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Abstract 
A quantitative structure-activity relationship (QSAR) study on steroid hormones was 

performed in order to find a relation between some topochemical and electronic parameters 
and two measured activities: hormones binding affinity to the gestagenic receptor and 
corticosteroid binding globulin (CBG). Principal component analysis (PCA) was used for data 
reduction. The loading plot values gave information about descriptors showing significant 
correlation with the biological property. The models revealed the main feature describing the 
binding activity of these compounds is a partial charge-based descriptor, a measure of the 
molecular electronic properties, used within an auto-correlation weighting scheme of 
substituted positions descriptors. The linear regression equations allowed a pertinent 
prediction of the biological activities herein studied. Comparison with literature data shows 
the quality of the proposed models being comparable to the models provided by some more 
sophisticated 3D-based methods. 
 

INTRODUCTION 

Quantitative structure-activity relationship (QSAR) techniques have become 

indispensable in all aspects of research regarding the molecular interpretation of biological 

properties.1 It is obvious that physical, chemical, or biological properties of a compound 

depend on the three-dimensional (3D) arrangement of atoms in the molecule. The ability to 

produce quantitative correlation between 3D structure of molecules and their biological 

activity is important in deciding upon the synthetic ways of bioactive chemicals.2 



Biological activity of steroids varies considerably with seemingly small structural 

changes. This important molecular family presents very challenging features for any 

prediction method, particularly due to the relatively low flexibility of the 

cyclopentanoperhydrophenanthrene skeleton. Due to this reason, many excellent QSAR 

models based on 2D properties, such as topological descriptors, have a quality comparable to 

the models provided by some more complex 3D-based methods.3,4 

 In this paper, we try to identify those aspects of molecular structure that can be 

relevant to a particular biological activity of some steroid derivatives: the receptor-binding 

affinity. 

 

DATA SET 
 

The data set of 31 (androstan) steroids ASs, showing corticosteroid binding globulin 

(CBG) affinity, was taken from the publications by Dunn et al.5 and Mickelson et al.6 This set 

has repeatedly served as a benchmark in evaluating the performance of new QSAR methods. 

The structures used in this work have been carefully checked in order to avoid any further 

propagation of errors. Qualitatively, light substituents, such as oxygen and hydroxyl, at 

position 17 of steroid skeleton, seem to increase the CBG activity7,8 whereas the presence of 

the bulky chain, such as COCH2OH, enhances the activity.6 

A set of testosterone steroids [TSs] comprising of 39 molecules9, tested for the binding 

affinity to gestagenic receptor was also considered. Testosterone derivatives are relatively 

rigid systems with the exception of the side chains in position 17.  

General scaffold of the ASs herein investigated is shown in Figure 1 while the 

description of each molecule with its activity is given in Table 1. 
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Figure 1. Androstan scaffold 
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Table 1. Androstan derivatives ASs: 

 Compound logPi obs   Compound logPi obs 
1 aldosterone 6.279  17 pregnenolone 5.255 
2 androstanediol 5.000  18 17-hydroxypregnenolone 5.000 
3 androstenediol 5.000  19 progesterone 7.380 
4 androstenedione 5.763  20 17-hydroxyprogesterone 7.740 
5 androsterone 5.613  21 testosterone 6.724 
6 corticosterone 7.881  22 prednisolone 7.512 
7 cortisol 7.881  23 cortisol 21-acetate 7.553 
8 cortisone 6.892  24 4-pregnene-3,11,20-trione 6.779 
9 dehydroepiandrosterone 5.000  25 epicorticosterone 7.200 

10 deoxycorticosterone 7.653  26 19-nortestosterone 6.144 
11 deoxycortisol 7.881  27 16R,17-dihydroxy-4-pregnene-3,20-dione 6.247 
12 dihydrotestosterone 5.919  28 16-methyl-4-pregnene-3,20-dione 7.120 
13 estradiol 5.000  29 19-norprogesterone 6.817 

14 estriol 5.000  30 11β,17,21-trihydroxy-2R-methyl-4-pregnene-
3,20-dione 7.688 

15 estrone 5.000  31 11β,17,21-trihydroxy-2R-methyl-9R-fluoro-
4-pregnene-3,20-dione 5.797 

