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Abstract 

 

A feed-forward artificial neural network (ANN) model was used to predict the programmed-

temperature retention indices RIs in the Lee index scale of polycyclic aromatic hydrocarbons 

(PAHs). The data used in this paper include 96 RIs in Lee index scale of 48 parent and 

alkylated PAHs obtained on SE-52 and DB-5 slightly polar stationary phases with three 

different temperature programmes. Four parameters: boiling point, molecular weight, 

connectivity index and F-number were used as input parameters. The data containing 96 RIs 
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were randomly divided into three sets: a training set (including 32 RIs obtained on SE-52 

stationary phase), a validation set (including 16 RIs for the same SE-52 phase) and testing sets 

(including 48 RIs obtained on DB-5 stationary phase and with two different temperature 

programme, 30 at one and 18 RIs at the other programmes, respectively). The structures of 

networks and the number of learning epochs were optimized. The best network structure is 4-

6-1. The optimum number of learning epoch is 1000. The results obtained in this study 

showed that the average percentage deviation between the predicted ANN values and the 

experimental values of Lee retention indices for the validation and two testing sets were 

1.42% on the SE-52 and 1.32 and 1.43% on the DB-5 stationary phases, respectively. The 

result illustrated that the prediction performance of ANN in the field of investigating the 

programmed-temperature retention behavior of polycyclic aromatic hydrocarbons is very 

satisfactory. 

 

Introduction 

 

Polycyclic aromatic hydrocarbons (PAHs) represent a very important group of chemical 

carcinogens, which identification makes possible determination of the environmental 

pollution level [1, 2], and as well as evaluation and control of the overall public health hazard. 

In some cases programmed-temperature gas-chromatography (GC) may be the sole means of 

identification based on direct comparison of retention times with standards or precise 

knowledge of retention indices (RI values). Among presentations of gas-chromatographic data 

for PAHs, the programmed-temperature retention index [3] in Lee index scale [4, 5] based on 

PAH internal standards (naphthalene, phenanthrene, chrysene, picene) is preferred because of 

its much better reproducibility. 
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PAHs retention indices are calculated by a linear relationship suggested by van Den Dool and 

Kratz [3] for linear-temperature programmed GC: 

RI=100 z100
TT

TT

)Cz(R)1Cz(R

)Cz(R)cetans(supR ⋅+
−

−
⋅
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where )cetansubs(RT  is the retention time or elution temperature of the substance for which 

the retention index is to be determined, )C(R z
T  and )C(R 1z

T
+

 are retention times or elution 

temperatures for the PAH internal standards of interest, and z is the number of rings in the 

PAH standard that elutes prior to the substance of interest. 

Retention is a phenomenon that is primary dependent on the interactions between solute and 

the stationary phase molecules. The kind of interaction depends on the structure and 

properties of the stationary phase and the solute molecules. The retention index of a solute is 

an important parameter in the study of the quantitative structure-retention relationships 

(QSRRs). Typically, either empirical physico-chemical parameters or non-empirical structural 

descriptor parameters have been used in order to obtain quantitative or semi-quantitative 

relationships which allow the prediction of the retention behavior of an individual solute of a 

given class. The QSRRs are often expressed in the form of a linear equation whose 

independent variables are the empirical physico-chemical or non-empirical structural 

descriptor parameters and whose depend variable is a retention index. The equation is 

obtained by performing a multivariate linear regression on data for compounds of a given 

class on a given stationary phase. A number of theoretical and empirical models which predict 

the retention data of solutes have been published [6-8]. 

Artificial neural networks (ANN) have been found to be powerful tools in chemistry and have 

been applied to wide variety of chemical problems. A comprehensive review of ANN and its 

application in chemistry is given by Zupan and Gasteiger [9]. 
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Prediction of gas chromatographic retention index data by neural networks has been carried 

for different class of compounds: alkanes, alkenes, alcohols, esters, ketones and ethers by Yan 

et al. [10], alkylbenzenes by Zhang et al. [11], noncyclic and monocyclic terpenes by Jalali-

Heravi and Fatemi [12], disulfides by Gao et al. [13]. 

