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Abstract

The Randi¢ index R_1(G) of a graph G is defined as the sum of the
weights (d(u)d(v))~! of all edges uv of G, where d(u) denotes the degree
of a vertex v in G. Trees with maximum Randi¢ index R_; need not
be unique. Clark et al. gave the maximum values for the index of trees
of order n < 20. In this paper, we determine the maximum value for
the Randi¢ index R_1 of all trees of order n < 102, and give one of the
trees with maximum value of the index. This not only largely extends
the known range of the orders n of trees with maximum index, but also

gives a convincible solution for the induction initial of our previous
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paper. Because there is a huge number of trees of order n < 102, it
is not possible to directly search the trees with maximum index by a
computer. Our method is to first figure out the simple structure of one
of the trees of order n with maximum R_; for each n < 102, i.e., the
branching subtree must be a star. Then from this simple structure, we
can employ mathematical programming to easily calculate the maximum

value of R_q for each n.

1 Introduction

In 1975, Randi¢ proposed a pair of chemical indices R(G) and R_;(G) for a (chem-

ical) graph G, i.e.,
RG) = ) (dd@) ™, R.(G)= Y (du)dw)™,
weE(G) weE(G)

where d(u) denotes the degree of a vertex v in G. Randi¢ himself demonstrated that his
index was well correlated with a variety of physico-chemical properties of alkanes, such
as boiling point, enthalpy of formation, parameters in the Antoine equation (for vapor
pressure), surface area, and solubility in water. Eventually, this structure-descriptor
becomes one of the most popular topological indices, and scores of its chemical and
pharmacological applications have been reported. The Randi¢ index is the only topo-
logical index to which two books are devoted [9, 10]. Like other successful chemical
indices, these two indices have received considerable attention from both chemists and

mathematicians. In this paper, we are only interested in the latter index R_; for trees.

Until now, for trees T all the existent results are only to give lower and upper bounds
for R_1(T'), but one can not prove that the upper bound is best possible. Rautenbach
[12] gave an upper bound for B_;(T') of trees with maximum degree 3. Li and Yang [11]
gave a method to determine the sharp upper bound for R_; of chemical trees (i.e., trees
with maximum degree at most 4). In [7], we investigated trees with maximum value of

general Randi¢ index Ro =37, ¢ g(q) (d(w)d(v))*, where o is an arbitrary real number,
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among all trees of order n. We distinguished « in several different intervals, and for

most of the intervals we characterized trees with maximum general Randi¢ index and

gave the corresponding values. Only the interval —2 < o < —% (including the point
a = —1) is left undetermined and seems very complicated. The Max Trees (trees with
mazimum Randié¢ indez) could be not unique in this interval. So it is hard to get the
maximum index and the corresponding trees. For all n < 20, Clark et al. [4] determined

all trees with maximum value of R_; among all trees of order n. In 2000, Clark and

Moon [5] gave a lower and upper bound for R_1(T), i.e., 1 < R_1(T) < 3248 where the
lower bound can be attained by the star, but they could not prove that upper bound
is best possible. At the end of their paper [5] they proposed two unsolved questions
on the upper bound. In our recently paper [8], we gave positive answers to the two

questions, and solve the sharp upper bound problem for R_; of trees when n is large

enough. But, we feel very unsatisfactory with the following two things:

(i) In the proof of Theorem 2.1 of [8], we used induction on the number of vertices.
There the induction initial was n < 71. We simply said that "we can use a good
computer to check the result for all n < 717. We feel that this cannot convince any

reader(s), because there is a huge number of trees of order n < 71.

(ii) There is a small error in Section 3 of [8], which solved the second question of
Clark and Moon [5]. We said there that Ty, defined in [5] is the Max Tree of order 71,

the value of R_; for Tyg is 19 = 15X5761’1, and so n = 71 can be chosen as our induction

initial, and the constant C' in our Theorem 2.1 of [8] can really be chosen as —1”. But
this is not true when we now get the maximum values of R_; for all n < 102. We find
that to choose C'= —1 the smallest value (induction initial of Theorem 2.1 in [8]) of n

has to be 91, but not 71.

