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Abstract 
If  is a graph with  vertices and G n nλλλ ,,, 21 K  are its eigenvalues, then the energy 

of  is defined as G nGE λλλ +++= L21)( . Let G( n ) be the set of all unicyclic graphs 
with n vertices. Y. Hou obtained the minimum value on the energies of the graphs in G( ) and 
determined the corresponding graph in [10]. In this paper we give the second and third 
minimum values of the energies of graphs in G( ) and determine their corresponding graphs, 
respectively. 
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1. Introduction 

Let  be a graph of order  with vertex set G n { }nvvv ,,, 21 K . Its adjacency matrix 
 is defined to be the )()( ijaGA = nn×  matrix , where )( ija 1=ija  if  is adjacent to 

, and  otherwise. The characteristic polynomial of  is defined by 
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where I  stands for the identity matrix of order , is called the characteristic polynomial of 

the graph . The  roots of the equation 

n

G n 0),( =xGP , denoted by nλλλ ,,, 21 K , are 

called the eigenvalues of the graph . Since  is a real symmetric matrix, all of its 

eigenvalues are real.  

G )(GA

                                                        
*  The work was supported by the National Natural Science Foundation of China (No.10371019), 
SDFFZU(No.2003-XQ-22)); and Faculty Research Grant, Hong Kong Baptist University  
email address: anchang@fzu.edu.cn, wcshiu@hkbu.edu.hk 



In chemistry the experimental heats from the formation of conjugated hydrocarbons are 
closely related to the total electron energy. And the calculation of the total energy of all 
electrons in conjugated hydrocarbons can be reduced to (within the framework of HMO 
approximation ) (see [1])  
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where nλλλ ,,, 21 K  are all eigenvalues of the corresponding molecular graph G .  
can be expressed as the coulson integral formula (see[1]) 
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where  are the coefficients of the characteristic polynomial of . naaa ,,, 21 K G

The right-hand side of equation (2) is defined for all graphs (no matter whether they are 
molecular graphs or not). In view of this, if  is a graph, then by means of equation (2), one 
can defines and calls it the energy of the graph . For a survey of the mathematical 
properties of , see [1, Chapter 12] and [2]. 
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There are a lot of results on the bounds for which pertains to special types of graphs: 
bipartite, benzenoid and trees. However, up to now, very little is known for graphs with 
extremal energy. Graphs with extremal energy have been determined only for trees and trees 
with perfect matching (see [7]). Let G( ) denote the set of all unicyclic graphs with  
vertices. Let  be the graph obtained from the star graph with  vertices by adding an 
edge. Recently, Y. Hou [10] proved that among all graphs in G( ) the graph  is the unique 
graph with minimum energy. In this paper we will give the second and third minimal values 
for the graphs in G( ) and give their corresponding graphs. 

n n
nS n

n nS

n

2. Results  

In this paper, we consider only connected simple graph, and denote by ,  and 
 the star graph, the cycle graph, and the path graph with n vertices, respectively. Let G( ) 

denote the set of all unicyclic graphs with  vertices, and G  the set of all unicyclic 
graphs with  vertices which contains the cycle . Set 

1,1 −nK nC
nP n

n ),( ln
n lC ii aGb =)( , , where 

 are defined in (1). Notice that 
=i n,,1,0 K

ia 1)(0 =Gb , and  is the number of edges of G . 
Denote the number of k-matchings of a graph G  by . If  is acyclic, then 

 and  for . 

)(2 Gb
),( kGm G

),(2 kGmb k = 0)(12 =+ Gb k 0≥k

Lemma 1 . Let G( ). Then  can be expressed as the following integral 
formula:  

]10[ ∈G n )(GE
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Moreover,  is a monotonically increasing function of , )(GE )(Gbi ni ,,1,0 K= . 

Thus, suppose  and  are two graphs in G( ). By Lemma 1 if  1G 2G n

 )  (5) ()( 21 GbGb ii ≥

for all , then 0≥i

  (6) )()( 21 GEGE ≥

and the equality in (6) holds only if (5) is an equality for all . This is the main idea 
which we used in the following to deal with the ordering graphs in G( ) by their energies.  

0≥i
n

)()()( uvGbvGbGb
Lemma 2[10]. Let G( ), and edge  be an edge of  with the pendant vertex . 

Then 
∈G n uv G v

2iii .  −−+−= −

C
Let  denote the graph obtained from the cycle  by adding  pendant edges to 

a vertex of  (See Fig. 1).  
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Lemma 3 [ . Let G . Then . ]10 ∈G ),( ln }{\ l
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Lemma 4 [ . Let , Then . ]10 5≥≥ ln )()( 4
n

l
n SESE >

Let  be the graph obtained from the cycle  by attaching 3
nT 3C 4−n  pendant edges and 

a pendant edge to two vertices of , respectively, and  the graph obtained from the 
cycle  by attaching  edges and a path of length two to a vertex of  (see Figure 
1).  
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Lemma 5. Let , then . 5≥n )()( 33
nn TERE >

Proof. It is not difficult to get that the characteristic polynomials of  and  are  3
nT 3

nR
4323 )72(2),( −−− −+−−= nnnn

n nnTP χχχχχ  and 
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64323 )5()62(2),( −−− −+−+−−= nnn-nn
n nnnRP χχχχχχ , 

respectively. Obviously,  ()()( 33
nini TbRb ≥ ni ,,2,1 K= ) and . Thus, we 

have .  
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2,2,3S                             1,2,2S

         Fig. 2.  and   2,2,3S 1,2,2S

Let  denote the graph obtained from the cycle  by attaching ,  and  
pendant edges to three vertices of , respectively (see Figure 2). Similar to the proof of 
Lemma 5, we can get the following result. 

nmlS ,, 3C l m n
3C

 Lemma 6. Suppose . Then  nml ≥≥

)()( ,,,1,1 nmlnml SESE >−+  and . )()( ,,1,1, nmlnml SESE >−+

Theorem 1. Let  and 5≥n ∈G G . Then , and the equality 
holds if and only if . 
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Proof. Let G ( . Obviously,  for all ∈G )3,n }{\ 3
nS )()( 3

nii TbGb = 30 ≤≤ i , and  

for all . 

