 

visualise, and exhaustive of all possibilities. 

 

1.4 The motivation for this study 

Among benzenoids, the possibility of drawing them as fully resonant structures is associated 

with a tendency to be more stable.  Since azulene is often regarded as being at least to some 

extent aromatic,24, 25 like benzene, this provides one motive for investigating the properties of 

such networks.  A second one stems from the fact that azulene itself has a modest dipole 

moment and some tendency – no more than that  –  to polarise by electron drift from the 

seven to the five membered ring, especially under reacting conditions. This fact is often 

rationalised in simple Hückel terms as an attempt by azulene to reorganise itself into a pair of 

(oppositely charged) aromatic sextets analogous to naphthalene.   It has the obvious, although 

at present only speculative, implication that there might be interesting  features of both the 

chemical and electrical properties of such networks, and of any tubes or fullerene-like objects 

related  to them. 

Such questions are not addressed here, where the objective is merely to explore  some 

elementary connectional and computational properties of this group, and since fully resonant 

azulenoids in general do constitute a well-defined subgroup within the very many 

conceivable polycyclic networks and structures, there seems in any case to be some value in 

attempting to extend their characterization. 
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2 DISCUSSION 

 

2.1 Some properties of fully resonant azulenoid networks 

 

2.1.1 The local environment of an azulene within a fully resonant structure. 

As already implied, these networks are more complicated to characterise than the 

corresponding benzenoid structures, partly because the lower symmetry of azulene (in 

comparison with benzene) results in less degeneracy among possible isomers.  Its periphery 

is not uniform like a hexagon, and  the internal bridging edge of azulene means that vertices 

capable of accepting a connection from another azulene are not all equally spaced around the 

10-membered ring.  Furthermore, in contrast to benzenoids, even planar drawings suffer 

geometrical distortion of some regular polygons. 

The internal area, i.e. the region that is unaffected by the details of any periphery 

present, has only one possible ring pattern in the case of a fully resonant benzenoid.  These 

networks, on the other hand, can have several.  For example, at least eight ways of  forming a 

uniform network containing parallel rows of azulenes that are 'head to tail' are known.18 

 Intuitively, the simplest kind of azulenoid network of this class is where the disjoint 

azulenes are all within what otherwise is a polyhex sheet, and it is apparent that this can be 

drawn in only one way, that has parallel rows of head-to-tail azulenes in alternating 

orientations (Figure 4 and Theorem 1).  Here too, in geometric representations, the hexagons 

can be regular only at the expense of distorting the five and seven membered rings, or vice-

versa. 

 
 

Figure 4. The ring pattern  of what is, arguably, the  simplest type of  fully resonant 
azulenoid. The empty rings are all hexagons. 
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For the purpose of drawing intermediates and building up  such structures in general, 

it is useful at this point to make explicit, four obvious consequences of the definition given 

for a fully resonant azulenoid in Section 1 above: 

(i)  Every connection radiating from one azulene can go only to another azulene. 

(ii) Any vertex that is connected to more than one azulene is forbidden – because it can then 

be incorporated into another azulene only by making two azulenes contiguous.  

(iii) Within the interior of these networks, unless they are to be highly strained and 'artificial', 

each azulene is connected to at least three, preferably at least four, and at most eight other 

azulenes. (By disregarding apparent geometric plausibility altogether, some, but not all, 

could be connected to only two others.)  The upper bound of eight represents the number of 

vertices that are of degree two, and therefore available for connection, within each azulene. 

(iv) The size of an empty ring is at least four, and is formed when an edge between two 

vertices of degree two from each of a pair of azulenes is adjacent, and therefore connected, to 

the other.  It cannot be three whilst keeping the degree of all vertices  to no more than three.  

The upper limit of ring size is indefinite and depends upon the size and shape of the system 

as a whole because, just as a structure that locally is of the benzenoid type may have 'holes' – 

i.e. rings larger than a hexagon (a class generally known as the coronoids26) – so these 

networks also may have large inner rings. See Figure 5 as an example. 

 

  
 

Figure 5.  A planar fully resonant azulenoid centred on an 18-gon.  It is analogous to a 
coronoid. 
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Theorem 1: There is one and only one fully resonant azulenoid pattern where every empty 

ring is a hexagon (see Figure 4). 

