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Abstract

The Randić index R−1(G) of a graph G is defined as the sum of the

weights (d(u)d(v))−1 of all edges uv of G, where d(u) denotes the degree

of a vertex u in G. Trees with maximum Randić index R−1 need not

be unique. Clark et al. gave the maximum values for the index of trees

of order n ≤ 20. In this paper, we determine the maximum value for

the Randić index R−1 of all trees of order n ≤ 102, and give one of the

trees with maximum value of the index. This not only largely extends

the known range of the orders n of trees with maximum index, but also

gives a convincible solution for the induction initial of our previous
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paper. Because there is a huge number of trees of order n ≤ 102, it

is not possible to directly search the trees with maximum index by a

computer. Our method is to first figure out the simple structure of one

of the trees of order n with maximum R−1 for each n ≤ 102, i.e., the

branching subtree must be a star. Then from this simple structure, we

can employ mathematical programming to easily calculate the maximum

value of R−1 for each n.

1 Introduction

In 1975, Randić proposed a pair of chemical indices R(G) and R−1(G) for a (chem-

ical) graph G, i.e.,

R(G) =
∑

uv∈E(G)

(d(u)d(v))−1/2, R−1(G) =
∑

uv∈E(G)

(d(u)d(v))−1,

where d(u) denotes the degree of a vertex u in G. Randić himself demonstrated that his

index was well correlated with a variety of physico-chemical properties of alkanes, such

as boiling point, enthalpy of formation, parameters in the Antoine equation (for vapor

pressure), surface area, and solubility in water. Eventually, this structure-descriptor

becomes one of the most popular topological indices, and scores of its chemical and

pharmacological applications have been reported. The Randić index is the only topo-

logical index to which two books are devoted [9, 10]. Like other successful chemical

indices, these two indices have received considerable attention from both chemists and

mathematicians. In this paper, we are only interested in the latter index R−1 for trees.

Until now, for trees T all the existent results are only to give lower and upper bounds

for R−1(T ), but one can not prove that the upper bound is best possible. Rautenbach

[12] gave an upper bound for R−1(T ) of trees with maximum degree 3. Li and Yang [11]

gave a method to determine the sharp upper bound for R−1 of chemical trees (i.e., trees

with maximum degree at most 4). In [7], we investigated trees with maximum value of

general Randić index Rα =
∑

uv∈E(G) (d(u)d(v))α, where α is an arbitrary real number,
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among all trees of order n. We distinguished α in several different intervals, and for

most of the intervals we characterized trees with maximum general Randić index and

gave the corresponding values. Only the interval −2 < α < −1
2

(including the point

α = −1) is left undetermined and seems very complicated. The Max Trees (trees with

maximum Randić index) could be not unique in this interval. So it is hard to get the

maximum index and the corresponding trees. For all n ≤ 20, Clark et al. [4] determined

all trees with maximum value of R−1 among all trees of order n. In 2000, Clark and

Moon [5] gave a lower and upper bound for R−1(T ), i.e., 1 ≤ R−1(T ) ≤ 5n+8
18

, where the

lower bound can be attained by the star, but they could not prove that upper bound

is best possible. At the end of their paper [5] they proposed two unsolved questions

on the upper bound. In our recently paper [8], we gave positive answers to the two

questions, and solve the sharp upper bound problem for R−1 of trees when n is large

enough. But, we feel very unsatisfactory with the following two things:

(i) In the proof of Theorem 2.1 of [8], we used induction on the number of vertices.

There the induction initial was n ≤ 71. We simply said that ”we can use a good

computer to check the result for all n ≤ 71”. We feel that this cannot convince any

reader(s), because there is a huge number of trees of order n ≤ 71.

(ii) There is a small error in Section 3 of [8], which solved the second question of

Clark and Moon [5]. We said there that ”T10 defined in [5] is the Max Tree of order 71,

the value of R−1 for T10 is 19 = 15×71−1
56

, and so n = 71 can be chosen as our induction

initial, and the constant C in our Theorem 2.1 of [8] can really be chosen as −1”. But

this is not true when we now get the maximum values of R−1 for all n ≤ 102. We find

that to choose C = −1 the smallest value (induction initial of Theorem 2.1 in [8]) of n

has to be 91, but not 71.

In this paper we not only give convincible solution to (i) and correction to (ii), but

also largely extend the known range of the orders n of trees with maximum index R−1

from n ≤ 20 to n ≤ 102. The first 20 values are exactly the same as those listed in
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[4]. Our method is to first figure out the simple structure of one of the trees of order n

with maximum R−1 for each n ≤ 102. Then from this simple structure, we can employ

mathematical programming to easily calculate the maximum value of R−1 for each n.

