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Abstract

If G is a graph with n vertices and A;,4,,...,4, are its eigenvalues, then the energy
of G is defined as E(G)= ‘/11‘ + ‘/12‘ et ‘/‘in‘. Let G(n) be the set of all unicyclic graphs
with n vertices. Y. Hou obtained the minimum value on the energies of the graphs in G(n) and
determined the corresponding graph in [10]. In this paper we give the second and third
minimum values of the energies of graphs in g(n) and determine their corresponding graphs,
respectively.

1. Introduction

Let G be a graph of order n with vertex set {V,,vz,...,vn}. Its adjacency matrix
A(G) =(ajj) is defined to be the nNxn matrix (a;), where a; =1 if v; is adjacent to
Vj,and a;; =0 otherwise. The characteristic polynomial of A(G) is defined by

P(G, X) = det(x] — A(G)) = Zn:aix”"i, o)
i=0

where | stands for the identity matrix of order n, is called the characteristic polynomial of

the graph G. The n roots of the equation P(G,x)=0, denoted by A4;,4,,...,4,, are

called the eigenvalues of the graph G. Since A(G) is a real symmetric matrix, all of its

eigenvalues are real.
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In chemistry the experimental heats from the formation of conjugated hydrocarbons are
closely related to the total electron energy. And the calculation of the total energy of all
electrons in conjugated hydrocarbons can be reduced to (within the framework of HMO
approximation ) (see [1])

EG) =2 |4l @
i=1

where A;,4,,...,4, are all eigenvalues of the corresponding molecular graph G. E(G)
can be expressed as the coulson integral formula (see[1])

0 1 o _
EG)-— | X%ln[(Z (Diay 22 + (5 (ay;,x21#)2x, 3)
w j=0 =0

where a;,a,,...,a, are the coefficients of the characteristic polynomial of G.

The right-hand side of equation (2) is defined for all graphs (no matter whether they are
molecular graphs or not). In view of this, if G is a graph, then by means of equation (2), one
can defines and calls it the energy of the graph G. For a survey of the mathematical
properties of E(G), see [1, Chapter 12] and [2].

There are a lot of results on the bounds for which pertains to special types of graphs:
bipartite, benzenoid and trees. However, up to now, very little is known for graphs with
extremal energy. Graphs with extremal energy have been determined only for trees and trees
with perfect matching (see [7]). Let G(Nn) denote the set of all unicyclic graphs with n
vertices. Let Sg be the graph obtained from the star graph with n vertices by adding an
edge. Recently, Y. Hou [10] proved that among all graphs in G(n) the graph Sﬁ is the unique
graph with minimum energy. In this paper we will give the second and third minimal values
for the graphs in g(n) and give their corresponding graphs.

2. Results

In this paper, we consider only connected simple graph, and denote by K;,,, C, and
P, the star graph, the cycle graph, and the path graph with n vertices, respectively. Let G(n)
denote the set of all unicyclic graphs with n vertices, and G(n,l) the set of all unicyclic
graphs with n vertices which contains the cycle C,. Set b;(G) = \ai , 1=0,1...,n, where
a; are defined in (1). Notice that by(G)=1, and b,(G) is the number of edges of G.
Denote the number of k-matchings of a graph G by m(G.,k). If G is acyclic, then
b =m(G,k) and b, ,;(G)=0 for k>0.

Lemma 1. Let Geg(n). Then E(G) can be expressed as the following integral
formula:



-97-

A , %] ,
E(G)=— [ = In[( X by (G)x*))? + (3 by, (G)x* ) Tdx. )
Ty X j=0 j=0
Moreover, E(G) isa monotonically increasing function of b;(G), i=0,1,...,n.

Thus, suppose G; and G, are two graphs in G(n). By Lemma 1 if

bi (Gy) 2 b;(G,) (5)
forall i>0, then

E(G)) > E(G,) (6)

and the equality in (6) holds only if (5) is an equality for all i>0. This is the main idea
which we used in the following to deal with the ordering graphs in G(n) by their energies.

Lemma 2%, Let Geg(n), and edge uv be an edge of G with the pendant vertex v.
Then b;(G)=b;(G—-Vv)+b_,(G-v-u).

Let S:, denote the graph obtained from the cycle C; by adding n—| pendant edges to
avertex of C; (See Fig. 1).