 A proof of this may be established pictorially: see Figures 6  and 7.  There are only 

two ways in which two azulenes and one hexagon may be drawn as fully resonant azulenoid; 

namely by connecting  equivalent positions either side of the internal azulene bridge  so that 

the azulene directions either match or oppose. (See Figures 6(a) and 7(a), where such a pair 

of azulenes is also surrounded by hexagons).   

 Consider the matching case first (Figure 6).  Here the pair of azulenes can be 

extended upwards or downwards in the same way, but all attempts to extend the structure to 

the right or the left result in either  forbidden vertex or non-hexagonal ring formation, 

exemplified by 6(b,d, and e).   

 In the opposing case (Figure 7), the initial pair may again be extended upwards or 

downwards. Extension to right or left works, but only by matching each new azulene to the 

direction of its horizontal neighbour. 

 

(a)

(b)

(d)

(e)

(c)

 

(a)

(b)

(d) (e)

(c)

 

Figure 6.  A stacked pair of azulenes of the 
same orientation can be surrounded by 
hexagons, and can be extended indefinitely 
up or down, but horizontal extension does 
not work, for it results in forbidden vertices 
(circled) or non hexagonal rings (shaded). 

Figure7. An opposing pair of azulenes 
can be extended in every direction, 
provided the azulenes in each row all 
have the same orientation. 
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2.1.2  The global environment of an azulene within a fully resonant structure 

 

Because these networks vary in their ring composition (2.1.1) they can be tailored to cover a 

wider variety of surfaces than is the case for benzenoids.  As is well known, benzenoids, 

whether fully resonant or not, can be embedded in, among others, the plane, and the surfaces 

of a cylinder, torus or  Klein bottle, but not the sphere.  A fully resonant azulenoid can be 

embedded on all these and on a  sphere, although not with an all-hexagon empty ring set:  

For example, Figure 8, if duplicated and suitably glued, gives this result..   These, roughly 

hemispheroidal, structures were earlier suggested27 as possible tube cappings.  If the radius of 

the disk shown in Figure 8 is extended by adding concentric rings of azulenes in the same 

manner, the structure remains topologically planar, but in the plane it is highly distorted,18 

and its apparent natural geometry is that of a half capped tube, with rows of azulenes along 

its length, separated by a 4-6-8 pattern of empty rings.  This example also shows a case 

where an azulene has maximum connectivity, in being connected to eight other azulenes.  

Tubular junctions too have been shown to be coverable with such fully resonant networks.28 

 

 
 

Figure 8.  Perspective view of a fully resonant azulenoid cap or hemisphere.  Note that the 
central azulene has two heptagons among the set of eight empty rings that surround it. 
 

 

3. ENCODING, RECOGNITION AND RETRIEVAL  
The structural information being discussed here is connectivity, given in full by the 

adjacency matrix or, more concisely, by a connection table.  This is, however, relatively 

bulky to store, and recovery of the structure from this information, while quite 

straightforward, is,  in general, not particularly easy. 
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3.1 Benzenoids versus fully resonant azulenoids 

At least two groups of benzenoids are straightforward to encode:  conventional planar 

benzenoids can be fully characterised by the boundary code29 (a simple string of digits, each 

within the range 1 – 6),  while toroidal benzenoids require merely a string of three integers 

that defines a notional quadrilateral  assembly of hexagons that can be rolled up and glued to 

form the torus in question.30, 31  Mention should also be made of the beautiful scheme for 

classifying benzenoids – a periodic table – introduced by Dias,32-34 and extended to other 

polycyclic systems.22  Such  schemes encompass, of course,  total resonant sextets.8, 9 

 However, matters are still not entirely straightforward with the networks described 

here, for the reasons outlined earlier.  There is, though, one obvious characteristic of this 

class that  may be used to considerable advantage, namely,  that the azulene graph has ten 

vertices – and ten is the base usually used for human arithmetic.  This means that by a careful 

choice of  labelling, the connection table (representing the adjacency matrix) can be rendered 

considerably more intelligible and informative than is usually the case. 