Throughout this paper, we use standard graph-theoretical terminology. Let T be

a tree with order n. Denote by dT (u) and NT (u) the degree and neighborhood of

the vertex u in T , respectively, and we omit the letter T if only one tree is under

consideration. A vertex of degree 1 in a tree is called a leaf. A vertex of degree greater

than 2 in a tree is called a branching vertex. A vertex of degree i is also called an

i-degree vertex. The star of order n is denoted by Sn. Let u1, u2, · · · , ur be a path and

ui ∈ V (T ), 1 ≤ i ≤ r. We call u1u2 · · ·ur a suspended path rooted at ur, if d(u1) = 1,

d(ui) = 2 (i = 2, · · · , r − 1) and ur is a branching vertex. r − 1 is called the length of

the suspended path.

2 The structure of a Max Tree of order n ≤ 102

It is easy to see that for n ≤ 9, R−1(T ) ≤ n+1
4

, and the equality holds when T is

a path. Since for n ≥ 10, path Pn does not have the maximum Randić index, so we

assume the maximum degree ∆(T ) ≥ 3 in the following.

In [7], we obtained a property of Max Trees for α < −1. If we just consider one of

the structures of Max Trees, then this property also holds for α = −1.

Property 2.1 [7] For α ≤ −1, we can find one of the Max Trees T with the property

(1) all the suspended paths of T are of length 2, except for at most one with length 3,

and (2) every vertex of degree 2 must appear on a suspended path.

Note that if T is one of the Max Trees with above property, and ST is the subgraph

obtained from T by deleting all the vertices of degrees 1 and 2, then, ST is connected

and acyclic, we call ST the branching subtree of T . In the following whenever we
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mention a Max Tree we always mean that it has the above property.

A subtree of T is called an (s, d)-system centered at z, if x1y1z, · · · , xsysz are s

distinct suspended paths rooted at z with d(z) = d ≥ 3, and w1, · · · , wd−s are the

vertices of T , other than y1, · · · , ys, adjacent to z. Clearly, 1 ≤ s ≤ d − 1, and if

s = d − 1 and w is the branching vertex adjacent to z, then we say that this (s, d)-

system is adjacent to w.

Lemma 2.2 Let T be a Max Tree. If there are s suspended paths rooted at a vertex z

in T , then s ≤ 5.

Proof. By contradiction. Suppose s ≥ 6, then d(z) = d ≥ 6. Let wi(i = 1, · · · , d − 6)

be the vertices adjacent to z, other than the vertices on the six suspended paths. Let

T ′ be the tree obtained from T by deleting five suspended paths rooted at z and adding

two (2, 3)-systems adjacent to z. It is easy to show that T ′ has an index larger than

T , i.e.,

R−1(T )−R−1(T
′) = −1

6
+

3

d
− 1

2(d− 3)
− 2

3(d− 3)
+

(
1

d
− 1

d− 3

) d−6∑
i=1

1

d(wi)

≤ −1

6
+

3

d
− 7

6(d− 3)
=
−d2 + 14d− 54

6d(d− 3)
< 0.

Here and in what follows, whenever we transform a tree T into another tree T ′, we

always assume that there is no suspended path of length 3 in T . If there is a one, then

instead of directly transforming T into T ′, we contract the leaf edge of the suspended

path of length 3 to get a tree T1 first, then transform T1 into T ′
1, and finally subdivide

a leaf of T ′
1 to get T ′.

Lemma 2.3 Let T be a Max Tree and z be a leaf of the branching subtree ST . Then

there are only two or three suspended paths rooted at z, i.e., d(z) = 3 or 4.

Proof. By Lemma 2.2, there are at most 5 suspended paths rooted at z in T . If there

are 5 suspended paths rooted at z, and w is the branching vertex adjacent to z, suppose
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d(w) = t, then by deleting the vertex z, adding two (2, 3)-systems adjacent to w, and

then subdividing a leaf, we get a new tree T ′. Let vi (i = 1, · · · , t− 1) be the vertices

adjacent to w, other than z. Then, from the property we have d(vi) ≥ 2. So we have

R−1(T )−R−1(T
′) =

1

6t
− 2

3(t + 1)
+

(
1

t
− 1

t + 1

) t−1∑
i=1

1

d(vi)

≤ 1

6t
− 2

3(t + 1)
+

1

t(t + 1)
· t− 1

2

=
−2

6t(t + 1)
< 0,

which is a contradiction, since T is a Max Tree.