In this paper we not only give convincible solution to (i) and correction to (ii), but
also largely extend the known range of the orders n of trees with maximum index R_;

from n < 20 to n < 102. The first 20 values are exactly the same as those listed in
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[4]. Our method is to first figure out the simple structure of one of the trees of order n
with maximum R_; for each n < 102. Then from this simple structure, we can employ

mathematical programming to easily calculate the maximum value of R_; for each n.

Throughout this paper, we use standard graph-theoretical terminology. Let T' be
a tree with order n. Denote by dr(u) and Np(u) the degree and neighborhood of
the vertex u in T, respectively, and we omit the letter 7" if only one tree is under
consideration. A vertex of degree 1 in a tree is called a leaf. A vertex of degree greater
than 2 in a tree is called a branching verter. A vertex of degree i is also called an
i-degree vertex. The star of order n is denoted by S,,. Let uy,us, -+, u, be a path and
w; € V(T), 1 <i<r. Wecall ujus---u, a suspended path rooted at u,, if d(uq) = 1,
d(u;) =2 (i=2,---,r — 1) and u, is a branching vertex. r — 1 is called the length of

the suspended path.

2 The structure of a Max Tree of order n < 102

Tt is easy to see that for n < 9, R_;(T) < "TH, and the equality holds when 7' is
a path. Since for n > 10, path P, does not have the maximum Randi¢ index, so we

assume the maximum degree A(T') > 3 in the following.

In [7], we obtained a property of Max Trees for o < —1. If we just consider one of

the structures of Max Trees, then this property also holds for o = —1.

Property 2.1 [7] For a < —1, we can find one of the Maz Trees T with the property
(1) all the suspended paths of T are of length 2, except for at most one with length 3,

and (2) every vertex of degree 2 must appear on a suspended path.

Note that if T is one of the Max Trees with above property, and St is the subgraph
obtained from 7" by deleting all the vertices of degrees 1 and 2, then, Sz is connected

and acyclic, we call Sy the branching subtree of T. In the following whenever we
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mention a Max Tree we always mean that it has the above property.

A subtree of T is called an (s, d)-system centered at z, if x1y12, - ,T5ysz are s
distinct suspended paths rooted at z with d(z) = d > 3, and wy, -+ ,wy_s are the
vertices of T, other than ¥y, -+ ,ys, adjacent to z. Clearly, 1 < s < d — 1, and if

s = d—1 and w is the branching vertex adjacent to z, then we say that this (s, d)-

system is adjacent to w.

Lemma 2.2 Let T be a Max Tree. If there are s suspended paths rooted at a vertex z

i T, then s < 5.

Proof. By contradiction. Suppose s > 6, then d(z) =d > 6. Let w;(i =1,--- ,d — 6)
be the vertices adjacent to z, other than the vertices on the six suspended paths. Let
T’ be the tree obtained from T by deleting five suspended paths rooted at z and adding

two (2, 3)-systems adjacent to z. It is easy to show that 7" has an index larger than

T, ie.,
1 3 1 2 11\
(T) = R_(T) = —=+° — - - -
RA(T) = BT = =5+ 5~ 555 3(d73)+(d d73>;d(wi)
U SR _7d2+14d754<0
= 6 d 6(d-3)  6d(d-23) ’

Here and in what follows, whenever we transform a tree T into another tree T", we
always assume that there is no suspended path of length 3 in 7. If there is a one, then
instead of directly transforming 7" into 7", we contract the leaf edge of the suspended
path of length 3 to get a tree T3 first, then transform Tj into 77}, and finally subdivide
a leaf of 77 to get 1". ]

Lemma 2.3 Let T be a Max Tree and z be a leaf of the branching subtree St. Then

there are only two or three suspended paths rooted at z, i.e., d(z) =3 or 4.

Proof. By Lemma 2.2, there are at most 5 suspended paths rooted at z in 7T'. If there

are b suspended paths rooted at z, and w is the branching vertex adjacent to z, suppose
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d(w) = t, then by deleting the vertex z, adding two (2, 3)-systems adjacent to w, and
then subdividing a leaf, we get a new tree 7". Let v; (i = 1,--- ,¢ — 1) be the vertices

adjacent to w, other than z. Then, from the property we have d(v;) > 2. So we have

L1 2 11\« 1
Ba(l) = Ra(T) = g 3+ (? a m) ; d(v;)

_ 1 R S
= 6t 3(t+1)  tt+l) 2
= = <o,

6it+1)

which is a contradiction, since 7" is a Max Tree.