16 etiocholanolone 5.255     
  

General structures of the TS set are presented in Figure 2. Among the 39 molecules 

(Table 1), 27 are 4-androsten-3-one derivatives (Figure 2a), 4 are 5αH-androstan-3-one 

derivatives (Figure 2b) and 8 are 4,9-androstadien-3-one derivatives (Figure 2c). 
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Figure 2. General structures of the testosterone derivatives TS set 

 

The description of each TS molecule, along with the corresponding activity, is given in 

Table 2. 
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Table 2. Testosterone derivatives TSs: 

 Compound logAi obs   Compound logAi obs 

1 18-Me-NE1 2.55  20 18-Me-NT1 1.53 

2 11=CH2-18-Me-NE1 2.54  21 18-Me3 1.42 

3 11=CH2,17α-CCH-NT1 2.48  22 7α-Me-NT1 1.34 

4 7α,17α-diMe-NT1 2.33  23 3-deoxi-17α-Me-NT1 1.3 

5 11β-Cl-NE1 2.32  24 E1 1.28 

6 7α,17α-diMe3 2.3  25 17α-CCH-19-nor2 1.23 

7 NE1 2.19  26 9Δ-testosterone3 1.23 

8 11β-Me,17α-CCH-18-Me-NT1 2.18  27 3-deoxi-11=CH2-18-Me-NE1 1.20 

9 17α-Me-NT1 2.00  28 17α-CCH18-Et3 1.04 

10 11=CH2,17α-CCH-18Me-19-nor2 1.99  29 3-deoxi-7-Meα-NE1 0.95 

11 17α-CH2Cl-NT1 1.93  30 3-deoxi-NE1 0.85 

12 17α-Et-NT1 1.89  31 NT1 0.78 

13 18-Et-NE1 1.86  32 17α-CCH2 0.70 

14 17α-Me3 1.85  33 18-Et3 0.66 

15 17α-Pr-18-norT1 1.83  34 18-Et-NT1 0.65 

16 17α-CCH-18-Me3 1.83  35 4-Cl-17α-Me-T1 0.11 

17 17α-CH=CH2-NT1 1.81  36 Testosterone1 -0.22 

18 17αCH2CMeCHMe=CH2-NT1 1.68  37 5Hα-Testosterone2 -0.30 

19 17α-CCH3 1.62  38 17α-CH2CN-T1 -0.52 

    39 4-Cl-11β-OH-17α-Me-T1 -1.00 
1testosteone derivatives (Figure 2a) 
25Hα-testosterone derivatives (Figure 2b) 
39Δ-testosterone derivatives (Figure 2c) 

NE – norethysterone (ethysterone outof C19), E – ethysterone (17α-ethynil-17β-hydroxy-4androsten-

3-one), NT – nortestosterone (testosterone outof C19) 

 

 

CALCULATION OF MOLECULAR DESCRIPTORS 
 

Most of the applications of molecular descriptors have been dedicated to QSAR studies 

because of the great importance for biology of the structure-activity relationship.10 The 

computation of such descriptors is accessible by using available software products. The 

complete set of molecular descriptors used in this study (some of them will be defined below), 

was calculated by TOPOCLUJ11 (electronic descriptors – partial charges) and by Dragon12 
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software packages. The structures were optimized by using the semiempirical PM3 

Hamiltonian, available in HyperChem.13 

The subset of electronic parameters includes molecular descriptors derived on atomic 

partial charges. Within TOPOCLUJ program, the partial charges Chi are calculated as 

follows:11 
2

, )/(1
, )/log( jid

ijji SSCh =         (1) 

∑= j jii chCh ,          (2) 

In the above, Si, Sj represent the Sanderson group electronegativities calculated for the 

hydride groups (i.e., the heavy atoms with their surrounding hydrogen atoms) in the molecule 

while dij is the Euclidean distance separating atoms i and j in a minimal energy optimized 

chemical structure (HyperChem).13 Chi,j is the perturbation of the electronegativity of atom i 

produced by any j atom in molecule while Chi is the resultant of these perturbations over the 

atom i. For other topological partial charge calculations see refs.14, 15 

Any steroid compound can be described by these partial charges that characterize both 

the substituted/unsubstituted positions and the heteroatom (oxygen). On this ground, a 

flexible global descriptor (CD) can be defined as an additive function of autocorrelation 

weights16, 17 of the partial charges corresponding to considered atoms j: 

j jj
CD c Ch= ⋅∑          (3) 

where cj is the regression coefficient (i.e., the correlation weight) as given by the 

multivariate regression log(Aiobs) = f(Chj). These “ad-hoc” weightings depend on the set of 

molecules under consideration and the used local descriptors, as well. Partial charges (Chj) 

were calculated for the following positions of the scaffolds: 3, 10, 11, 13, 17, 18, 19 (Figure 

1) and 3, 4, 7, 10, 11, 13, 17, 19, 20, 21 (Figure 2). 