 

3.2 Procedure for constructing an abbreviated connection table for any fully 
resonant azulenoid 
 

1.   First give numeric  labels to all azulenes in sequence, starting from zero. The 

order is immaterial, although it may be helpful to adopt some consistent procedure whereby  

near neighbours have consecutive numbers as far as possible. 

2.  Taking azulenes in the same sequence, number the vertices of each one 

consecutively around its periphery in a standard manner, say clockwise from a certain 

position (see Figure 1.), but this time starting from one. Thus the first vertex of azulene-zero 

is labelled 1;  the first vertex of azulene-one is 11; that of azulene-two is 21, and so on. 

 3.  Define the inter-azulene connections. 

  

 The procedure is illustrated in Figure 9. The details of step (a) are arbitrary, and show 

the convention we have adopted, but they must in any case be standardised.  In practice, one 

will not implement step (a) explicitly; it is shown here only for clarity.  Having adopted this 

procedure, it is relatively easy to recover structural information from a  connection table that 

is written from such a diagram, because,  given a vertex labelled v we know immediately that 
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the azulene it belongs to is labelled  as the integer division result {(v-1)/10}*, and that the 

relative local position of this vertex on this azulene (now identified by the label a) is (v-10a): 

both are trivial calculations and readily apparent to the eye. 

 Note that we always start numbering from the same local position on the azulene. By 

specifying the direction (clockwise), every position is then unambiguous, but the position 1  

chosen here (it could have been 6) is more obviously unambiguous as a starting point. 

 

 

 
 

Figure 9.  Constructing the connection diagram for a fully resonant azulenoid  that consists 
of four azulenes arranged in the pattern of Figure 4 (where empty rings all hexagons), and 
embedded in the surface of a torus.  A short form of the connection table is shown in Table 2. 
 

 

 

                                                 
* The expression {x} indicates the largest integer that is not greater than x. For example,  {3.8} = 3. 
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The vertices  connected to these  positions of each azulene  number  Azulene 
number 1 2 4 5 6 7 8 10 

0 16 24 22 35 11 37 30 28 

1  34 32 25  27 40 38 

2 36    31    

3         

 

Table 2. An abbreviated form of connection table for the diagram shown in Figure 9. 

 

 Some economies of recorded information may now be effected.   Since every azulene 

is numbered in the same way,  the connections of each azulene within itself  can be 'taken as 

read' and recorded as a general property of the encoding scheme.   For a system of  A 

azulenes, therefore, we record only 8A elements.  In the example of Figure 9, there are four 

azulenes and so 8A=32 elements. A further small economy is now available.  If backward 

connections (i,j where i<j) are ignored, then because all connections outwards from the last 

azulene will be to vertices with a lower valued label, it follows that the last row of Table 2 

will always be empty,  so that a single string of 8(A-1) elements is sufficient, if it is produced 

by concatenating all but the last row (24 elements in the case of Table 2).  

  It is important to remember, as noted above,  that in this scheme the set of azulenes 

includes a member that is labelled zero, but that the vertex numbers run from one; zeros in 

the final encoded string represent null connections – empty places in Table 2.  For a very 

large system it is possible to shorten the string a little further by recording, at each new 

space, not zero, but the number of consecutive empty spaces before the next valid 

connection.  The different significance of this "spacing" number is distinguished by giving it 

a negative value.  The small cost of this operation is to render the length of the stored string 

unpredictable.    However in this, as in all matters of concision mentioned here, the 

advantages and disadvantages are almost entirely about ease of human recognition and 

manipulation.  In these days of abundant and cheap computer memory, physical storage 

space as such  becomes a significant concern only for very large systems.   It is worth 

pointing out that it is well worthwhile to label such structures in the manner described above, 

for its clarity,  whether or not the possible further compaction mentioned is adopted. 
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3.3 A special case: fully resonant toroidal azulenoids where every azulene is 
surrounded by the same pattern of rings, and is connected to no more than six 
other azulenes. 
 