If there are 4 suspended paths rooted at z, and w is the branching vertex adjacent
to z, suppose d(w) = t, then, since if t = 2 then T is a tree with order 11 or 12, it is easy
to check that T is not a Max Tree. So, we suppose t > 3. Let v; (i = 1,--- ,t—1) be the

vertices adjacent to w, other than z. We distinguish two cases to deduce contradictions.

(i) If there is a 2-degree vertex vy adjacent to w, then we get a new tree by deleting
the vertices z and vy, adding two (2, 3)-systems adjacent to w, and then subdividing a

leaf. Then we have

4 4 1 1 1 4 1 4 2
RAT)—R (T = 42, 2 2 2 2 2 2
i1 i(T) wtetmta Ty 2 1 6 &

i—&-L<0
60 30t

(ii) If the degree of any neighbor of w is more than two, let v be a neighbor of w,
other than z, with d(v) = p > 3, and w;(i = 1,--- ,p — 1) be the neighbors of v, other
than w. Let y be a 2-degree vertex adjacent to z. By the property, d(u;) > 2, for
i=1,--- ,p—1. Then we get a new tree by deleting the edge yz and adding the edge

yv. Then we have

11 1 1 1 1 p—1
< - — +(=- -+
40 20t 2(p+1) \p pH+1/)\t 2
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L1 2=t 1 1+27t_ 1+1<0 .
40 20t 2p-t(p+1) —40 20t 24t 60 30t

Lemma 2.4 Let viu; and vaus be two edges of T, and T' be the tree obtained from
T by deleting the edges viu; and vous first, then adding the edges ujvy and vius. If
d(uy) > d(u2) and d(vy) < d(vq), then R_1(T) < R_1(T").

Proof. y 1 1 1 1
g RA(T) = Ba(T) = d(vy)d(uy) + d(v))d(us)  d(vy)d(us)  d(ve)d(uy)
SV U VIS B S .
() d(ug) " d(vr)  d(v2)” T

Our main result is the following, which gives the structure of a Max Tree of order

n < 102.

Theorem 2.5 Forn <102, there is a Max Tree T of order n such that the branching

subtree St of T is a star.

Proof. Suppose St is not a star, then we will transform 7" into another tree 7" with

R_(T) < R_4(T") step by step, till Sy is a star.

Let w be a maximum degree vertex of T, i.e., d(w) = A. Since Sr is not a star,
there is a branching vertex v € N(w) such that v is not a leaf of Sr, i.e., v has a
neighbor u, other than w, with d(u) > 3. If w has a 2-degree neighbor v, then T has
two edges vow and uv with d(vy) < d(u) and d(w) > d(v). So by Lemma 2.4, we can

assume that the neighbors of w are all branching vertices.

In the following, we always denote by v the neighbor of w which is not a leaf of St
and the degree of v is as small as possible. Let u be the branching vertex adjacent to
v, other than w, and p be a neighbor of u, other than v. Then d(p) < d(w) = A. By

Lemma 2.4, we can assume that d(v) > d(u).

Now consider the two components of T' — wv, the component with vertex v has at

least 8 vertices, and the other component has at least 5(A — 1) 4+ 1 vertices. Then
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5(A—=1)+9 <n,so A <19, for n < 102. Denote by s the number of suspended paths

rooted at v. We distinguish three cases and always assume d(v) =t > 3.
Case 1 s> 2.

By Lemma 2.2, 2 < s < min{5,t — 2}. Let u; be the neighbors of v, other than w,
with d(u;) >3 (1 = 1,2,--- ,t —s — 1), and v; be the neighbors of w, other than v.
Then d(v;) >3 (j =1,2,--- ,A—1). Let T" be the tree obtained from T by deleting

the edges vu; and adding the edges wu;. Then we have

R_\(T) — R_\(T")

s ! s
TAt (s+HD(A+t—s—1) 2t 2(s+1)
A—1 t—s—1
1 1 1 1 1 1
+(A‘A+t—s—1);d(vj)+(t‘A+t—s—1) ; qwy 2D

<1 1 +s s

SAt s+ D(At+t—s—1) 2 2(s+1)

t—s—1 A—-1 A—s—1 t7871<0

Ab+i—s—1) 3 " Hbati—s—1 3

This inequality holds for all 3 < A < 19,3 <t <A, and 2 < s < min{5,t — 2}.
Case 2 s =1, i.e., there is a suspended path xyv rooted at v.