Dragon 2.1 software was used to calculate a total of 1600 molecular descriptors, for 

all the studied compounds. The most relevant of these descriptors, in our studies, were: radial 

distribution functions (RDF), autocorrelation indices and geometrical descriptors. 

Descriptors belonging to the class of radial distribution function18 are based on the 

distance distribution in the geometrical representation of the molecule. In addition to 

interatomic distances in the entire molecule, the RDF provides valuable information about 

bond distances, ring types, planar and non-planar systems, atom types and other important 

structural motifs. By using different weighting schemes, which include atom types, 
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electronegativity, atomic mass (RDF090m) or van der Waals radii, RDF can be adjusted to 

give rise to important descriptors in deriving an appropriate QSAR. 

The next group of descriptors is based on 2-dimensional autocorrelation functions 

applied to a molecular graph. Such descriptors express a correlation between numerical values, 

which can be statistically weighted using various atomic properties, at intervals equal to the 

given lag value.19 For example, MATS1p-Moran autocorrelation - lag 1 / weighted by atomic 

polarizabilities; MATS4e-Moran autocorrelation - lag 4 / weighted by atomic Sanderson 

electronegativities.12 Application of the Sanderson electronegativities as weighting 

coefficients, takes into account, in some degree, charge distribution inside a molecule. 

The geometrical descriptors indicate the size of molecules; they are derived from the 

three-dimensional coordinates of the atomic nuclei, the atomic masses and/ or the atomic radii 

in the molecule. A descriptor of this kind, used in our models, is L/Bw - length-to-breadth 

ratio by WHIM.12 

 
DATA ANALYSIS 

 
Due to the high complexity of interactions between the receptor molecule and 

potential inhibitor molecules, it is quite difficult to model TSs and ASs using simple linear 

regression models.  

Principal components analysis PCA is a very powerful statistical technique useful to 

reduce the noise of the data set and to eliminate uncorrelated variables. Loading factors can be 

used to evaluate the relevant descriptors (i.e., those contributing highly to the data variance). 

A high loading value indicates that the principal component (PC) is aligned in a direction 

close to the original descriptor response. Each PC can be examined to determine which 

descriptors contribute significantly to that PC. Additionally, the relation of the descriptors to 

each other can be explored. Loading plots or tables can be used to determine which 

descriptors provide unique information and which ones give similar information. 

From 1600 descriptors we obtained 20 (in TSs) and respectively 14 (in ASs) PCs, 

which account for 98% of the variance. From these selected PCs, we have chosen 3 factors 

(for each PC), with the greatest loadings, as independent variables. Thus, we drastically 

reduced the descriptor space, with two orders of magnitude (from 1600 to 60 descriptors for 

TS set and from 1600 to 42 descriptors for AS set).  
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The tried models were either simple, monovariate, linear ones, assuming that X and Y 

are linked in a dependence of the form:  

XbbY ⋅+ 10=          (4) 

or multiple linear regression models, as: 

ij

p

j
ji XbbY ⋅+ ∑

=1
0=          (5) 

where Yi is the dependent variable, Xij are the predictor values ( pj 1,= , where p < n, n being 

the number of experiments Y1, Y2,...., Yn), bj are the regression coefficients and b0 is a constant. 

The quality of the models was estimated by: the Pearson correlation coefficient (r), the 

standard error of estimate (s), the Fischer ratio (F) and the coefficient of variance20 (CV%). 

The regression equations were derived by using the STATISTICA 6.0 software package.21 

The QSAR analysis followed the steps: (1) structure optimization; (2) calculation of 

molecular descriptors; (2a) multivariate regression, to find the autocorrelation coefficients; (3) 

Splitting the data set into a training set (for the regression calibration) and a predicting set (for 

the model validation); (4) principal component analysis (PCA); (5) finding a regression 

function for the model; (6) testing the predictive capability of the model; (7) interpretation of 

the model.  