If there are 4 suspended paths rooted at z, and w is the branching vertex adjacent

to z, suppose d(w) = t, then, since if t = 2 then T is a tree with order 11 or 12, it is easy

to check that T is not a Max Tree. So, we suppose t ≥ 3. Let vi (i = 1, · · · , t−1) be the

vertices adjacent to w, other than z. We distinguish two cases to deduce contradictions.

(i) If there is a 2-degree vertex v1 adjacent to w, then we get a new tree by deleting

the vertices z and v1, adding two (2, 3)-systems adjacent to w, and then subdividing a

leaf. Then we have

R−1(T )−R−1(T
′) =

4

10
+

4

2
+

1

5t
+

1

2
+

1

2t
− 4

2
− 1

4
− 4

6
− 2

3t

= − 1

60
+

1

30t
< 0.

(ii) If the degree of any neighbor of w is more than two, let v be a neighbor of w,

other than z, with d(v) = p ≥ 3, and ui(i = 1, · · · , p− 1) be the neighbors of v, other

than w. Let y be a 2-degree vertex adjacent to z. By the property, d(ui) ≥ 2, for

i = 1, · · · , p− 1. Then we get a new tree by deleting the edge yz and adding the edge

yv. Then we have

R−1(T )−R−1(T
′) =

4

10
+

1

5t
− 3

8
− 1

4t
− 1

2(p + 1)
+

(
1

p
− 1

p + 1

) (
1

t
+

p−1∑
i=1

1

d(ui)

)

≤ 1

40
− 1

20t
− 1

2(p + 1)
+

(
1

p
− 1

p + 1

)(
1

t
+

p− 1

2

)
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=
1

40
− 1

20t
+

2− t

2p · t(p + 1)
≤ 1

40
− 1

20t
+

2− t

24t
= − 1

60
+

1

30t
< 0.

Lemma 2.4 Let v1u1 and v2u2 be two edges of T , and T ′ be the tree obtained from

T by deleting the edges v1u1 and v2u2 first, then adding the edges u1v2 and v1u2. If

d(u1) ≥ d(u2) and d(v1) ≤ d(v2), then R−1(T ) ≤ R−1(T
′).

Proof. R−1(T )−R−1(T
′) =

1

d(v1)d(u1)
+

1

d(v2)d(u2)
− 1

d(v1)d(u2)
− 1

d(v2)d(u1)

= (
1

d(u1)
− 1

d(u2)
)(

1

d(v1)
− 1

d(v2)
) ≤ 0.

Our main result is the following, which gives the structure of a Max Tree of order

n ≤ 102.

Theorem 2.5 For n ≤ 102, there is a Max Tree T of order n such that the branching

subtree ST of T is a star.

Proof. Suppose ST is not a star, then we will transform T into another tree T ′ with

R−1(T ) ≤ R−1(T
′) step by step, till ST is a star.

Let w be a maximum degree vertex of T , i.e., d(w) = ∆. Since ST is not a star,

there is a branching vertex v ∈ N(w) such that v is not a leaf of ST , i.e., v has a

neighbor u, other than w, with d(u) ≥ 3. If w has a 2-degree neighbor v0, then T has

two edges v0w and uv with d(v0) < d(u) and d(w) ≥ d(v). So by Lemma 2.4, we can

assume that the neighbors of w are all branching vertices.

In the following, we always denote by v the neighbor of w which is not a leaf of ST

and the degree of v is as small as possible. Let u be the branching vertex adjacent to

v, other than w, and p be a neighbor of u, other than v. Then d(p) ≤ d(w) = ∆. By

Lemma 2.4, we can assume that d(v) ≥ d(u).

Now consider the two components of T − wv, the component with vertex v has at

least 8 vertices, and the other component has at least 5(∆ − 1) + 1 vertices. Then
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5(∆− 1)+9 ≤ n, so ∆ ≤ 19, for n ≤ 102. Denote by s the number of suspended paths

rooted at v. We distinguish three cases and always assume d(v) = t ≥ 3.

Case 1 s ≥ 2.

By Lemma 2.2, 2 ≤ s ≤ min{5, t− 2}. Let ui be the neighbors of v, other than w,

with d(ui) ≥ 3 (i = 1, 2, · · · , t − s − 1), and vj be the neighbors of w, other than v.