In this report, a back propagation ANN with delta-bar-delta learning algorithm model was 

employed to generate QSRRs between the molecular-based structural parameters and 

programmed-temperature Lee retention indices. The usefulness of these ANNs in the 

modeling and predicting of programmed-temperature retention indices from boiling point Tb, 

molecular weight M, connectivity index χ and F-number were studied for polycyclic aromatic 

hydrocarbons on two different stationary phases: SE-52 and DB-5 and three different 

temperature programmes. The result showed that the prediction performance of ANN is very 

satisfactory. 

 

Method 

 

Brief description of neural networks 

A neural network model is composed of a large number of simple processing elements or 

neuron nodes organized into a sequence of layers. 

The first layer is the input layer with one node for each variable or feature of the data. The last 

layer is the output layer consisting of one node for each variable to be investigated. In 

between are series of one or more hidden layer(s) consisting of number of nodes, which are 

responsible for learning. Nodes in any layer are fully or randomly connected to nodes of a 

succeeding layer. Each connection is represented by a number called a weight. 
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Multilayer feed forward networks are most often used to analyze nonlinear multivariable data. 

In these networks, signals are propagated from the input layer through the hidden layer(s) to 

the output layer. A node thus receives signals via connections from other nodes or the outside 

world in the case of the input layer. The net input for a node j is given by: 

net j = ∑ ⋅
i

iji ow  

where i represents nodes in the previous layer, wji is the weight associated with the connection 

from node i to node j, and oi is the output of node i. The output of a node is determined by the 

transfer function and the net input of the node. The following sigmoidal transfer function in 

the hidden layer is used 

f (net j) = 
)net( jje1

1
Θ+−+

 

where Θj is a bias term of threshold value of node j responsible for accommodation nonzero 

offsets in the data. 

The adequate functioning of a neural network strongly depends on the way the signals are 

propagated through the network. The weights play an important role in this propagation and a 

proper setting of these weight factors is essential. Generally, such a setting is not known 

beforehand and the weights are initially given small, random values. The process of adapting 

the weights to an optimum set of values is called training the neural network. This training is 

usually done by means of supervised learning. A representative training set with examples is 

presented iteratively to the neural network and the difference between the desired solution and 

the one obtained is used to adapt the weights in small steps, according to a learning algorithm. 

There is a number of learning algorithms used to train a neural network. A frequently used 

one is called the back propagation learning rule [11]. 

- 291 -



 

One of the main problems with back propagation ANN is that long training sessions are often 

required in order to find an acceptable weight solution because of the well known difficulties 

inherent in gradient descent optimization. There exist a number of modifications to this 

algorithm which are designed to overcome this problem. The delta-bar-delta learning 

algorithm is one of the modifications to this algorithm, and it is used here [14]. 

The neural network models and data 

The data set of programmed-temperature Lee retention indices of polycyclic aromatic 

hydrocarbons was taken from Lee et al. [4], Lundstedt et al. [15] and Takada et al. [16]. The 

retention indices of all polycyclic aromatic hydrocarbons included in the data set were 

obtained on two slightly polar stationary phases SE-52 and DB-5 with different temperature 

programmes. The Lee retention data measured by Lee [4] were obtained on SE-52 with 

temperature programmed from 50 to 250°C, at 2°C min-1; while the ones determined on DB-5 

stationary phase were with two different temperature programmes: from 80°C for 2 min 

increased at 8°C min-1 to 300°C held for 10 min [15]; and with the temperature range from 

70°C held 2 min, with 30°C min-1 to 150°C, then with the run of 5°C min-1 to 200°C and 4°C 

min-1 to 310°C, held for 5 min [16], respectively. The boiling points and molecular weights, 

the physico-chemical parameters of these compounds, were taken from [17, 18]. The 

connectivity index, that is a topological parameter, was calculated according to ref. [19]. F-

number, a molecular size descriptor suggested by Schabron et al. [20], was calculated as 

follows: 

 

F = (number of double bounds) + (number of primary and secondary carbons)  

      – 0.5 (number of non-aromatic rings) 
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The F-numbers included here are partly values found in the literature [21-24] and partly 

calculated values. 

The compounds and their parameters: boiling point Tb, molecular weight M, connectivity 

index χ, F-number and retention index RI, were given in Table 1. 