Consider the two components of 7' — wv, the component with vertex v has at least
5(t — 2) + 3 vertices, and the other component has at least 5(A — 1) + 1 vertices. Then
5(A+1t)—11<n,so A+t <22 forn<102.

If there is a vertex u € N(v) \ {w,y} such that u is not a leaf of Sy. Then u has
a neighbor p, other than v, with d(p) > 3. Thus T has two edges yv and pu with
d(y) < d(p) and d(v) > d(u). So, by Lemma 2.4 we can assume for any neighbor u; of

v, other than w and y, u; is a leaf of Sy, i.e., d(u;) =3 or4 (i=1,2,--- ,t—2).

If there exist a vertex u; € N(v) \ {w,y} such that d(u;) = 4. Then for any
v; € N(w)\{v}, d(v;) > 4, since, for otherwise, if there is a 3-degree vertex v; adjacent

to w, then from Lemma 2.4, by deleting the edges wv; and vu; and adding the edges
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wuy and vuy, we can get a tree 7" with R_1(T) < R_1(T").
Subcase 2.1 All the neighbors of v, other than w and y, are of degree 4.
Now, d(v;) >4 (j =1,2,--- ,A —1), and so from (2.1) we have

R_\(T) — R_,(T")

SIS WS N Y S W | S
TAt 2(A4+t-2) 2t 4 \A A+t—-2)“dv)
j=1
1 1 < 1
+ (? - 2) ; () (22)

1 1 1 1 t—2 A—-1 A—-2 t—2
<

SAM O 2Ati-2) % 1 AR -9 4 T Hari-2 4 <0

This inequality holds for all 3 < A < 19,3 <t <A.

Subcase 2.2 There exist both a 3-degree vertex and a 4-degree vertex in the neighbors

of v, other than w and y.

Obviously ¢ > 4, therefore A > 4 in this subcase. Let u; be a 3-degree vertex
adjacent to v. Let T" be obtained from T by deleting the edge vy and adding the
edge u1y, and contracting the edge wv and then subdividing a leaf. Since d(v;) > 4

(j=1,2,--- ,A—1), we have

R_\(T) — R_y(T")

R S R DY & SN S e
24 At 6t 4(A+t-3) A A+t-3 < d(vy)

j=

t—3
1 1 1
Lo 23
+<t A+t73) 2 duy) 23)
ST 15 L t-3  A-1. A-3 (t-4 1
2 AT T AAtri-3) AAti-3) 4 id+i-3\ 3 1

<0.

This inequality holds for all 4 < A < 19,4 <t <A, and A+t < 22.

Subcase 2.3 All the neighbors of v, other than w and y, are of degree 3.
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Now, we have d(v;) >3 (j=1,2,---,A—1).

If t =3, and 3 < A <5, then from (2.2) we have

R_\(T) — R_y(T")

i_ 1 —i-i- 1 A71+ A—2 1
= 3A 20A+1) 12 AA+1) 3 T3A+1) 3

A2 — 5A

— < 0.

36AA+1) =

If t =3, A > 6, then let 7" be the tree obtained from T by deleting the vertex v,

adding a (3,4)-system adjacent to w, and then subdividing a leaf, and so we have

, 11

- =——_—<0.

RA(T) = R(T') = 5 — 75 <0
If t = 4, from (2.3) we have
11 1 1 A-1 A-3
W(T)—RL4(T) < — —+— — .
R =R s =35+ 93 A+ AR+ 3 TmaTD
1
T U12A(A+1) <0

Now we assume t > 5, and so d > 5. If there are at most two 3-degree vertices

adjacent to w, other than v, then from (2.3) we have

R_\(T) — R_y(T")

7 1+37 1 n t—3 A-3 2 A—-3 =3
6t 4(A+t-3) A(A+t-3) t(A+t-3) 3

<_ L4
STu T a

4+3

<0.