Then d(vj) ≥ 3 (j = 1, 2, · · · , ∆− 1). Let T ′ be the tree obtained from T by deleting

the edges vui and adding the edges wui. Then we have

R−1(T )−R−1(T
′)

=
1

∆t
− 1

(s + 1)(∆ + t− s− 1)
+

s

2t
− s

2(s + 1)

+

(
1

∆
− 1

∆ + t− s− 1

) ∆−1∑
j=1

1

d(vj)
+

(
1

t
− 1

∆ + t− s− 1

) t−s−1∑
i=1

1

d(ui)

≤ 1

∆t
− 1

(s + 1)(∆ + t− s− 1)
+

s

2t
− s

2(s + 1)

+
t− s− 1

∆(∆ + t− s− 1)
· ∆− 1

3
+

∆− s− 1

t(∆ + t− s− 1)
· t− s− 1

3
< 0.

(2.1)

This inequality holds for all 3 ≤ ∆ ≤ 19, 3 ≤ t ≤ ∆, and 2 ≤ s ≤ min{5, t− 2}.

Case 2 s = 1, i.e., there is a suspended path xyv rooted at v.

Consider the two components of T −wv, the component with vertex v has at least

5(t− 2) + 3 vertices, and the other component has at least 5(∆− 1) + 1 vertices. Then

5(∆ + t)− 11 ≤ n, so ∆ + t ≤ 22, for n ≤ 102.

If there is a vertex u ∈ N(v) \ {w, y} such that u is not a leaf of ST . Then u has

a neighbor p, other than v, with d(p) ≥ 3. Thus T has two edges yv and pu with

d(y) < d(p) and d(v) ≥ d(u). So, by Lemma 2.4 we can assume for any neighbor ui of

v, other than w and y, ui is a leaf of ST , i.e., d(ui) = 3 or 4 (i = 1, 2, · · · , t− 2).

If there exist a vertex u1 ∈ N(v) \ {w, y} such that d(u1) = 4. Then for any

vi ∈ N(w)\{v}, d(vi) ≥ 4, since, for otherwise, if there is a 3-degree vertex v1 adjacent

to w, then from Lemma 2.4, by deleting the edges wv1 and vu1 and adding the edges
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wu1 and vv1, we can get a tree T ′ with R−1(T ) ≤ R−1(T
′).

Subcase 2.1 All the neighbors of v, other than w and y, are of degree 4.

Now, d(vj) ≥ 4 (j = 1, 2, · · · , ∆− 1), and so from (2.1) we have

R−1(T )−R−1(T
′)

=
1

∆t
− 1

2(∆ + t− 2)
+

1

2t
− 1

4
+

(
1

∆
− 1

∆ + t− 2

) ∆−1∑
j=1

1

d(vj)

+

(
1

t
− 1

∆ + t− 2

) t−2∑
i=1

1

d(ui)
(2.2)

≤ 1

∆t
− 1

2(∆ + t− 2)
+

1

2t
− 1

4
+

t− 2

∆(∆ + t− 2)
· ∆− 1

4
+

∆− 2

t(∆ + t− 2)
· t− 2

4
< 0.

This inequality holds for all 3 ≤ ∆ ≤ 19, 3 ≤ t ≤ ∆.

Subcase 2.2 There exist both a 3-degree vertex and a 4-degree vertex in the neighbors

of v, other than w and y.

Obviously t ≥ 4, therefore ∆ ≥ 4 in this subcase. Let u1 be a 3-degree vertex

adjacent to v. Let T ′ be obtained from T by deleting the edge vy and adding the

edge u1y, and contracting the edge wv and then subdividing a leaf. Since d(vj) ≥ 4

(j = 1, 2, · · · , ∆− 1), we have

R−1(T )−R−1(T
′)

=− 7

24
+

1

∆t
+

5

6t
− 1

4(∆ + t− 3)
+

(
1

∆
− 1

∆ + t− 3

) ∆−1∑
j=1

1

d(vj)

+

(
1

t
− 1

∆ + t− 3

) t−3∑
i=1

1

d(ui)
(2.3)

≤− 7

24
+

1

∆t
+

5

6t
− 1

4(∆ + t− 3)
+

t− 3

∆(∆ + t− 3)
· ∆− 1

4
+

∆− 3

t(∆ + t− 3)

(
t− 4

3
+

1

4

)

<0.

This inequality holds for all 4 ≤ ∆ ≤ 19, 4 ≤ t ≤ ∆, and ∆ + t ≤ 22.

Subcase 2.3 All the neighbors of v, other than w and y, are of degree 3.
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Now, we have d(vj) ≥ 3 (j = 1, 2, · · · , ∆− 1).

If t = 3, and 3 ≤ ∆ ≤ 5, then from (2.2) we have

R−1(T )−R−1(T
′)

≤ 1

3∆
− 1

2(∆ + 1)
− 1

12
+

1

∆(∆ + 1)
· ∆− 1

3
+

∆− 2

3(∆ + 1)
· 1

3

=
∆2 − 5∆

36∆(∆ + 1)
≤ 0.

