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Abstract

Monocyclic graphs (i.e., connected graphs with a unique cycle) whose every vertex
has degree at most 4 model many chemical compounds of practical interest.
Therefore, it is of interest to create specialized software for the analyses of such
graphs. In order to develop such software a large number of efficient algorithms have
to be developed. These algorithms (in order to be really efficient) have to rely on
mathematical theory. Here we give several theorems that are incorporated in the
software Thorny Graph Calculator. Algorithms based on these theorems are able to
almost instantly solve the problems for graphs up to a few hundred vertices.

With p, (G) , we denote the number of edges in a graph G that connect vertices of
degrees i and j. The contribution of this paper to the algorithms of the software
Thoryn Graph Calculator is the following: we give necessary and sufficient conditions
on numbers p, (G) such that graph with prescribed thorns exists.

Since, numbers pi/.(G) are incorporated in many topological indices (let us just

mention the Randi¢ index and the Zagreb indices), these results may be of use to those
interested, for example, in QSAR and QSPR modeling.

* Author for correspondence. Email address: vukicevi@pmfst.hr
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1. Introduction

Thorny graph is a graph that can be obtained from a parent connected graph by attaching
new vertices of valence one to each vertex of the parent graph. In the present report we adopted
term thorny graphs after Bytautas et al. [1], but these autors have also used the term thorn
graphs [2]. The protype of a thorny graph is a plerogram of Cayley [3]. Plerograms are
molecular graphs in which all atoms are represented by vertices, the so called hydrogen-filled
(molecular) graphs. Cayley called the hydrogen-deleted graphs kenograms. Plerograms and
kenograms have been used in various contexts in recent years [1,2,4-6]. Since plerograms and
kenograms are not diagrams but graphs, we named them plerographs and kenographs [7].
Several classes of thorny graphs, such as thorny trees, thorny rings, thorny rods, thorny stars,
have been studied in recent years [1,2]. Thorny graphs found use in theory of polymers [8,9],
especially for dendrimers [10,11].

In extension of the above metioned papers, we report in three related papers some of
mathematical and computational properties of thorny graphs. The standard graph-theoretical
apparatus will be used [12-14].

The results obtained in this paper require a lot of tedious mathematical calculations. Here,
we do not incorporate the proofs of the presented theorems. Instead are made available on
internet in a paper of about 35 pages (http://www.pmfst.hr/~vukicevi/ProjEnglndex.htm). On
the same address the pseudo-code of the algorithm will also be presented together with its

software and the manual (for the free download).
2.  Mathematical aspects

Let G be any graph with maximal degree at most 4. Denote by 1, (G), 1<i<j<4,
number of edges that connect vertices of degrees i and j in G (this edges are also termed as ij -
“n(G)’“IZ(G)’“u(G)’“M (G)’“zz(G)a]. Ifan
B (G) 12y (G) 1y (G), 13 (G) 1as (G)
edge connect vertices of degrees i and j, we say that edge is of type ¢; .

valence connectivities). Also denote p(G)= [

Let o : {0,1}8 x Ny'® = {0,1} be the function defined by

(x(ll,lz,13,14,15,1(,,17,18,”111,mlz,m13,

j =1 if and only if there is a thorny cycle G such that
My My 5 Moy My 5 M, My 5 Ty,

| s My 1y, Iy I . . 4 N
K (G) = with the following thorn allowed: methyl-thorn (if /, =1);
Mgy 5 My s Mgy My, 1y
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ethyl-thorn (if i, =1); propyl-thorn (if ; =1); isopropyl-thorn (if i, =1); butyl-thorn (if i =1);
(2-methyl-propyl)-thorn (if i; =1); (1-methyl-propyl)-thorn (if i, =1); and (1,1-dimethyl-ethyl)-
thorn (if i, =1).
Let B: {0,1}3 x{0,1,2} x {0,1}3 x N,"' = {0,1} be the function defined by
[ll e j =1 if and only if “There is a thorny cycle G such that
MMy 5 Mgy s My s My s My Mgy Mgy 7

p(G) _ [mll’m12’m13’ml4’m22’
ethyl-thorn (if 7, =1); propyl-thorn (if i; =1); isopropyl-thorn (if i, > 0); butyl-thorn (if iy =1);
(2-methyl-propyl)-thorn (if i, =1); (1,1-dimethyl-ethyl)-thorn (if i, =1); and such that there are
exactly 7 isopropyl-thorns (if i, =2) or there are at least » isopropyl-thorns (if i, <2). First,