This inequality holds for all 5 <A <19, 5 <t <A, and A+t < 22.

So there are at least three 3-degree vertices adjacent to w, other than v. By the
choice of v, all the 3-degree vertices adjacent to w must be leaves of Sy. Let T” be
the tree obtained from T by deleting the three (2,3)-systems adjacent to w and two

(2,3)-systems adjacent to v and the suspended path adjacent to v, then contracting
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the edge wv to a new vertex w’ and adding four (3,4)-systems adjacent to w’. Then

R_\(T) — R_y(T")

SR VRS L TP I DR e S
At T 3A 2t 4A+t—4) \A A+t— led
1 1 t—4
+<?7A+t74>i:1
1 1 1 7 1 t—4 A—4 A—4 t—4

< 4Ly . R
Syt tAt e T Aari—atAaati—n 3 Tiati—n 3
<0.

This inequality holds for all 5 < A <19, 5 <t <A, and A +¢ < 22.

Case 8 s =0, i.e., there is no suspended path rooted at any of v and w.

Subcase 3.1 There is a vertex v € N(v) \ {w} such that u is not a leaf of Sr.

If t < 4, T’ is obtained from T by contracting the edge wv and subdividing a leaf,

then
(1) — R(T")
A—1 t—1
1 1 1
E_Z+<A A+t—2)ledJ (E A+t—2);d(ui) 24)
11 t-2  A-1. A-2 i1
“At 4 AA+t-2) 3 t(A+t—2) 3 ’

This inequality holds for all 3 < A <19, ¢t < 4. So we assume ¢ > 5 in the following.

By the choice of v, for any neighbor v; of w, v; is either a leaf of Sz or d(v;) > 5.

If there is a vertex v; € N(w) \ {v} such that d(v,) = 3, then v; is a leaf of Sy, and

d(v1) < d(u). By Lemma 2.4, we can get a tree T" with R_{(T) < R_(T").

So for any vertex v; € N(w)\{v}, d(v;) >4 (i =1,2,--- ,A—1). Consider the two
components of T'— wv, the component with vertex v has at least 5(¢ — 1) + 1 vertices,
and the other component has at least 7(A — 1) + 1 vertices. Then 7A + 5t — 10 < n,

so TA + 5t < 112 and A < 12, for n < 102 and ¢ > 5. Then, from (2.4) we have
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ho 11 t—2 A1 A-2  t-1
B =R s G- 17 a1 Tidri—y 3 °

This inequality holds for all 3 < A < 12,5 <t <d and 7TA + 5t < 112.

Subcase 3.2 For any u; € N(v) \ {w}, w; is a leaf of Sr, i.e., d(u;) = 3 or /
(i=1,2,t—1).

Consider the two components of T — wv, the component containing vertex v has at
least 5(¢t — 1) + 1 vertices, and the other component has at least 5(A — 1) 4 1 vertices.
Then 5(A +t) —8 <n, so A+t <22 forn <102.

If t = 3, then by (2.4) we have

11 1 A-1 A-2 2
RA(T)— R(T) < — —1 . 2
=Rl <38 = 3433510 3 T3a+0 3 %

Now we assume 4 < t < 7, therefore d > 4.

If there are at most three 3-degree vertices adjacent to v, then by (2.4) we have

~1(T) = RA(T)

L1, t=2 A—l 3
< — . 7+
S M 1TABTi-2) 3 A+t— 3
1 1+ t—2 A—1+ A-2 3 “0
At AA+t-2) 3 tA+t—-2) 4

This inequality holds for all 4 < A < 19,4 <t <7and A+t < 22.

So there are at least four 3-degree vertices adjacent to v (now ¢ > 5), say uy, ug, us, U,
i.e., there are at least four (2,3)-systems adjacent to v. We obtain 7" from T by deleting
these four (2,3)-systems, contracting the edge wv to a new vertex w’, and then adding

three (3,4)-systems adjacent to w’. Then we have

R_\(T) — R\(T")




-131-

1 7 4 3 t—3 A-1 A-3 t—>5

< 0.

< R
S AN U3 WA+i—3) AA+i—3) 3 iAt+i—3 3
This inequality holds for all 4 < A <19,4 <t <7and A+t < 22.