If t = 3, ∆ ≥ 6, then let T ′ be the tree obtained from T by deleting the vertex v,

adding a (3,4)-system adjacent to w, and then subdividing a leaf, and so we have

R−1(T )−R−1(T
′) =

1

12∆
− 1

72
≤ 0.

If t = 4, from (2.3) we have

R−1(T )−R−1(T
′) ≤− 1

12
+

1

4∆
− 1

4(∆ + 1)
+

1

∆(∆ + 1)
· ∆− 1

3
+

∆− 3

12(∆ + 1)

=− 1

12∆(∆ + 1)
< 0.

Now we assume t ≥ 5, and so d ≥ 5. If there are at most two 3-degree vertices

adjacent to w, other than v, then from (2.3) we have

R−1(T )−R−1(T
′)

≤− 7

24
+

1

∆t
+

5

6t
− 1

4(∆ + t− 3)
+

t− 3

∆(∆ + t− 3)

(
∆− 3

4
+

2

3

)
+

∆− 3

t(∆ + t− 3)
· t− 3

3

<0.

This inequality holds for all 5 ≤ ∆ ≤ 19, 5 ≤ t ≤ ∆, and ∆ + t ≤ 22.

So there are at least three 3-degree vertices adjacent to w, other than v. By the

choice of v, all the 3-degree vertices adjacent to w must be leaves of ST . Let T ′ be

the tree obtained from T by deleting the three (2,3)-systems adjacent to w and two

(2,3)-systems adjacent to v and the suspended path adjacent to v, then contracting

- 128 -



the edge wv to a new vertex w′ and adding four (3,4)-systems adjacent to w′. Then

R−1(T )−R−1(T
′)

=− 1

3
+

1

∆t
+

3

3∆
+

2

3t
+

1

2t
− 4

4(∆ + t− 4)
+

(
1

∆
− 1

∆ + t− 4

) ∆−4∑
j=1

1

d(vj)

+

(
1

t
− 1

∆ + t− 4

) t−4∑
i=1

1

d(ui)

≤− 1

3
+

1

∆t
+

1

∆
+

7

6t
− 1

∆ + t− 4
+

t− 4

∆(∆ + t− 4)
· ∆− 4

3
+

∆− 4

t(∆ + t− 4)
· t− 4

3

<0.

This inequality holds for all 5 ≤ ∆ ≤ 19, 5 ≤ t ≤ ∆, and ∆ + t ≤ 22.

Case 3 s = 0, i.e., there is no suspended path rooted at any of v and w.

Subcase 3.1 There is a vertex u ∈ N(v) \ {w} such that u is not a leaf of ST .

If t ≤ 4, T ′ is obtained from T by contracting the edge wv and subdividing a leaf,

then

R−1(T )−R−1(T
′)

=
1

∆t
− 1

4
+

(
1

∆
− 1

∆ + t− 2

) ∆−1∑
j=1

1

d(vj)
+

(
1

t
− 1

∆ + t− 2

) t−1∑
i=1

1

d(ui)
(2.4)

≤ 1

∆t
− 1

4
+

t− 2

∆(∆ + t− 2)
· ∆− 1

3
+

∆− 2

t(∆ + t− 2)
· t− 1

3
< 0.

This inequality holds for all 3 ≤ ∆ ≤ 19, t ≤ 4. So we assume t ≥ 5 in the following.

By the choice of v, for any neighbor vi of w, vi is either a leaf of ST or d(vi) ≥ 5.

If there is a vertex v1 ∈ N(w) \ {v} such that d(v1) = 3, then v1 is a leaf of ST , and

d(v1) ≤ d(u). By Lemma 2.4, we can get a tree T ′ with R−1(T ) ≤ R−1(T
′).

So for any vertex vi ∈ N(w)\{v}, d(vi) ≥ 4 (i = 1, 2, · · · , ∆−1). Consider the two

components of T −wv, the component with vertex v has at least 5(t− 1) + 1 vertices,

and the other component has at least 7(∆− 1) + 1 vertices. Then 7∆ + 5t− 10 ≤ n,

so 7∆ + 5t ≤ 112 and ∆ ≤ 12, for n ≤ 102 and t ≥ 5. Then, from (2.4) we have
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R−1(T )−R−1(T
′) ≤ 1

∆t
− 1

4
+

t− 2

∆(∆ + t− 2)
· ∆− 1

4
+

∆− 2

t(∆ + t− 2)
· t− 1

3
< 0.