Table 1 
The compounds and data used in this paper 

No. Compound M Tb, oC χ F RI 
1 2-Methylnaphthalene 142.2 241 3.815 6   218.14 [4] 
2 2-Methylnaphthalene 142.2 241 3.815 6   220.10 [15] 
3 1-Methylnaphthalene 142.2 245 3.821 6   221.04 [4] 
4 1-Methylnaphthalene 142.2 245 3.821 6   223.10 [15] 
5 2-Ethylnaphthalene 156.23 258 4.376 7   236.08 [4] 
6 1-Ethylnaphthalene 156.23 259 4.486 7   236.56 [4] 
7 2,6-Dimethylnaphthalene 156.23 262 4.226 7   237.58 [4] 
8 2,6-Dimethylnaphthalene 156.23 262 4.226 7   239.70 [15] 
9 2,7-Dimethylnaphthalene 156.23 262 4.226 7   237.71 [4] 
10 1,3-Dimethylnaphthalene 156.23 265 4.232 7   240.25 [4] 
11 1,7-Dimethylnaphthalene 156.23 263 4.232 7   240.66 [4] 
12 1,6-Dimethylnaphthalene 156.23 266 4.232 7   240.72 [4] 
13 2,3-Dimethylnaphthalene 156.23 268 4.232 7   243.55 [4] 
14 1,4-Dimethylnaphthalene 156.23 268 4.238 7   243.57 [4] 
15 1,5-Dimethyl naphthalene 156.23 269 4.238 7   244.98 [4] 
16 Acenaphthylene 152.21 270 4.149 6.5   244.63 [4] 
17 Acenaphthylene 152.21 270 4.149 6.5   247.40 [15] 
18 1,2-Dimethylnaphthalene 156.23 271 4.238 7   246.49 [4] 
19 Acenaphthene 154.21 279 4.445 5.5   251.29 [4] 
20 Acenaphthene 154.21 279 4.445 5.5   253.30 [15] 
21 Fluorene 166.23 294 4.612 6.5   268.17 [4] 
22 Fluorene 166.23 294 4.612 6.5   269.60 [15] 
23 2-Methylfluorene 180.25 318 5.022 7.5   288.21 [4] 
24 2-Methylfluorene 180.25 318 5.022 7.5   287.70 [15] 
25 1-Methylfluorene 180.25 318 5.028 7.5   289.03 [4] 
26 1-Methylfluorene 180.25 318 5.028 7.5   288.70 [15] 
27 Anthracene 178.24 340 4.809 7   301.69 [4] 
28 Anthracene 178.24 340 4.809 7   301.40 [15] 
29 Anthracene 178.24 340 4.809 7   301.20 [16] 
30 3-Methylphenanthrene 192.26 352 5.226 8   319.46 [4] 
31 3-Methylphenanthrene 192.26 352 5.226 8   318.60 [15] 
32 3-Methylphenanthrene 192.26 352 5.226 8   315.60 [16] 
33 2-Methylphenanthrene 192.26 355 5.226 8   320.17 [4] 
34 2-Methylphenanthrene 192.26 355 5.226 8   319.50 [15] 
35 2-Methylphenanthrene 192.26 355 5.226 8   316.40 [16] 
36 2-Methylanthracene 192.26 359 5.22 7   321.57 [4] 
37 2-Methylanthracene 192.26 359 5.22 7   320.90 [15] 
38 4H-Ciklopenta(def)phenanthrene 190.24 359 5.356 7.5   322.08 [4] 
39 4H-Ciklopenta(def)phenanthrene 190.24 359 5.356 7.5   322.30 [15] 
40 9-Methylphenanthrene 192.26 355 5.232 8   323.06 [4] 
41 9-Methylphenanthrene 192.26 355 5.232 8   319.20 [16] 
42 1-Methylanthracene 192.26 363 5.226 8   323.33 [4] 
43 1-Methylphenanthrene 192.26 359 5.232 8   323.90 [4] 
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44 1-Methylphenanthrene 192.26 359 5.232 8   323.60 [15] 
45 1-Methylphenanthrene 192.26 359 5.232 8   320.00 [16] 
46 3,6-Dimethylphenanthrene 206.29 363 5.637 9   337.83 [4] 