] with the following thorn allowed: methyl-thorn (if 7, =1);
My 5 My s Mgy My, 1y

we give the theorem that determines the value of the function o in terms of the function f3 :

Lsly s lyslysls sl s by, 1g, 10y 10 T 5,

Theorem 1 (x[ j =1 if and only if one of the following

My My 5 Mgy s My s My, Mgy, My

statements holds:
1) (i, =0) and [3{
2) (i, #0) and (i, =0) and

(31’ € {0,1,...,min{m12,mu,mﬂ}}) B (

3) (i #0) and (i, #0) and

Lslyslyslyslssleslys My, My, 15, -1
0

mM > mZZ > mZ} 9m24 > m33 > m34 ’m44 >

Iyl sy s 2, 0s B By 1y, My, — 0,100 +1,]_1
My s My s My =1, 1My 5 T35 Ty, Ty, 1

(Eli € {0,1,...,min{mlz,mls,mn}}) B (

Uslyslyslyslsylylg, 1y, 1, — 1,105 +Z,J_1 -

My s Mgy s My =1, MMy 5 Ty, Ty, Ty 1

Let function 7y : {(),1}2 x{0,1,2} x {0,1}2 x N,"' = {0,1} be given by

(]2’ll’l4’l6’lX’mll’m12’m13’m14’

=1 if and only if “There is a thorny cycle G such that
Moy s My s My s My s My s My s 1

My My M35 1Ty 5 My s

(@)=

ethyl-thorn (if j, =1); isopropyl-thorn (if i, > 1); (2-methyl-propyl)-thorn (if i, =1); (2-methyl-

J with the following thorn allowed: methyl-thorn (if 7 =1);
M35 My s M3y My, My,

propyl)-thorn (if i, =1); and (1,1-dimethyl-ethyl)-thorn (if i, =1) and there are at least r
isopropyl-thorns (if i, # 2 ) or there are exactly » isopropyl-thorns (if i, =2) . The next theorem
theorem determines the value of the function  in terms of the function y :
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Uolyslyslyslsslgs g, 11y 5 10, M5,

Theorem 2 3 [ J =1 if and only if one of the following

My g5 Moy 5 My s My s M s My s Mgy, 1

statements hold:

[ U PO A/ T 7T S 7T N 1/
1)(i3:0)and(i5:0)and£y[2 1olaslslys Ty 5 1T 5 115 HJ_IJ

My 5 Mgy s My s Mgy s My My 7

2) (i, =0) and (i, =1) and (i; =0) and (m,, > m,,) and
[Y [1’i17i4’i6’i8’m11’m12’ml3’ml4’ j_lj
Myy = My 5 Moy s My 5 M5 My My s 1
3) (i, =1) and (i; =1) and (i; = 0) and one of the following holds:

]’11:14alﬁslssmn’mlz’mlzsmluj _ IJ

0,myy, Moy, sy, Mgy My, 7
3.2) [Y (Liwiwiwis:mn=m12:m137m14>j _ IJ
My s My3 s My s Mgy s My s My 1
4) (i, =0) and (i, =0) and (i; =1) and (m,, 22-m,,) and
[Y [l7il’i4’i6>i87mll7n1127m137m149 jzlj
Myy =21y My, My My, Ty s Mgy 1
5) (i, =1) and (i; =0) and (i; =1) and one of the following holds:

lallalw’salx»mn>mlz>m137m14vJ_lj

s My 5 My s Mgy, My, My, T

3.1) (my, 2 my,) and [y(

5.1) (2-my, > m,,) and (m,, =0(mod2)) and (y {

5.2) [Y (l’il’iA’iG’iS’mll’mIZ’mH’mM’ ]:]]
Myy = My 5 M3y My s M3, My Ty, T
6) (i, =0) and (i, =1) and (i; =1) and (m,, > m,,) and one of the following holds:

l’ll’14516’18’mll’mIZ’mU’mM’j_1]