This inequality holds for all 3 ≤ ∆ ≤ 12, 5 ≤ t ≤ d and 7∆ + 5t ≤ 112.

Subcase 3.2 For any ui ∈ N(v) \ {w}, ui is a leaf of ST , i.e., d(ui) = 3 or 4

(i = 1, 2, · · · t− 1).

Consider the two components of T −wv, the component containing vertex v has at

least 5(t− 1) + 1 vertices, and the other component has at least 5(∆− 1) + 1 vertices.

Then 5(∆ + t)− 8 ≤ n, so ∆ + t ≤ 22, for n ≤ 102.

If t = 3, then by (2.4) we have

R−1(T )−R−1(T
′) ≤ 1

3∆
− 1

4
+

1

∆(∆ + 1)
· ∆− 1

3
+

∆− 2

3(∆ + 1)
· 2

3
= − 1

36
< 0.

Now we assume 4 ≤ t ≤ 7, therefore d ≥ 4.

If there are at most three 3-degree vertices adjacent to v, then by (2.4) we have

R−1(T )−R−1(T
′)

≤ 1

∆t
− 1

4
+

t− 2

∆(∆ + t− 2)
· ∆− 1

3
+

∆− 2

t(∆ + t− 2)
·
(

3

3
+

t− 4

4

)

=
1

∆t
− 1

4
+

t− 2

∆(∆ + t− 2)
· ∆− 1

3
+

∆− 2

t(∆ + t− 2)
· t

4
< 0.

This inequality holds for all 4 ≤ ∆ ≤ 19, 4 ≤ t ≤ 7 and ∆ + t ≤ 22.

So there are at least four 3-degree vertices adjacent to v (now t ≥ 5), say u1, u2, u3, u4,

i.e., there are at least four (2,3)-systems adjacent to v. We obtain T ′ from T by deleting

these four (2,3)-systems, contracting the edge wv to a new vertex w′, and then adding

three (3,4)-systems adjacent to w′. Then we have

R−1(T )−R−1(T
′)

=
1

∆t
+

4

3t
+

16

3
− 45

8
− 3

4(∆ + t− 3)

+

(
1

∆
− 1

∆ + t− 3

) ∆−1∑
j=1

1

d(vj)
+

(
1

t
− 1

∆ + t− 3

) t−1∑
i=5

1

d(ui)

- 130 -



≤ 1

∆t
− 7

24
+

4

3t
− 3

4(∆ + t− 3)
+

t− 3

∆(∆ + t− 3)
· ∆− 1

3
+

∆− 3

t(∆ + t− 3)
· t− 5

3
< 0.

This inequality holds for all 4 ≤ ∆ ≤ 19, 4 ≤ t ≤ 7 and ∆ + t ≤ 22.

Note that for t ≥ 8, ∆ ≥ 8, and if there is another neighbor v′ of w, which is not a

leaf of ST , since v is the smallest degree vertex among the neighbors of w which are not

the leaves of ST , then d(v′) = t′ ≥ 8. Now T has at least 5(d−2)+5(t−1)+5(t′−1)+3 ≥
103 vertices, which is out of the scope of our discussion. So for n ≤ 102, all the neighbors

of w, other than v, are the leaves of ST , i.e., ST is a double star.

For ∆ + t ≤ 19, if there is at most one 3-degree vertex adjacent to w, then from

(2.4) we have

R−1(T )−R−1(T
′) ≤ 1

∆t
− 1

4
+

t− 2

∆(∆ + t− 2)

(
1

3
+

∆− 2

4

)
+

∆− 2

t(∆ + t− 2)
· t− 1

3
< 0.

This inequality holds for all 8 ≤ ∆ ≤ 19, 8 ≤ t ≤ d and ∆ + t ≤ 19.

And if there is at most one 3-degree vertex adjacent to v, then from (2.4) we have

R−1(T )−R−1(T
′) ≤ 1

∆t
− 1

4
+

t− 2

∆(∆ + t− 2)
· ∆− 1

3
+

∆− 2

t(∆ + t− 2)

(
1

3
+

t− 2

4

)
< 0.

This inequality holds for all 8 ≤ ∆ ≤ 19, 8 ≤ t ≤ d and ∆ + t ≤ 19.