0)( 3 =ni Tb

ni ≤≤5

Now we prove  by induction on . If )()( 3
44 nTbGb ≥ n 5=n , then the inequality clearly 

follows. Let  and suppose the inequality holds for 6≥p pn < . Now we consider pn = . 

By Lemma 2, we have . We distinguish the 

following three cases. 
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Case 1. . By the proof of Lemma 5, we have . 3
nRG ≅ )()( 3

44 nTbGb >

Case 2. ，and . Then  must have a pendant vertex , such that the 

distance between  and a vertex on  is at least 2. Suppose that  is adjacent to vertex 

, then G  (otherwise ), and 

3
nRG ≅/ nmlSG ,,≅/ G v

v C v
u ∈− vG }{\)3,1( 3

1−− nSn 3
nRG ≅ uvG −−  contains the cycle 

 as its subgraph. Thus by induction assumption, we have 3C

3)(3)()()()( 3
144244 +≥+−≥−−+−= −nTbvGbuvGbvGbGb . 

Since , we have . 2)()( 3
14
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Case 3. . By the proof of Lemma 6, we have . nmlSG ,,≅ )()( 3
44 nTbGb ≥

Therefore, if ∈G G ，then we have  for all . )3,(n }{\ 3
nS )()( 3

nii TbGb ≥ ni ,,1,0 K=

- 98 -



Thus . The equality holds if and only if  is in Case 3, )()( 3
nTEGE ≥ G 2)(2 =−− uvGb  

and . Hence . This implies that .   )()( 3
144 −=− nTbvGb 3

1−≅− nTvG 3
nTG ≅

Similar to the proof of Lemma 5, we can get the following result. 

Lemma 7. Suppose . We have . 5≥n )()( 34
nn TESE <

Theorem 2. Let G  with . Then  and the equality holds if 

and only if . 

∈G )(n 5≥n )()( 4
nSEGE ≥

4
nSG ≅

Denote by  the graph obtained from  by attaching 4
nT 4C 5−n  pendant edges and a 

pendant edge to two vertices of , respectively. Let  denote the graph obtained by the 

cycle  by attaching  edges and a path of length two to a vertex of  (see Figure 

3). 
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                   Fig.3.  and  4
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Theorem 3. Let  and let 6≥n ∈G G . Then  and the 

equality holds if and only if . 
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Proof. Firstly, we prove  by induction on . If )()( 4
44 nTbGb ≥ n 5=n , then the inequality 

clearly follows. Let  and suppose that the inequality holds for 7≥p pn < . Now we 

consider . Obviously, . We distinguish 

three cases. 

pn = 3)()()()( 4
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4
14
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Case 1. . It is not difficult to check that . 4
nRG ≅ )()( 4

44 nTbGb >

Case 2. . Then  must have a pendant vertex  such that the distance between 

 and a vertex on  is at least 2. Suppose that  is adjacent to vertex u ，then 

G  (otherwise ), and 

4
nRG ≅/ G v

v G v
∈− vG }{\)4,1( 4

1−− nSn 4
nRG ≅ uvG −−  contains  as its 

subgraph. Thus  
4C
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Recall that  and by the induction assumption, we have 
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Case 3. The distance between each pendant vertex and a vertex  is 1. Since ,  

has a pendant vertex , which is adjacent to a vertex . Then 
4C 6≥n G

v u ∈− vG G , }{\)4,1( 4
1−− nSn
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and  contains the star graph  as its subgraph. Thus  uvG −− 3,1K

)(3)(3)()()()( 4
4

3
144244 nn TbTbvGbuvGbvGbGb =+≥+−≥−−+−= − . 

From the above, we get that if ∈G G ，then , and the equality 

holds if and only if G is in Case 3, 
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It is not difficult to check that 0)( >χF  ( 0≠χ ) for . Thus，we have  

when .  

7≥n )()( 34
nn TETE >

7≥n

Theorem 4. Suppose  is an even integer. If ,then . 60 ≥l 0ll > )()( 0l
n
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n SESE >

Proof. Firstly, we prove by induction on 0ln −  that if  is an even integer and , 

then we have  for all 
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Moreover, if , then ; and 

if , then . Thus, we get 

. 
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Let and suppose that the inequalities hold for 2≥p pn < . Now we consider pn = . 
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00
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Hence, by Lemma 1, we get that the result.  

Corollary 2. Suppose . Then . 6>l )()( 6
n

l
n SESE >

Similar to the proof of Lemma 8, we can get following Lemmas 9 and 10. 

Lemma 9. Suppose . Then . 6>l )()( 56
nn SESE >

Lemma 10. Suppose . Then . 7≥n )()( 45
nn TESE >

The next result follows immediately by above discussions.  

Theorem 5. Suppose  and 7≥n ∈G G( ) . Then  and the 

equality holds if and only if . 

n },{\ 43
nn SS )()( 3

nTEGE ≥
3
nTG ≅

Combining with Theorems 2 and 5, we restate our main results as the following: Graphs 
 and  are the graphs with second and third minimum values of energies among all 

graphs in G( ), respectively.  
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