47 Fluoranthene 202.26 383 5.565 8.5   344.01 [4] 
48 Fluoranthene 202.26 383 5.565 8.5   344.90 [15] 
49 Fluoranthene 202.26 383 5.565 8.5   340.10 [16] 
50 Pyrene 202.26 393 5.559 8   351.22 [4] 
51 Pyrene 202.26 393 5.559 8   352.80 [15] 
52 Pyrene 202.26 393 5.559 8   348.10 [16] 
53 Benzo(a)fluorene 216.29 407 6.022 8.5   366.74 [4] 
54 Benzo(a)fluorene 216.29 407 6.022 8.5   366.50 [15] 
55 Benzo(b)fluorene 216.29 402 6.017 8.5   369.39 [4] 
56 Benzo(b)fluorene 216.29 402 6.017 8.5   368.90 [15] 
57 4-Methylpyrene 216.29 410 5.976 9   369.54 [4] 
58 2-Methylpyrene 216.29 410 5.97 9   370.15 [4] 
59 1-Methylpyrene 216.29 410 5.976 9   373.55 [4] 
60 1-Methylpyrene 216.29 410 5.976 9   374.20 [15] 
61 1-Methylpyrene 216.29 410 5.976 9   370.00 [16] 
62 Benzo(ghi)fluoranthene 226.28 432 6.309 9.5   389.60 [4] 
63 Benzo(ghi)fluoranthene 226.28 432 6.309 9.5   390.90 [15] 
64 Benzo(ghi)fluoranthene 226.28 432 6.309 9.5   389.60 [16] 
65 Benzo(a)anthracene 228.3 435 6.22 9   398.50 [4] 
66 Benzo(a)anthracene 228.3 435 6.22 9   398.60 [15] 
67 Benzo(a)anthracene 228.3 435 6.22 9   398.40 [16] 
68 Benzo(j)fluoranthene 252.32 480 6.976 9.5   440.92 [4] 
69 Benzo(b)fluoranthene 252.32 481 6.976 9.5   441.74 [4] 
70 Benzo(b)fluoranthene 252.32 481 6.976 9.5   442.10 [15] 
71 Benzo(b)fluoranthene 252.32 481 6.976 9.5   442.70 [16] 
72 Benzo(k)fluoranthene 252.32 481 6.97 9.5   442.56 [4] 
73 Benzo(k)fluoranthene 252.32 481 6.97 9.5   443.60 [15] 
74 Benzo(k)fluoranthene 252.32 481 6.97 9.5   442.80 [16] 
75 Benzo(e)pyrene 252.32 493 6.975 9   450.73 [4] 
76 Benzo(e)pyrene 252.32 493 6.975 9   451.80 [15] 
77 Benzo(e)pyrene 252.32 493 6.975 9   452.70 [16] 
78 Benzo(a)pyrene 252.32 496 6.97 10   453.44 [4] 
79 Benzo(a)pyrene 252.32 496 6.97 10   453.40 [15] 
80 Benzo(a)pyrene 252.32 496 6.97 10   454.30 [16] 
81 Perylene 252.32 497 6.975 10   456.22 [4] 
82 Perylene 252.32 497 6.975 10   456.30 [15] 
83 Perylene 252.32 497 6.975 10   457.50 [16] 
84 Pentacene 278.35 529 7.619 11   486.81 [4] 
85 Dibenzo(ac)anthracene 278.36 535 7.637 11   495.01 [4] 
86 Dibenzo(ac)anthracene 278.36 535 7.637 11   495.10 [16] 
87 Dibenzo(ah)anthracene 278.36 535 7.631 11   495.45 [4] 
88 Dibenzo(ah)anthracene 278.36 535 7.631 11   494.50 [15] 
89 Dibenzo(ah)anthracene 278.36 535 7.631 11   499.00 [16] 
90 Benzo(b)chrysene 278.36 541 7.631 11   497.66 [4] 
91 Benzo(b)chrysene 278.36 541 7.631 11   498.50 [15] 
92 Benzo(ghi)perylene 276.34 542 7.72 11   501.32 [4] 
93 Benzo(ghi)perylene 276.34 542 7.72 11   502.90 [15] 
94 Benzo(ghi)perylene 276.34 542 7.72 11   501.30 [16] 
95 Anthanthrene 276.34 547 7.714 11   503.89 [4] 
96 Anthanthrene 276.34 547 7.714 11   508.40 [15] 