Note that for ¢ > 8, A > 8, and if there is another neighbor v’ of w, which is not a
leaf of St, since v is the smallest degree vertex among the neighbors of w which are not
the leaves of Sy, then d(v') = t' > 8. Now T has at least 5(d—2)+5(t—1)+5(t'—1)+3 >
103 vertices, which is out of the scope of our discussion. So for n < 102, all the neighbors

of w, other than v, are the leaves of Sr, i.e., St is a double star.

For A 4+t < 19, if there is at most one 3-degree vertex adjacent to w, then from

(2.4) we have

11 t—2 (1 A—Z) A—2 t—1

- - Rt}
iTaari 3t dri-2 3 °

This inequality holds for all 8 < A <19,8 <t <dand A+t <19.

And if there is at most one 3-degree vertex adjacent to v, then from (2.4) we have

1 1 t—2 A—-1 A—2 (1 t—2>
< 0.

-4 —

RA(T) = R(T) < T+

SAN O 1TABTI—2 3 TiHari-2
This inequality holds for all 8 < A <19, 8 <t <dand A+t <19.

For A +t = 20, denote by x; the number of 4-degree vertices among the leaves
of Sr. Since Txy +5(A +t— x4 —2) + 2 < n, we have x4 < 5, for n < 102. Since
A > 8, and t > 8, from above discussion, for A + ¢ < 20, both w and v have at least
two 3-degree neighbors, i.e., both w and v have at least two (2,3)-systems adjacent to
them. Let 7" be obtained from T by deleting these four (2,3)-systems, contracting the
edge wv to a new vertex w', and then adding three (3,4)-systems adjacent to w’. Then

we have
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1 7 2 2 3 t—3 A-3 A-3 t—3

< . .
S AN u T T Iari—3) TABTi—3) 3 T Wati-3) 3
< 0.

This inequality holds for all 8 < A <19,8 <t <d and A+t < 20.

Now only the case that 21 < A+t < 22 is left. Since 5(A+t—x4—2)+7x4+2 < n,
we have z; < 2, for n < 102. Since A > 8 and ¢ > 8, there are at least five (2,3)-
systems adjacent to v and at least six (2,3)-systems adjacent to w. Let 7" be obtained
from T by deleting these 11 (2,3)-systems, contracting the edge wv to a new vertex w’,

and then adding 8 (3,4)-systems adjacent to w’. Then we have

R_\(T) — R_,(T")

B L+5+£+2><2275><247 8
At 3A 3 8 4(A+t—5)
t—1
1 1
+<A A+t—5>]7dv (¥ A+t—5);dul)
11 5 2 2 t—5  A-T  A-5 t-6

< -4z 42 . R
SN 3'mTATAri—s TAG+i-5 3 HA+i-5) 3

< 0.

This inequality holds for all 8 < A <19, 8 <t <dand A+t < 22.

The proof is now complete. 1

Remark 2.6 One might be able to get the same or similar structure(s) for Maz Trees
of order larger than 102 by improving our above proof. But, the really interesting

problem is how to drop the restriction on the orders of trees.

3 Maximum value and maximum tree for R_; of

trees of order n < 102

By Lemmas 2.2, 2.3 and Theorem 2.5, we can conclude that there is a Max Tree

T such that the branching subtree S of T"is a star. Let w be the maximum degree
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vertex of S, i.e., d(w) = A. Suppose that there are r 2-degree vertices adjacent to w,
p (2,3)-systems adjacent to w, and ¢ (3,4)-systems adjacent to w, and there is at most

one suspended path of length 3. Then the following theorem is straightforward.

Theorem 3.1 Denote by f(n) the mazimum value of R_; among all trees of order n.