 The step (2a) was described by eq. (3) and the sentence above. In the step (3) selection 

was performed randomly to ensure a great structural diversity within sets. 

The step (5) starts with a monovariate regression, for which the best found descriptor 

was CD, which explains 93.4% (in TS set) and 89.1% (in AS set), see Table 3. It is obvious 

that the main contribution in explaining the receptor binding affinity is due to the partial 

charge descriptor (CD). Leave-one-out analysis 22, 23 was performed on all subsets in view of 

finding the outliers (if any). Points which do not fall within any specified error limits are 

considered outliers (standard residual >2×s).  

In both monovariate and bivariate regression (Table 3) compounds 1 (in TSs) and 13 

(in ASs) appear to be outliers. These compounds were not included in further analysis. With 

these outliers removed, we observed a somewhat improved correlation with the same 

descriptors.  
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Table 3. Models used and results of cross-validation procedure. 
Data 
sets 

Number of 
observations 

(n) 

Model 
 

Correlation 
coefficient (r2) 
(before LOO) 

Outlier 
structure 

Correlation 
coefficient (r2) 

(after LOO) 
log(Aicalc) = f(CD) 0.934 1 0.945 TS 39 log(Aicalc) = f(CD, JGI9) 0.947 1 0.956 
log(Picalc) = f(CD) 0.891 13 0.920 AS 31 log(Picalc) = f(CD, L/Bw ) 0.931 13 0.939 

  

 A trivariate regression gave similar results, but no essential improvement of statistics 

could be noticed.  

 

The results will be further presented on each class of compounds. 

 

 

1. TS - SET 

In view of developing the model, we split the TS set into training (n = 26) and prediction 

(validation) set (n = 12), Table 4. 

 

(A) TRAINING SET (N = 26) 

The electronic descriptor CD, actually CDP, was calculated de nuovo on the training 

set according to eq 3. This is because the correlating weights cj fit only for a selected property 

and a given set (in this case, the training set of 26 structures). Table 4 shows the relevant 

descriptors.  

 

The best models for the set TS are: 

Monovariate regression: 

 log Aicalc = 1.913 + 0.999·CDPi  (6) 

n = 26 R2 = 0.903 s = 0.062 F = 274.46 

Bivariate regression: 

log Aicalc = 1.132 + 0.936·CDPi + 50.428 JGI9i       (7) 

n = 26 R2 = 0.934 s = 0.16 F = 152.02 

Multiple regressions: 

log Aicalc = 1.5061 + 106.72·JGI9i – 6.211·MATS4ei – 16.929·MATS1pi + 0.787·CDPi (8) 
n = 26 R2 = 0.966 s = 0.18 F = 148.89 
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Table 4. Topological descriptors and observed activity for the TS set. 
Structure  JGI9 MATS4e MATS1p CDP log A obs 

Training set 
1 0.018 -0.099 0.108 -0.090 2.55 
2 0.018 -0.092 0.103 0.462 2.54 
3 0.015 -0.102 0.107 0.540 2.48 
4 0.019 -0.08 0.114 0.340 2.33 
5 0.015 -0.086 0.1 0.156 2.32 
7 0.015 -0.109 0.113 -0.029 2.19 
8 0.018 -0.088 0.103 0.006 2.18 
9 0.019 -0.088 0.119 0.079 2 

11 0.015 -0.078 0.106 0.058 1.93 
12 0.015 -0.125 0.114 0.082 1.89 
13 0.015 -0.09 0.103 0.041 1.86 
15 0.018 -0.126 0.107 -0.011 1.83 
17 0.015 -0.117 0.113 0.025 1.81 
18 0.014 -0.08 0.096 -0.095 1.68 
20 0.019 -0.076 0.119 -0.808 1.53 
22 0.015 -0.074 0.119 -0.461 1.34 
23 0.016 -0.135 0.119 -1.051 1.3 
24 0.015 -0.109 0.113 -0.225 1.28 
27 0.011 -0.123 0.103 -0.535 1.2 
9 0.01 -0.144 0.108 -0.834 0.95 