data obtained: on SE-52 [4], on DB-5 [15,16] stationary phases and three different  
temperature-programmes, respectively 
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The parameters were chosen on the base of Kitty et al. study [25] who applied PCA – 

principal component analysis to investigate the influence of 13 physico-chemical properties 

on retention time of 60 PAHs obtained on DB-5 stationary phase. Namely, it was shown that 

above used parameters as input data mainly effecting PC1 that describes 68% of all data. The 

first four parameters were used as input parameters and the retention index was used as 

output. The data containing 96 RIs were randomly divided into three sets: a training set (32 

RIs obtained on SE-52 stationary phase with temperature programme: from 50 to 250°C, at 

2°C min-1); a validation set (16 RIs obtained on the same SE-52 with the same temperature 

programme) and testing sets (including 48 RIs obtained on DB-5 stationary phase and two 

different temperature programmes, 30 at one and 18 RIs at the other temperature programme 

[15, 16], respectively). They were shown in Table 2. 

Table 2 
Training, validation and testing sets * 

Sets                               Compound numbers  

Training set                    1, 5, 7, 10, 11, 12, 14, 15, 19, 21, 23, 27, 30, 36, 38, 40, 43, 46, 
                                       47, 53, 55, 59, 62, 65, 68, 72, 75, 81, 84, 85, 90, 95 
Validation set                 3, 6, 9, 13, 16, 18, 25, 33, 42, 50, 57, 58, 69, 78, 87, 92 
Testing set I                    2, 4, 8, 17, 20, 22, 24, 26, 28, 31, 34, 37, 39, 44, 48, 51, 54, 56, 
                                       60, 63, 66, 70, 74, 76, 79, 82, 88, 91, 93, 96 
Testing set II                  29, 32, 35, 41, 45, 49, 52, 61, 62, 67, 71, 73, 77, 80, 83, 86, 89, 94 

 .See Table 1 for name of compound from No٭

The training set is used to train a neural net. The error of this data set is minimized during 

training. The validation set is used to determine the performance of a neural network on 

patterns that are trained during learning. A testing set for finally checking the over all 

performance of a neural net. All the data were scaled to (0,1) before training using following 

equation: 

ai = 
minmax

mini

xx
xx
−

−  
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where xi is the any one of the data in the training set. xmax and xmin are the maximum and 

minimum values of the data in the training set. 

The ANN systems were simulated using a QwikNet ANN simulator (Craig Jensen, Redmond, 

USA). 

 

Results and discussion 

 

Network Optimization 

The neural network had four input nodes, boiling point, molecular weight, connectivity index 

and F-number, one hidden layer of x nodes, and a single output node. Such an ANN may be 

designated as 4-x-1 net to indicate the number of nodes in input, hidden and output layers, 

respectively. 

The data were combined into three sets: training, validation and testing (see Table 2). The 

neural network was trained directly on the training set, and its performance was monitored 

using the validation set. Through this process, we can select the best networks. The best 

ANNs determined by the validation set were used for testing 48 parent and alkylated 

polycyclic aromatic hydrocarbons from the test sets. 

Optimization of a neural network is difficult and time-consuming, and one has to use a trial 

and error method to find the best neural network architecture. In order to determine the 

optimal number of hidden layer nodes, ANNs with different numbers of hidden nodes were 

trained. The number of hidden nodes was varied from 2 to 15 and the root mean square error 

(RMSE) function was calculated: 

RMSE = ∑ −
=

n

1i

2
ii n/)do(  

- 296 -



 

where di is a desired output (experimental values), oi is the actual output (ANN predicted 

values), n is the number of compounds in the analyzed set. According to Fig. 1, ANN with 6 

hidden nodes had the lowest RMSE error, and that number of nodes was chosen for further 

optimization. 

Fig. 1. The hidden node numbers vs. average RMS error on validation set 

ANN 
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The number  of nodes in hidden layer

 
RMSE(2)=6.42, RMSE(6)=2.41, RMSE(12)=5.10, RMSE(15)=4.00 

 

To select the best learning times, we made the curves of RMSE values of training set and 

validation set versus learning epochs when the number of hidden layer nodes was six. They 

are shown in Fig. 2. 
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Fig. 2. The average RMS error vs. the number of training epochs for training and validation 
data sets 
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RMSE_train(0)=66.82, RMSE_train(1000)=2.41, 

 RMSE_cross-val(0)=170.83, RMSE_cross-val (1000)=21.27 

From the validation curve, we can see that the optimum learning epochs is about 1000. 

