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Abstract

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of
G. For graphs with n vertices and m edges, it is known that E(G) ≤ √

2mn. We prove
that for quadrangle-free graphs with n vertices, m edges, minimum vertex degree δ ≥ 1 and
maximum vertex degree ∆,

E(G) >
2
√

2δ∆
2(δ + ∆)− 1

√
2mn .

INTRODUCTION

Let G be a graph without loops and multiple edges. Denote by n and m the

number of vertices and edges of G, and by λ1, λ2, . . . , λn its eigenvalues. The energy

of a graph G is defined as E(G) =
n∑

i=1
|λi|. Obviously, isolated vertices have no

influence on the energy of a graph.

In chemistry, the energy of a graph is extensively studied since it can be used to

approximate the total π-energy of a molecule (see, e.g., [1–5]).

It is a well-known result [1, 2] that E(G) ≤ √
2mn holds for all graphs. Gutman

[6] has proved that for certain graphs a constant g can be found, such that g
√

2mn

is a lower bound for E(G). Concretely, he proved the following.



Theorem 1. [6] Let G be a quadrangle-free graph with n vertices, m edges, maximum

vertex degree 2 and no isolated vertices. Then

E(G) >
4

5

√
2mn .

Theorem 2. [6] Let G be a quadrangle-free graph with n vertices, m edges, maximum

vertex degree 3 and no isolated vertices. Then

E(G) >
2
√

6

7

√
2mn .

Gutman [6] pointed out that it would be interesting to extend Theorems 1 and 2

to graphs with maximum vertex degree ∆ > 3.

The first Zagreb index M1 of G is defined as

M1 = M1(G) =
∑

vertices
(du)

2

where du is the degree of vertex u. For details on M1, see [7, 8].

RESULTS

In this article, we prove that a constant g can be found such that g
√

2mn is a

lower bound for E(G) of a quadrangle-free graph G with minimum vertex degree

δ ≥ 1 and maximum vertex degree ∆.

Theorem 3. Let G be a quadrangle-free graph with n vertices, m edges, minimum

vertex degree δ ≥ 1 and maximum vertex degree ∆. Then

E(G) >
2
√

2δ∆

2(δ + ∆)− 1

√
2mn .

Proof. If ∆ = 1, then G = mK2 and the result follows easily.

Suppose that ∆ > 1. Let s4 =
n∑

i=1
|λi|4. Then s4 = 2M1 − 2m + 8Q, where M1 is

the first Zagreb index of G, and Q is the number of quadrangles in G. By [6, 9],

E(G) ≥
√

(2m)3

s4

with equality if and only if G is the disjoint union of complete bipartite graphs

Ka1,b1 , . . . , Kak,bk
such that a1b1 = · · · = akbk for some k ≥ 1.

Recall that

M1 ≤ 2m(δ + ∆)− nδ∆
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with equality if and only if all the vertex degrees of G are either δ or ∆, which follows

from [10] if δ < ∆, and is obvious otherwise.

Note that G is a quadrangle-free graph. Therefore

E(G) ≥
√√√√ (2m)3

2 [2m(δ + ∆)− nδ∆]− 2m

with equality if and only if G is the disjoint union of k copies of complete bipartite

graph K1,∆ for some k ≥ 1.

To find a constant g, such that E(G) ≥ g
√

2mn, its sufficient that g satisfies the

condition √√√√ (2m)3

2 [2m(δ + ∆)− nδ∆]− 2m
≥ g

√
2mn ,

i.e., we may choose g as

g = min
G∈G

γ(G)

where

γ(G) =

√√√√ 2m2

n [2m(δ + ∆)− nδ∆]−mn
,

and where G is the set of all quadrangle-free graphs with n vertices, m edges, minimum

vertex degree δ and maximum vertex degree ∆.

It is easy to see that when [2(δ + ∆)− 1] m = 2δ∆n, γ(G) attains its minimal

value 2
√

2δ∆
2(δ+∆)−1

. But [2(δ + ∆)− 1] m = 2δ∆n becomes [2(1+∆)−1]k∆ = 2∆k(∆+1),

which is obviously impossible if G is the disjoint union of k copies of complete bipartite

graph K1,∆ for k ≥ 1. Therefore E(G) > g
√

2mn with g = 2
√

2δ∆
2(δ+∆)−1

. This proves the

theorem. 2

Given ∆ > 1, it is easy to see that

f(δ) =
2
√

2δ∆

2(δ + ∆)− 1

is an increasing function of δ when δ < ∆. Hence f(δ) ≥ min{f(1), f(∆)} = f(1) =
2
√

2∆
2∆+1

. By Theorem 3, we have the following.

Corollary 4. Let G be a quadrangle-free graph with n vertices, m edges and maximum

vertex degree ∆ and no isolated vertices. Then

E(G) >
2
√

2∆

2∆ + 1

√
2mn .

Setting ∆ = 2, 3 in Corollary 4, we obtain the results in Theorems 1 and 2, re-

spectively. Recall that a graph is a chemical graph if it is connected and its maximum
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vertex degree is at most 4. It is easy to see that 2
√

2∆
2∆+1

is a decreasing function of ∆

when ∆ ≥ 1. Setting ∆ = 4 in Corollary 4, we have the following.

Corollary 5. Let G be a chemical quadrangle-free graph with n (> 1) vertices and m

edges. Then

E(G) >
4
√

2

9

√
2mn .
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