30 0.01 -0.159 0.113 -1.119 0.85 
31 0.015 -0.083 0.125 -0.852 0.78 
34 0.015 -0.068 0.114 -0.865 0.65 
35 0.014 -0.088 0.101 -2.185 0.11 
36 0.015 -0.087 0.119 -2.636 -0.22 
38 0.012 -0.037 0.108 -2.053 -0.52 
39 0.014 -0.057 0.128 -2.623 -1 

Validation set 
6 0.019 -0.097 0.113 0.423 2.3 

10 0.018 -0.089 0.103 0.411 1.99 
14 0.019 -0.11 0.119 0.142 1.85 
16 0.014 -0.068 0.109 -0.082 1.83 
19 0.015 -0.138 0.112 0.076 1.62 
21 0.019 -0.1 0.119 -0.721 1.42 
25 0.015 -0.108 0.125 -0.069 1.23 
26 0.015 -0.105 0.113 -0.620 1.23 
28 0.015 -0.115 0.103 -0.067 1.04 
32 0.015 -0.105 0.108 -1.792 0.7 
33 0.015 -0.089 0.113 -0.784 0.66 
37 0.015 -0.084 0.12 -2.438 -0.3 

 

 

(B) PREDICTION SET (N = 12) 
 

Any QSAR model must be validated on an external predicting set. The calculation of 

CDP in the predicting set used the actual partial charges and the '
jc  parameters priory 
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generated for the training set (see Table 5). We assume the biological activity in the 

predicting set is unknown.  

 

Table 5. TS predicting set (n = 12) 
Structure log Aiobs log Aicalc 

(eq 6) 
log Aicalc 

(eq 7) 
log Aicalc 

(eq 8) 
6 2.300 2.327 2.486 2.538 

10 1.990 2.315 2.423 2.418 
14 1.850 2.050 2.223 2.340 
16 1.830 1.830 1.963 2.154 
19 1.620 1.985 1.957 2.103 
21 1.420 1.200 1.417 1.556 
25 1.230 1.842 1.821 1.415 
26 1.230 1.299 1.306 1.805 
28 1.040 1.844 1.823 1.875 
32 0.700 0.146 0.211 0.651 
33 0.660 0.990 1.153 1.169 
37 -0.300 -0.490 -0.392 -0.218 
R2  0.82 0.86 0.91 

CV%  17.98 17.14 15.057 
 

In the validation set, the results are in agreement with those in training set, the best 

prediction being obtained from the model by eq.8  

Plots of calculated versus observed values are shown in Figure 3 a-c: (a) calculated cf. 

eq.6 (b) calculated cf. eq.7 and (c) calculated cf. eq.8.  
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a b c 

(a) log (Aiobs) = 0.22687 + 0.74101 × log (Aicalc); R = 0.90769. 

(b) log (Aiobs) = 0.13087 + 0.75976 × log (Aicalc); R = 0.92747. 

(c) log (Aiobs) = -0.0930 + 0.84245 × log (Aicalc); R = 0.95477. 

 
Figure 3. The plots of experimental vs. calculated values for the receptor binding affinity of 
TSs. 
 

For the second set (AS) we used the same algorithm as for the TS set. 
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2. AS - SET 

We split the AS set in training (n = 20) and predicting set (n = 11), as shown in Table 6. 

 

(A) TRAINING SET (N = 20) 
 

Table 6. Topological descriptors and observed partition coefficient log P for the AS set. 
Structure L/Bw RDF090m CDP log P obs. 

Training test 
1 7.3 3.17 -1.722 5 
2 6.5 3.127 -2.101 5 
4 6.5 3.505 -2.062 5 
5 6.9 1.755 -2.456 5 
7 6.3 2.803 -2.188 5 
8 4.3 0.191 -1.950 5.255 
9 7.1 1.91 -2.087 5.255 
12 7 4.01 -0.880 5.797 
13 6.1 3.497 -0.187 5.919 
14 7.2 0.61 -1.212 6.144 
17 6.9 2.729 -0.336 6.724 
18 6 3.288 0.492 6.779 
20 7.1 3.976 -0.243 6.892 
22 6.6 2.525 -0.046 7.2 
23 7.1 0.942 0.085 7.38 
25 9.5 1.704 0.205 7.553 
26 9.1 0.673 0.006 7.653 
28 7.8 1.122 0.317 7.74 
29 8.7 2.31 0.040 7.881 
30 9 1.077 0.309 7.881 