0’m23’m247m337m345m447r
6.2) ,Y[]’il’i4’i6’i8’mll’m12’m13’m14’ jzl
My = My 5 Mgy My 5 My, My My, 1
7) (i, =1) and (i =1) and (i; =1) and one of the following holds:

]’11:14alﬁslssmn’mlz’mlzsmluj _ IJ

0,myy, Moy, sy, Mgy My, 7

i, iy 0 0,y My, 5 M,

1°%4°% >8> 112 122 132 14>

7.2) |y =1|m
My s Mgy s Mgy s Mgy s Mgy s Mgy, 7

6.1) (Z'mlz 2mzz) and ["/(
7.1) (2-my, 2 my,) and [y(

Let function & : {0,1}" x{0,1,2} x{0,1} x N,"* - {0,1} be given by

5 [.}1’]2’.]35J4’m11’m12’ml3’ml4’

j =1 if and only if “There is a thorny cycle G such that
My s My3 s My s Mgy s My s Mgy 5 T, §
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My My 5 M35 My My

(@)=

ethyl-thorn (if j, =1); isopropyl-thorn (if j, >1); and (1,1-dimethyl-ethyl)-thorn (if j, =1)
there are at least » isopropyl-thorns (if i, # 2 ) or there are exactly » isopropyl-thorns (if

J with the following thorn allowed: methyl-thorn (if j, =1);
Moy s My s My My, My

i, =2); and there are at least s ethyl-thorns. The following theorem determines the value of the
function y in terms of the function § :

Joolislysleolys My s My 5 115, Ty

Theorem 3 vy [ j =1 if and only if one of the following holds:

My s Mgy s Mgy s Mgy s Mgy s My 15 S

1) (i, =0) and 5[i“j”i“’i*’m”’m”’m‘-“m"“ j:l

Mgy s Moy s Mgy My, My My, 750

2)(i; =1) and ((j, =1) or (m, =0)) and
[3;’ - 0,...,minﬂ7m‘3 _ZrJ,mzz}][S [i“l’i“’i“’m,‘"m” b _Z.i’m,”’J - 1j .
2 My s My =1, My Mgy, My My, 151
Let function ¢ :{0,1}2 x{0,1,2} x{0,1} x N,'* —{0,1} be given by

Jas Jas Jss Jas iy s gy My, 1y, T, . . :
g| 72 D TR AR T2 — 1 if and only if “There is a thorny cycle G such that
My, Mgy, My, My, Mgy 7y S, X, Y, Z,U

My My 5 M35 My My

(@)=

ethyl-thorn (if j, =1); isopropyl-thorn (if j, >1); and (1,1-dimethyl-ethyl)-thorn (if j, =1)
there are at least » isopropyl-thorns (if i, # 2 ) or there are exactly » isopropyl-thorns (if

J with the following thorn allowed: methyl-thorn (if j, =1);
Moy 5 My s My My, My

i, =2); there are at least s ethyl-thorns; there are u ethyl-thorns adjacent to vertices of degree
3; x isopropyl-thorns adjacent with vertices of degree 3; y isopropyl-thorns adjacent to vertices
of degree 4; z (1,1-dimethyl-ethyl)-thorns adjacent with vertices of degree 4; and there are n,
vertices of degree 3. The value of the function & can be expressed in terms of the function & by:

Jz:./z:]}:.]4>m||7m127m13am147

Theorem 4. & [
Mgy s Mgy s My, Mgy s Mgy s Mgy Vs S

J:I ifand only if m, >s; m;, =0; ny,n, e N;

n, =2n, +n, and one of the following claims hold:

J2sJ25 T35 Jas My s My 5 5, 1Ty, MLy
1) my, —ny+my; +my; =0(mod2) and €| myy, my,, myy, my,,my,,7,s, =1

m33,(m34 —ny A+ my +m23)/2,m44,m23

2) j, =1 and one of the following claims hold
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JasJas 3o Jas s My s 13, My, Ty