For ∆ + t = 20, denote by x4 the number of 4-degree vertices among the leaves

of ST . Since 7x4 + 5(∆ + t − x4 − 2) + 2 ≤ n, we have x4 ≤ 5, for n ≤ 102. Since

∆ ≥ 8, and t ≥ 8, from above discussion, for ∆ + t ≤ 20, both w and v have at least

two 3-degree neighbors, i.e., both w and v have at least two (2,3)-systems adjacent to

them. Let T ′ be obtained from T by deleting these four (2,3)-systems, contracting the

edge wv to a new vertex w′, and then adding three (3,4)-systems adjacent to w′. Then

we have

R−1(T )−R−1(T
′)

=
1

∆t
+

2

3t
+

2

3∆
+

16

3
− 45

8
− 3

4(∆ + t− 3)

+

(
1

∆
− 1

∆ + t− 3

) ∆−1∑
j=3

1

d(vj)
+

(
1

t
− 1

∆ + t− 3

) t−1∑
i=3

1

d(ui)
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≤ 1

∆t
− 7

24
+

2

3t
+

2

3∆
− 3

4(∆ + t− 3)
+

t− 3

∆(∆ + t− 3)
· ∆− 3

3
+

∆− 3

t(∆ + t− 3)
· t− 3

3

< 0.

This inequality holds for all 8 ≤ ∆ ≤ 19, 8 ≤ t ≤ d and ∆ + t ≤ 20.

Now only the case that 21 ≤ ∆+t ≤ 22 is left. Since 5(∆+t−x4−2)+7x4 +2 ≤ n,

we have x4 ≤ 2, for n ≤ 102. Since ∆ ≥ 8 and t ≥ 8, there are at least five (2,3)-

systems adjacent to v and at least six (2,3)-systems adjacent to w. Let T ′ be obtained

from T by deleting these 11 (2,3)-systems, contracting the edge wv to a new vertex w′,

and then adding 8 (3,4)-systems adjacent to w′. Then we have

R−1(T )−R−1(T
′)

=
1

∆t
+

5

3t
+

6

3∆
+

2× 22

3
− 5× 24

8
− 8

4(∆ + t− 5)

+

(
1

∆
− 1

∆ + t− 5

) ∆−1∑
j=7

1

d(vj)
+

(
1

t
− 1

∆ + t− 5

) t−1∑
i=6

1

d(ui)

≤ 1

∆t
− 1

3
+

5

3t
+

2

∆
− 2

(∆ + t− 5)
+

t− 5

∆(∆ + t− 5)
· ∆− 7

3
+

∆− 5

t(∆ + t− 5)
· t− 6

3

< 0.

This inequality holds for all 8 ≤ ∆ ≤ 19, 8 ≤ t ≤ d and ∆ + t ≤ 22.

The proof is now complete.

Remark 2.6 One might be able to get the same or similar structure(s) for Max Trees

of order larger than 102 by improving our above proof. But, the really interesting

problem is how to drop the restriction on the orders of trees.

3 Maximum value and maximum tree for R−1 of

trees of order n ≤ 102

By Lemmas 2.2, 2.3 and Theorem 2.5, we can conclude that there is a Max Tree

T such that the branching subtree ST of T is a star. Let w be the maximum degree
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vertex of ST , i.e., d(w) = ∆. Suppose that there are r 2-degree vertices adjacent to w,

p (2,3)-systems adjacent to w, and q (3,4)-systems adjacent to w, and there is at most

one suspended path of length 3. Then the following theorem is straightforward.

Theorem 3.1 Denote by f(n) the maximum value of R−1 among all trees of order n.

Then, for n ≤ 102 we have

f(n) = max R−1(T ) =





r
2

+ 4p
3

+ 15q
8

+ r
2∆

+ p
3∆

+ q
4∆

n−∆ + r − 1 ≡ 0 (mod 2);

r
2

+ 4p
3

+ 15q
8

+ r
2∆

+ p
3∆

+ q
4∆

+ 1
4

n−∆ + r − 1 ≡ 1 (mod 2).

s.t.





p + q + r = ∆

2p + 3q + r = bn−∆+r−1
2

c
0 ≤ r ≤ 5, 0 ≤ p ≤ ∆− r, 0 ≤ q ≤ ∆− r

Now we can easily compile a Maple program and use a computer to calculate it. The

maximum value for Randić index R−1 of trees of order n and the corresponding maxi-

mum tree are shown in the following table.