Validation set 
3 6.7 2.669 -2.350 5 
6 6.6 0.811 -2.117 5 
10 6.3 1.338 -2.184 5.613 
11 6.2 1.272 -0.479 5.763 
15 6.9 1.986 0.400 6.247 
16 6.4 1.759 -0.716 6.279 
19 9.1 0.406 -0.810 6.817 
21 6.9 2.014 0.046 7.12 
24 5.9 2.777 0.110 7.512 
27 6.9 3.512 0.675 7.688 
31 8.7 1.423 0.225 7.881 

 

The best models for the training set (AS-set) 
 

Monovariate regression: 
log Picalc = 7.236 + 1.033 CDPi        (9) 

n = 20 R2 = 0.903 s = 0.10 F = 159.99 

Bivariate regression: 

log Picalc = 5.737 + 0.914 CDPi + 0.194 L/Bwi      (10) 

n = 20 R2 = 0.931 s = 0.31 F = 114.12 
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Multiple regressions: 

log Picalc = 6.268 + 0.17 L/Bwi – 0.166 RDF090mi + 0.904 CDPi     (11) 

n = 20 R2 = 0.962 s = 0.24 F = 129.73 

 

(B) PREDICTION SET (N = 11) 

Table 7. AS predicting set (n = 11) 
Structure log Piobs 

 
log Picalc 

(eq.9) 
log Picalc 

(eq.10) 
log Picalc 

(eq.11) 
3 5.000 4.808 4.890 4.836 
6 5.000 5.049 5.083 5.339 
10 5.613 4.980 4.964 5.140 
11 5.763 6.741 6.504 6.676 
15 6.247 7.650 7.444 7.472 
16 6.279 6.496 6.326 6.415 
19 6.817 6.400 6.765 7.015 
21 7.120 7.284 7.121 7.147 
24 7.512 7.350 6.984 6.907 
27 7.688 7.934 7.696 7.466 
31 7.881 7.468 7.633 7.713 
R2   0.716 0.766 0.728 

CV%   7.089 5.010 6.586 
 

For the TS set, the variance percentage CV%, in prediction, decreases with increasing 

the number of variables (Table 5, eq 8), for the AS set the predicting ability seems to be better 

in bivariate regression (Table 7, eq 10). 

Figures 4 a-c display the plot of experimental vs. calculated values for the receptor 

binding affinity of ASs: (a) calculated values cf. eq.9; (b) calculated values cf. eq.10 and (c) 

calculated values cf. eq.11. 
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a b c 
(a) log (Piobs) = 1.3932 + 0.77043 × log (Picalc); R = 0.84636; 

(b) log (Piobs) = 0.90106 + .85433 × log (Picalc);R = 0.87565;  
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Figure 4. The plot of experimental vs. calculated values for the receptor binding affinity of 
ASs. 
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CONCLUSIONS 
 

In order to explain the contribution of each substituent position to the receptor binding 

affinity of TSs and ASs we generated a simple electronic descriptor CD, based on atomic 

partial charges, ad-hoc correlated with the studied property.  

The QSAR models of this study indicate that this global descriptor is the most 

significant one in predicting the activities of our compounds. It can indicate the most 

important substituent positions. Thus, CD calculated for the atoms in positions above-

mentioned, without the substituents in position 17 of the steroid skeleton, accounts for 25% of 

the variance (of CBG activity in AS set) while including position 17 this raised up to 89%. 

Similarly, CD calculated without the substituent in position 19 (TS set, hormones binding 

affinity to the gestagenic receptor) explains about 81% of the variance while it raised up to 

92%, after including the substituent in that position. These results confirm the previous 

qualitative conclusions. 

Both models have been validated on external prediction sets. The models derived for 

the molecular activity/property, by CD and the descriptors obtained from the factor loadings 

of PC, are comparable with those reported in literature,4,6,8,24-26 with good predictive ability. 

Noticeable is the fact that, simple 2D models, like those herein developed, are comparable to 

the models provided by some more complex 3D-based methods (CoMFA, COMSA, GRIND, 

EEVA, etc), requiring much more computational resources. 
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