 

Prediction of programmed-temperature retention index data using neural networks 

Through the above process, we learn that the best number of hidden layer nodes is 6 and the 

optimum number of learning epochs is about 1000. 

For the evaluation of the predictive power of the network, a trained ANN was used to predict 

the temperature programmed Lee retention indices of the molecules included in the validation 

and testing sets. Table 3 represents the experimental and ANN predicted values of retention 

indices on SE-52 stationary phase, while Tables 4 and 5 represent the comparison of the 
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experimental and ANN predicted values on DB-5 stationary phase for two testing sets, 

respectively. Accuracy as a degree of agreement between the experimental and the predicted 

retention indices in the Lee scale for all studied PAHs included in Tables 3-5 was expressed 

by relative error (RE) and was calculated as: 

RE = 100
RI

RIRI

exp

exppred ⋅
−

 

Table 3 
Experimental and predicted programmed-temperature retention indices in the Lee scale of the 
validation set [4] 

No. Experimental 
data Predicted data Relative Error 

(%) 
3 221.04 226.01 2.25 
6 236.56 241.49 2.08 
9 237.71 238.52 0.34 
13 243.55 241.31 -0.92 
16 244.63 239.96 -1.91 
18 246.49 242.84 -1.48 
25 289.03 292.58 1.22 
33 320.17 321.76 0.50 
42 323.33 326.53 0.99 
50 351.22 351.09 -0.04 
57 369.54 371.86 0.63 
58 370.15 371.92 0.48 
69 441.74 443.14 0.32 
78 453.44 451.89 -0.34 
87 495.45 474.47 -4.23 
92 501.32 475.60 -5.13 
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Table 4 
Experimental and predicted programmed-temperature retention indices in the Lee scale of the 
testing set I [15] 

No. Experimental 
data Predicted data Relative Error 

(%) 
2 220.1 225.19 2.31 
4 223.1 226.01 1.30 
8 239.7 238.52 -0.49 

17 247.4 239.96 -3.01 
20 253.3 250.88 -0.95 
22 269.6 266.34 -1.21 
24 287.7 292.53 1.68 
26 288.7 292.58 1.34 
28 301.4 301.92 0.17 
31 318.6 320.02 0.44 
34 319.5 321.76 0.70 
37 320.9 322.05 0.36 
39 322.3 321.43 -0.26 
44 323.6 324.12 0.16 
48 344.9 345.26 0.10 
51 352.8 351.09 -0.48 
54 366.5 368.49 0.54 
56 368.9 364.85 -1.09 
60 374.2 371.86 -0.62 
63 390.9 393.47 0.66 
66 398.6 398.60 0.00 
70 442.1 443.14 0.23 
74 442.8 443.21 0.09 
76 451.8 451.31 -0.11 
79 453.4 451.89 -0.33 
82 456.3 452.41 -0.85 
88 494.5 474.47 -4.05 
91 498.5 476.24 -4.46 
93 502.9 475.60 -5.43 
96 508.4 477.02 -6.17 
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Table 5 
Experimental and predicted programmed-temperature retention indices in the Lee scale of the 
testing set II [16] 

No. Experimental data Predicted data Relative Error (%) 
29 301.2 301.92 0.24 
32 315.6 320.02 1.40 
35 316.4 321.76 1.69 
41 319.2 321.76 0.80 
45 320.0 324.12 1.29 
49 340.1 345.26 1.52 
52 348.1 351.09 0.86 
61 370.0 371.86 0.50 
62 389.6 393.47 0.99 
67 398.4 398.60 0.05 
71 442.7 443.14 0.09 
73 443.6 443.21 -0.09 
77 452.7 451.32 -0.30 
80 454.3 451.89 -0.53 
83 457.5 452.42 -1.11 
86 495.1 474.45 -4.17 
89 499.0 474.47 -4.91 
94 501.3 475.60 -5.12 
 