2.1) my, —ny +myy +my =0(mod2) and €| myy,my,, myy,my,,my,,r,s, =1
My, (Mg, — g +myy +my; )/ 2,0,my,
2.2) my, —ny +myy +my, —m,, = 0(mod2) and one of the following claims hold
Jas Jas Jys Jas My s My s Mgy iy 1y
2.2.1)€| myy, My, , My, My, My, 7,8, =1
0’(7”34 —ny+my +my, —m24)/2,m44,m12 — iy,
j25j2’j39j4’m||’m125m137m|47m22’
2.2.2) €| myy,myy My My My, 18,5 = (Mg —ny +myy +my, —my, )12, | =1
(m34 —n +m|3 +m, _m24)/2>m44’m|2 — My,
3) j, =0 and one of the following claims hold
3.1) my, —ny +myy +my =0(mod2) and m,, = 0(mod3) and
JasJas Jys JasMys My s My g, 1

mz37m24>m33>m347m44arasam33,(m34 —ny +mpy +m23)/2, =1

(2]

my /3= ny+my —(my, —ny +myy +my )/ 2+ myy,my,
3.2) my, —ny +myy +my, —my, +my; =0(mod2) and my; = 0(mod2) and

J25J25 T35 Jas s My s 5, 1Ty, My s

m239m24>m33>m34’m44>r9s’m|3/2_(’"34 —n +m13 +m, —nmy, +mz3)/2: =1

2]

(m34 —nytmy +my, —my, +m23)/2,m44,m12 My,
4) The following holds:
4.1) m,, —my, + my, —n, +my, is an even number
4.2) (my, =0) or (my +m,, —my, =0)
4.3) There are integers x, y,z,u such that:
43.1) x+y=r
432) x=0
433) y20
434)z20
435)u=0
43.6) m; —2x-2y =0
437 ny—my;+y-u=0
4.3.8) my, =3n, +3m;; =3y +3u—-3z20
439) m,-u=>0
43.10)x+y=ror j, <2
43.11) my; -2x-2y=0or j, >0
4.3.12) my, —3n, +3m;; =3y +3u—-3z=0or j >0
43.13)u=0or j, >0
43.14) m, —u=0or j, >0
4315 x=00r j,>0
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43.16) y=0or j; >0
4317) ny—myy;+y-u=0or j, >0
43.18) z=0o0r j, >0
4.3.19) my, +myy +myy +myy +my —my, =0y +myy —3+u—-x-2y—-2z20
4.3.20) my, +my, —ny +m; —2-2y >0
43.21) my, —my, +my, —ny +my; —2+2u—2y >0
43.22) my; —u=0
4.3.23) my, —m;, +u =0
43.24) my; —x 20
43.25) my, —ny+m;; =2y +u =0
43.26) my, —z20
where

my, +my, +2m, +m m,, +m,, +m,, +2m
nl — mlz +m13 +m14; n3 — 13 23 33 34 a,nd }14 — 14 24 34 44 n
3 4

Let function ¢ : {0,1}2 x{0,1,2} x{0,1} x N,"* —{0,1} be given by

¢ [/1’]2’]3’]4””}]’mIZ’mIB’mM’

j =1 if and only if they satisfy the condition 4) of the last
Myy s M3 s My Mgy s My, My, 15 S

Lemma. Now, we can reformulate the last Theorem as:

J2sJ2s J3s Jas My My My, 1y,

Theorem 5. & [
Mgy s Mgy s My, Mgy s Mgy s My Vs S

]=1 ifand only if m,, 2s; m, =0; n,,n, e N

and one of the following claims hold:

J25J2s T35 Jas My My s 1y, My 5 My,
1) my, —ny +myy +m,, =0(mod2) and &| my,, my,,myy,my,,my,, 7, s, =1

m33,(m34 —nytmg +m23)/2,m44,m23

2) j, =1 and one of the following claims hold
JasJas Jys Jas My My s Mgy s My 1,
2.1) my, —ny +myy +myy =0(mod2) and &| my,,my,,myy,my,,my, 1, s, =1
mszs(m.u —nytmg, +m23)/2,0,m23
2.2) my, —ny +myy +my, —m,, = 0(mod2) and one of the following claims hold
Jas Jas T35 Jas My My s g3 Ty s Ty
2.2.1)e| myy,myy, My, My, My, , 7, S, =1
0’(’”34 —ny +myy +my, —m24)/2,m44,m12 —my,
Jas Jas T35 Jas My My s T3 T s Ty
2.2.2) €| My, myy My My My 18,7 = (my, =y +myy +my, —my, )12, |=1