Sa Sn
Fig.1 83, s}, T2 and R}
Lemma 3"’ Let Geg(n,1)\{S}}.Then E(G,)>E(S)).
Lemma 4! Let n>1>5,Then E(S!)>E(S}).
Let Tn3 be the graph obtained from the cycle C; by attaching n—4 pendant edges and

a pendant edge to two vertices of Cj, respectively, and Rg the graph obtained from the
cycle C; by attaching n—5 edges and a path of length two to a vertex of C; (see Figure

1.

Lemmas. Let n>5,then E(R3)>E(T?).

Proof. It is not difficult to get that the characteristic polynomials of Tn3 and Rﬁ are

PTe. ) =x"-nz"? =27"2 +(@2n-7)7"* and
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PRy = 1" =g =2" +2n-6) 7" +(n=5)",
respectively. Obviously, bi(Rﬁ) >y (Tn3) (i=12,...,n) and b4(R3) > b4(Tn3). Thus, we
have E(R3)>E(T}). m]

S22 S221
Fig.2. S35, and S,

Let S|y denote the graph obtained from the cycle C; by attaching I, m and n
pendant edges to three vertices of Cj;, respectively (see Figure 2). Similar to the proof of
Lemma 5, we can get the following result.

Lemma 6. Suppose | >m=>n.Then
ESiiim-10)>EGSimn) and E(S)min1)>E(S)mn)-

Theorem 1. Let n>5 and Geg(n3)\{S)}. Then E(G)=E(T}), and the equality
holds if and only if G =T,

Proof. Let G e g(n,3)\{S3}. Obviously, b;(G)=b;(T;) forall 0<i<3,and b (T>)=0
forall 5<i<n.

Now we prove b, (G)>b, (Tn3) by induction on n.If n=35, then the inequality clearly
follows. Let p =6 and suppose the inequality holds for n< p. Now we consider n=p.
By Lemma 2, we have by(T7)=by(T;)+by(Ky,)=b,(T7)+2. We distinguish the
following three cases.

Casel G= Rﬁ. By the proof of Lemma 5, we have b, (G) > b, (Tn3).
Case 2. G¢ RS » and G#S),,. Then G must have a pendant vertex V, such that the
distance between Vv and a vertex on C is at least 2. Suppose that v is adjacent to vertex
u, then G-veg(n—-13)\ {Sﬁ,l} (otherwise G = Rﬁ ), and G—Vv—U contains the cycle
C, as its subgraph. Thus by induction assumption, we have
by(G)=by (G —V)+by(G—Vv—u)>b,(G-V)+32b, (T} ) +3.

Since by (T2)=b,(T2,)+2, we have by (G)>b,(T3).
Case 3. G =S, By the proof of Lemma 6, we have b,(G) 2 b4(Tn3).

Therefore, if G e G(n,3) \{S?,} , then we have b;(G) =Dy (Tn3) for all i=0,,...,n.
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Thus E(G) > E(Tn3). The equality holds if and only if G is in Case 3, b,(G-v—-u)=2
and b,(G-V)=h,(T,). Hence G—v=T2 . Thisimplies that G =T;. O

Similar to the proof of Lemma 5, we can get the following result.

Lemma 7. Suppose n>5.We have E(S7)<E(T}).

Theorem 2. Let Geg(n) with n>5. Then E(G) 2 E(S;‘) and the equality holds if
and only if G=S;.

Denote by Tn4 the graph obtained from C, by attaching n—5 pendant edges and a
pendant edge to two vertices of C,, respectively. Let R,? denote the graph obtained by the
cycle C, by attaching n—6 edges and a path of length two to a vertex of C; (see Figure
3).

Fig3. T, and R!

Theorem 3. Let n>6 and let Ge G(n4) \{Sy}. Then E(G)=E(T;) and the
equality holds if and only if G =T,*.
Proof. Firstly, we prove b, (G)>b,(T,}) by induction on n.If n=5, then the inequality
clearly follows. Let p>7 and suppose that the inequality holds for n< p. Now we
consider n=p . Obviously, by (Ty)=by(T)+ b,(Ky3)=by (TE)+3. We distinguish
three cases.
Case 1. G =R/ . Itis not difficult to check that b, (G) > b, (T.}).
Case 2. Gz Rﬁ . Then G must have a pendant vertex V such that the distance between
v and a vertex on G is at least 2. Suppose that v is adjacent to vertex U, then
G-ve g(n—1,4)\{5,‘1‘_1} (otherwise G = R: ), and G-v—u contains C4 as its
subgraph. Thus

b (G)=by(G-V)+by(G-Vv—-uU)2b, (G-V)+4.