A method for this particular subset of these networks uses fully resonant benzenoids as  

geometric templates for classifying them.   Toroidal benzenoids in general can be both 

characterised and enumerated in terms of strings, each of three integers a,b,d.  (The last one 

is called d for an historical reason: the code actually derives from a four-element 2x2 matrix, 

but this can always be chosen in such a way that of  the four elements a,b,c,d,  c is zero.30) 

 A toroidal benzenoid is fully resonant if the parameters (a x d) and (b + d) are both 

multiples of three,  so that this subgroup of the toroidal benzenoids is also well-defined, with 

one caveat – that the set of full hexagons is not unique until one hexagon is arbitrarily 

defined as full  – although this does not affect the argument used here.  Suppose now that we 

draw an azulene, with a little distortion, and scaled  to fit as tightly  as possible inside each 

full  hexagon of the biperiodic pattern of the torus.   If we now suppress the polyhex grid and  

label the azulenes,  we can  draw one or more sets of  inter-azulene connections, bearing in 

mind that, overall, a drawing must be self-consistent, with no crossings.   The reason for the 

limit of six other azulenes, using this method, is now apparent – a full hexagon is spatially 

surrounded by six other full hexagons in a fully benzenoid sheet. 

 If the pattern is the same for every azulene, then this can be denoted by some 

predefined standard alpha-numeric symbol p, and the complete structure represented by the 

four integer code a,b,d,p.   Furthermore, every possible fully resonant toroidal azulenoid with 

this pattern can then be enumerated. 

 If the orientation of  azulene and/or the inter-azulene pattern  varies throughout the 

structure, then matters are less simple of course, and there may be no escaping the need to 

record detailed  adjacency information as above (3.2).  Even then however, the borrowed 

a,b,d code may still be a useful parameter to record (because it quickly summarises the 

global topology), despite the fact that its information content is, strictly, only a repetition of 

what is implicit within the adjacency matrix. 

 Another caveat to observe is that, as already noted, azulene is less symmetric than a 

hexagon.  Any toroidal benzenoid, defined by a standard  a,b,d code, may have up to six 

alternative forms (numerical values of a,b,d) that represent different precursor quadrilaterals 

excised from a graphite sheet, but which are, by symmetry, all equivalent when made into a 
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torus. When azulenes are superimposed on  full hexagons as described, these equivalences of 

code forms cannot be assumed, and after application of the toroidal benzenoid generator, 

every output value must be checked for novelty. 

 

3.3.1.   An example: toroidal fully resonant azulenoids that  have 180 vertices. 

 

Here there must be 18 (180/10) azulenes.  If each of these is replaced by a hexagon then we 

have 18 x 6 = 108 vertices.   The first requirement therefore is to enumerate toroidal 

polyhexes with 108 vertices (and therefore 54 hexagons) in total.  (There are 21 such 

structures of this size, each with either three or six equivalent forms.31)  As an illustrative 

example, the particular fully resonant toroidal benzenoid 18-6-3 is shown in Figure 10, and 

converted to one of the corresponding azulenoids that conform to this arrangement (Figure 

11). 

 

 

 

 

(a) 

 

 

 

 

(b) 

1 2 3 4 5

6

7 8 9 10 11
12 13 14 15 16 17

1 2 3 4 5

6
12

14

7 8 9 10 11

1213 15 16 17

6
0 0

00

 

 

Figure 10. Using a fully resonant toroidal benzenoid as a template for a fully resonant 
toroidal azulenoid: (a) A section of the biperiodic pattern for torus 18-6-3 is drawn. Then, 
starting from  'hexagon-zero' - arbitrarily selected and defined to be 'full' – only the other full 
hexagons are labelled.  (b) All the full hexagons are converted to azulenes and the polyhex 
grid suppressed. 
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(a) 

 

 

(b) 

 

 

Figure 11.  Converting the  biperiodic pattern of  Figure 10(b) to a connected torus. 
 (a) Here the convention that 'east-west' and 'northeast-southwest' represent the two 
orthogonal directions required for a toroidal embedding is used, and connections for the 
simple 4-6-8 empty ring pattern are added.  (b) The diagram is now rearranged to a less 
artificial and easier to read form.  
 

CONCLUSION 

Although fully resonant azulenoids form a well-defined subset of  structures derived from 3-

valent networks, the variability of azulene orientation, the variety of possible ring sizes and 

their distribution pattern forming the empty set means that they are more complicated to deal 

with than their benzenoid counterparts.  Nevertheless, certain toroidal species can be encoded 

quite simply and, in general, a more informative form of connection table is readily available. 
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