(m34 — Ny My, iy, )/2,m44 sy = My
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3) j, =0 and one of the following claims hold
3.1) my, —ny +myy +my =0(mod2) and m,, =0(mod3) and
Jas Jas Jas Jas My My s Mg, 5 T,

Mgy My, My Ty s My 3 S, Mgy (Mg = 1y + gy + 53 ) /2, | =1

™

my /3 —ny+m; —(m34 —ny +my, +m23)/2+m23,m23
3.2) my, —ny +myy +my, —my, +m,; = 0(mod2) and m; = 0(mod2) and

J25J25 T35 Jas Ty My s M5, 1Ty MLy

m23,m24,m33,m34,m44,r,s,m,3/2—(m34 —ny +myy +my —my, +m23)/2, =1

(2

(m34 — Ny Ny My My, Ty, )/2,m44,m12 My,

JisJas J3s Jas My, My Mgy,
4) ¢ =lm
My s M3y My s Mgy s Mgy s My, 1 S

Finally, we show that:

JisJ2sJ3s Jas My My, 3,100,

mZZ > m23 > m24 > m33 > m34 > m44 5,8

Theorem 6 ( j =1 if and only if

1) my, —m,, +m,, —ny +m,; is an even number

2) (my, =0) or (my; +my, —my, >0)

3) (b=0(mod3))or j, >0

4) my; =0(mod2) or j, >0

5)k<jorj>0

6) r<k

7) m, =0 or j, >0

8) a=—-hor j,>0o0r j >0

9)0=ror j,>0

10 k=0 or j, >0 or j, >0

11) k=ror j,>0or j, #2

12) fa < fee

13) ff<a

14) ff<ior j >0

15) 0< fee or j, >0

16) 0> fa or j, >0

17y a<ior j,>0o0r j, >0

18) There is an integer y such that
18.1) y > fk

182) y< 1l
183) y=0or j, >0

184) y<ror j, #2
185) y< fhor j >0
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18.6) y= fg or j, >0

187) y=o or j, >0

18.8) y=—a or j, >0

189) y<fior j,>0

18.10) y< fj or j, >0

18.11) y=2—i or j, >0

18.12) y=—a or j, >0 or j,>0m

3.  Computational aspects

Using the above theorems, we can make an efficient algorithm that solves our problem. An
algorithm consists of 7 functions: TestA (which calculates function a ), TestB (which calculates
function B ), TestC (which calculates functiony ), TestD (which calculates functiond ), TestE
(which calculates function ¢ ), TestF and TestG.

TestA calculates function o using TestB which calculates function B incorporating the results
of the Theorem 1. TestB calculates function B using TestC which calculates function y
incorporating the results of the Theorem 2 and so on (for the details see the pseudocode available

on the internet (http://www.pmfst.hr/~vukicevi/ProjEngindex.htm)

At the end (in the time that is proportional or less then the product of
min {m12>m|3’m23} '{ml3 /2’m23})
we get a required solution (it can be seen that there are just two loops: line 2.1 in TestA and line

3 in the TestC which directly implies the complexity of the result).
4.  Conclusion

The problem of determining weather there is a graph with the prescribed thorns and bond
connectivities is not simple. Namely, there is extremely large family of graphs that should be
taken under consideration. Note that the number of graphs is non-polynomial in the number of its
vertices. Each solution based on the non-polynomial algorithm is intractable for graphs with
large number of vertices (basically non-polynomial algorithms are suitable for graphs of (say) up
to 15 vertices). Here, we give the theorems that enable different approach to this problem.
Namely, instead of examining all graphs, we have necessary and sufficient conditions on

numbers i,,i,, iy, 1y, b5, b, Iy 5 Iy 1y Wy, M5 T Ty My, T, 5, 15,1, fOT the eXistence of the


http://www.pmfst.hr/~vukicevi/ProjEngIndex.htm
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corresponding graph. In this way, we obtained an algorithm which number of operations is

proportional to min {m,,,m,;,m,,}-{m;/2,m,}. Hence, the non-efficient polynomial algorithm

is replaced by the very efficient polynomial algorithm. This algorithm works instantly even for

graphs with few hundred vertices and is capable to work with graphs of even much larger size.
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