n 10 11∗ 12 13 14 15 16 17

f(n) 25
9

109
36

79
24

32
9

61
16

49
12

13
3

221
48

(p, q, r) (1,0,2) (1,0,2) (0,1,2) (2,0,1) (0,1,3) (2,0,2) (3,0,0) (1,1,2)

n 18 19∗ 20 21 22 23 24∗ 25

f(n) 39
8

41
8

27
5

17
3

237
40

31
5

129
20

269
40

(p, q, r) (3,0,1) (3,0,1) (3,0,2) (4,0,0) (2,1,2) (4,0,1) (4,0,1) (3,1,1)

n 26 27∗ 28 29∗ 30 31 32∗ 33

f(n) 7 29
4

271
36

70
9

145
18

25
3

103
12

319
36

(p, q, r) (5,0,0) (5,0,0) (5,0,1) (5,0,1) (4,1,1) (6,0,0) (6,0,0) (5,1,0)

n 34∗ 35 36 37 38 39∗ 40 41

f(n) 82
9

169
18

29
3

119
12

571
56

585
56

901
84

11

(p, q, r) (5,1,0) (4,2,0) (7,0,0) (3,3,0) (6,1,0) (6,1,0) (5,2,0) (8,0,0)

- 133 -



n 42 43 44 45 46 47 48 49

f(n) 1891
168

369
32

165
14

193
16

37
3

403
32

2779
216

105
8

(p, q, r) (4,3,0) (7,1,0) (3,4,0) (6,2,0) (9,0,0) (5,3,0) (8,1,0) (4,4,0)

n 50 51 52 53 54 55 56 57

f(n) 1447
108

41
3

1003
72

71
5

781
54

221
15

15 229
15

(p, q, r) (7,2,0) (10,0,0) (6,3,0) (9,1,0) (5,4,0) (8,2,0) (11,0,0) (7,3,0)

n 58 59 60 61 62 63 64 65

f(n) 1367
88

79
5

707
44

49
3

1461
88

2429
144

377
22

1253
72

(p, q, r) (10,1,0) (6,4,0) (9,2,0) (5,5,0) (8,3,0) (11,1,0) (7,4,0) (10,2,0)

n 66 67 68 69 70 71 72 73

f(n) 1555
88

287
16

801
44

665
36

1649
88

2737
144

212
11

469
24

(p, q, r) (6,5,0) (9,3,0) (5,6,0) (8,4,0) (4,7,0) (7,5,0) (3,8,0) (6,6,0)

n 74 75 76 77 78 79 80 81

f(n) 515
26

2891
144

6347
312

371
18

3257
156

1015
48

2227
104

1561
72

(p, q, r) (9,4,0) (5,7,0) (8,5,0) (4,8,0) (7,6,0) (3,9,0) (6,7,0) (2,10,0)

n 82 83 84 85 86 87 88 89

f(n) 856
39

3199
144

7015
312

91
4

1197
52

163
7

7349
312

667
28

(p, q, r) (5,8,0) (1,11,0) (4,9,0) (0,12,0) (3,10,0) (6,8,0) (2,11,0) (5,9,0)

n 90 91 92 93 94 95 96 97

f(n) 1879
78

341
14

197
8

697
28

3019
120

178
7

925
36

727
28

(p, q, r) (1,12,0) (4,10,0) (0,13,0) (3,11,0) (6,9,0) (2,12,0) (5,10,0) (1,13,0)

n 98 99 100 101 102

f(n) 9443
360

53
2

803
30

865
32

9829
360

(p, q, r) (4,11,0) (0,14,0) (3,12,0) (6,10,0) (2,13,0)

where n∗ means that there is a suspended path of length 3 in the Max Tree of order n.

Remark 3.2 Note that in Theorem 2.1 of [8], we showed by induction that for any
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tree T of order n ≥ 3, R−1(T ) ≤ 15n+C
56

. Since for 91 ≤ n ≤ 102, f(n) ≤ 15n−1
56

,

we have enough n’s as our induction initial in Theorem 2.1 of [8]. So, we can say

that R−1(T ) ≤ 15n−1
56

, for n ≥ 91. This corrects a small error in Section 3 of [8].

On the other hand, since for the infinitely many trees Tr (obtained from the star Sr

by appending three internally-disjoint paths of length 2 to each leaf of Sr), R−1(Tr) =

15n−1
56

, we know that 15n−1
56

is a sharp upper bound for infinitely many values of n.

In fact, we can prove that r ≤ 2 for n ≥ 21, and then the computer search can

be faster. However, since the search is fast enough even without this improvement, it

might be not worthy of showing. And by observing the table, one can find that r = 0

for n ≥ 31, and so we propose the following conjecture.

Conjecture 3.3 For a pair of integers (p, q), Tp,q denotes the tree obtained from the

star Sm (where m = p + q + 1) by appending two internally-disjoint paths of length 2

to p leaves of Sm, and appending three internally-disjoint paths of length 2 to q leaves

of Sm. Then, for n ≥ 103 there is a pair (p, q) such that Tp,q has the maximum Randić

index R−1.
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