Recall that by (Tn4) =b, (T,il) +3 and by the induction assumption, we have
by(G) > by (Ty).
Case 3. The distance between each pendant vertex and a vertex C4 is 1. Since n>6, G

has a pendant vertex V, which is adjacent to a vertex U. Then G-veg(n—-14)\ {S;‘_l} s
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and G-V-—U contains the star graph K, ; as its subgraph. Thus
by(G) =0, (G —V)+by(G—Vv—U) 2 by (G —V)+3 > by (T7 ) +3=b, (T,).

From the above, we get that if G e g(n,4) \ {S:} ,then by (G)=b, (Tn4) , and the equality
holds if and only if G is in Case 3, b,(G-v—-u)=3 and by (G-v)= b4(Tn3_1) . By
induction assumption, we have G -v = Tn4,1 and hence G = Tn4, Moreover, b;(G)>b; (T, n4)
holds for all 0<i<3 and bi(Tn4) =0 for all 5<i<n. Thus E(G)> E(Tn4), with the
equality holds if and only if G =T, O

Lemma 8. Suppose n>7.Wehave E(T,.))>E(T?).
Proof. The characteristic polynomials of Tn3 and Tn4 are
PR ) =2"—ny"? 27" +@n-7)z"" and

Py ) =2"—nz" 2 +(3n-13)",

respectively. By Lemma 1, we have

2
1 paoo 1 1+ny?+@Gn-13)4*
E(Tn4)*E(Tn3):;J‘J 7'” [ 4 ( )Z ] dl

7 leng2r@n-np T vay
Let
Fz)=[+ng2+Gn-13)z*P —[l+ny2 +2n-7)x*1*> —4,°
=2n-6)x* +2(n? —6n—4)7° +5(n® —10n+2) %.
It is not difficult to check that F(x) >0 (x =0)for n>7.Thus, we have E(T.})>E(T?)
when n>7. O
Theorem 4. Suppose 1, >6 is an even integer. If 1> 1, then E(Sr'1) > E(Sr'{)).
Proof. Firstly, we prove by induction on n—1, thatif |, >6 isan even integer and |>1,
then we have b;(S})>b;(Sk) forall i=0,12,....n,and b, (S})>b,(Sk).
If n-lp=1, then b,(S}9)=0; and if 0<i<3, then b;(S})=b,(SY) and; if
4<i<n-2,then
i (S10) =15 (C 1)+ b5 (Poy) = b (Pyy) +bi_5 (P _2) +bi_5 (P 3)
and bi (Sn) = bi (Py) + iy (Pr2) = b (P_y) +bi_s (Ph) +bis (P ).
Obviously, b;(S})=b;(S!9) is true forall 4<i<n-2.Since
b1 (Sn) = b1 () = by (Pyy) + 26,3 (P )
= by (Paot) + 03 (Pa—2) + b3 (Po_3) + bn_s (Po_s)
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Moreover, if |y =2 (mod4), then b,_; (Srl{‘ )=b,_ 1 (Php) +by3(Pyy) +by_3(P,3)—2; and
if 1, =0(mod4), then bn_l(S,I{’) =P (Poo) + b3 (Phos) + b3 (Pi3) +2. Thus, we get
Byt () > by (S0
Let p=>2and suppose that the inequalities hold for n< p. Now we consider n=p.
Obviously, by (S1)=by(S{",)+bi_»(P, )and by(Sy)=b;(Sy ) +b (P ).
By the induction assumption, we have by (S,|1) >;(S :,0) , 1=01,2,...,n and
b1 (Sh) > by (S).
Hence, by Lemma 1, we get that the result. m|
Corollary 2. Suppose | > 6. Then E(S,']) > E(S,?).
Similar to the proof of Lemma 8, we can get following Lemmas 9 and 10.
Lemma 9. Suppose | >6.Then E(SS)>E(S)).
Lemma 10. Suppose n>7.Then E(S))>E(T}).
The next result follows immediately by above discussions.
Theorem 5. Suppose n>7 and Ge g(n)\{S>,5+}. Then E(G)>E(T;?) and the
equality holds if and only if G=T.2.

Combining with Theorems 2 and 5, we restate our main results as the following: Graphs
Sé and Tn3 are the graphs with second and third minimum values of energies among all
graphs in G(n), respectively.
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