The maximum relative error for predicted retention indices in the Lee scale on SE-52 

stationary phase is -5.13% for benzo(ghi)perylene and the minimum value is -0.04% for 

pyrene; while on DB-5 stationary phases with two different temperature programmes the 

maximum percentage error are -6.17% for anthanthrene in test set I [15] and -5.12% for 

benzo(ghi)perylene in the test set II [16], respectively, and the minimum values are 0.10% for 

fluoranthene (test I) and 0.05% for benzo(a)anthracene (test II), respectively. The average 

percentage deviation between the programmed-temperature predicted and the experimental 

values of Lee retention indices are 1.43% on SE-52; and 1.32% and 1.42% on DB-5 

stationary phases, respectively. However, it is worth noting that these values are in agreement 

with the results obtained by experiment. 
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Fig. 3. Predicted vs. experimental programmed-temperature retention indices in the Lee scale 
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Fig. 3 shows the plot of the ANN predicted versus the experimental values for the 

programmed-temperature Lee retention indices of the validation and the test sets and illustrate 

that the predicted data of the validation and testing sets are in good agreement with those of 

the experimental data. 

 

Conclusion 

 

The results of this study demonstrate that QSRRs method using ANN techniques can generate 

a suitable model for prediction of programmed-temperature Lee retention indices on SE-52 

and DB-5 stationary phases, simultaneously. The boiling point, molecular weight, 

connectivity index and F-number can be considered as comprehensive descriptors for 
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predicting the programmed-temperature Lee retention indices of polycyclic aromatic 

hydrocarbons on slightly polar stationary phases SE-52 and DB-5. 

 

Acknowledgements 

 

This work was partly supported by the Serbian Ministry for Science and Environmental 

Protection. 

 

References 

 

1. Škrbić B, Miljević N (2002) J. Environ. Sci. Health A37:1029-1039 

2. Škrbić B, Cvejanov J, Đurišić-Mladenović N (2005) J. Environ. Sci. Health A40:29-42 

3. van Den Dool H, Kratz P (1963) J. Chromatogr. 11:463-471 

4. Lee M, Vassilaros D, White C, Novotny M (1979) Anal. Chem. 51:768-773 

5. Babushok V I, Linstrom P J (2004) Chromatographia 60:725-728 

6. Heberger K (1989) Anal. Chim. Acta 223:161-174 

7. Heberger K (1990) Chromatographia 29:375-384 

8. Škrbić B, Đurišić-Mladenović N, Cvejanov J (2004) Chemometr. Intell. Lab. Syst. 

72:167-171 

9. Zupan J, Gasteiger J (1991) Anal. Chim. Acta 248:1-30 

10. Yan A X, Zhang R S, Liu M C, Hu Z D, Hooper M A (1998) Comput. Chem. 22:405-412 

11. Zhang R, Yan A, Liu M, Liu H, Hu Z (1999) Chemometr. Intell. Lab. Syst. 45:113-120 

12. Jalali-Heravi M, Fatemi M H (2001) J. Chromatogr. 915:177-183 

13. Gao Y, Wang Y, Yao X, Zhang X, Liu M, Hu Z, Fan B (2003) Talanta 59:229-237 

- 303 -



 

14. Vasiljević T, Onjia A, Čokeša Đ, Laušević M (2004) Talanta 64:785-790 

15. Lundstedt S, Haglund P, Oberg L (2003) Environ. Toxicol. Chem. 22:1413-1420 

16. Takada H, Onda T, Ogura N (1990) Environ. Sci. Technol. 24:1179-1186 

17. Bjorseth A (ed) (1983) Handbook of Polycyclic Aromatic Hydrocarbons. Marcel Dekker, 

New York 

18. http://chrom.tutms.tut.ac.jp/JINNO/DATABASE/00database.html. 

19. Randić M (1975) J. Am. Chem. Soc. 97:6609-6615 

20. Schabron J F, Hurtubise R J, Silver H F (1977) Anal. Chem. 49:2253-2260 

21. Jinno Lab (1999) Available from 

http://chrom.tutums.tut.ac.jp/JINNO/DATABASE00alphabet. html. 

22. http://wlapwww.gov.bc.ca 

23. Lee M, Novotny M, Bartle K (1981) Analytical Chemistry of Polycyclic Aromatic 

Hydrocarbons. Academic Press, New York 

24. http://www.epa.gov./oilspill/pdfs/neffpresent.pdf 

25. Kitti A, Harju M, Tysklind M, van Bavel B (2003) Chemosphere 50:627-637 

- 304 -