Then, for n < 102 we have

R e n—A+4r—1=0 (mod 2);

f(?’l) = mazr Rfl(T) _ 2 3 8 2 3A 4A ( )
tpp Byt gy By Ll noAt+r—1=1 (mod2).
ptg+r=A

st.q 2p+3¢+1r= LH—A%J

0<r<5 0<p<A—-r, 0<¢g<A-r

Now we can easily compile a Maple program and use a computer to calculate it. The
maximum value for Randi¢ index R_; of trees of order n and the corresponding maxi-

mum tree are shown in the following table.

n 10 11" 12 13 14 15 16 17
25 109 79 32 61 49 13 221
f(n) 3 36 31 5 T T 3 =

(p,q.7) | (1,0,2) | (1,0,2) | (0,1,2) | (2,0,1) | (0,1,3) | (2,0,2) | (3,0,0) | (1,1,2)

n 18 19° 20 21 92 23 24+ 2%
"/ 39 41 27 17 237 31 129 269
f(n) 5 5 5 3 o 5 0 o0

(p.q,r) | (3.0,1) | (3,0,1) | (3,0,2) | (4,0,0) | (2,1,2) | (4,0,1) | (4,0,1) | (3,1,1)

n 26 27* 28 29* 30 31 32* 33

(p,q.7) | (5,0,0) | (5,0,0) | (5,0,1) | (5,0,1) | (4,1,1) | (6,0,0) | (6,0,0) | (5,1,0)

no| 3¢ | 35 | 36 | 37 | 38 | 39 | 40 | a1
59 9 ¢ 7 585 ¢
SACO T O I A A - A A A~ i .

(p,q,7) | (5,1,0) | (4,2,0) | (7,0,0) | (3,3,0) | (6,1,0) | (6,1,0) | (5,2,0) | (8,0,0)
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n 42 43 44 45 46 47 48 49
(p,q,r) | (4,3,0) | (7,1,0) | (3,4,0) | (6,2,0) | (9,0,0) | (5,3,0) | (8,1,0) | (4,4,0)
n 50 51 52 53 54 55 56 57
(p,q,r) | (7,2,0) |(10,0,0) | (6,3,0) | (9,1,0) | (5,4,0) | (8,2,0) | (11,0,0) | (7,3,0)
n 58 59 60 61 62 63 64 65
(p.q.7) | (10,1,0) | (6:4,0) | (9.20) | (550) | (8:3,0) | (11,1,0) | (7.4,0) | (10,2,0)
n 66 67 68 69 70 71 72 73
(p.a.r) | (650) | (930) | (560) | (840) | (470) | (750) | (380) | (6:6.0)
n 74 0] 76 7 78 79 80 81
(p.q.7) | (9:4,0) | (57,0) | (850) | (480) | (7.6,0) | (3,90) | (6,7.0) | (2,10,0)
n 82 83 84 85 86 87 88 89
(p,q,7) | (5,8,0) | (1,11,0) | (4,9,0) | (0,12,0) | (3,10,0) | (6,8,0) | (2,11,0) | (5,9,0)
n 90 91 92 93 94 95 96 97
(p.q.7) | (1,12,0) | (4,10,0) | (0,13,0) | (3,11,0) | (6,9,0) | (2,12,0) | (5,10,0) | (1,13,0)
n 98 99 100 101 102

(p,g;7) | (4,11,0) | (0,14,0) | (3,12,0) | (6,10,0) | (2,13,0)

where n* means that there is a suspended path of length 3 in the Max Tree of order n.

Remark 3.2 Note that in Theorem 2.1 of [8], we showed by induction that for any
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tree T of order n > 3, R_{(T) < L2C  Gince for 91 < n < 102, f(n) < o=l

56 56
we have enough n’s as our induction initial in Theorem 2.1 of [8]. So, we can say
that R_y(T) < B2=L. for n > 91. This corrects a small error in Section 3 of [8].
On the other hand, since for the infinitely many trees T, (obtained from the star S,

by appending three internally-disjoint paths of length 2 to each leaf of S,), R—1(T,) =

15n—1
56

15n—1
56

, we know that

is a sharp upper bound for infinitely many values of n.

In fact, we can prove that » < 2 for n > 21, and then the computer search can
be faster. However, since the search is fast enough even without this improvement, it
might be not worthy of showing. And by observing the table, one can find that » =0

for n > 31, and so we propose the following conjecture.

Conjecture 3.3 For a pair of integers (p,q), T, denotes the tree obtained from the
star Sy, (where m = p+ q+ 1) by appending two internally-disjoint paths of length 2
to p leaves of Sy, and appending three internally-disjoint paths of length 2 to q leaves
of Sm. Then, for n > 103 there is a pair (p,q) such that T, , has the mazimum Randié

indexr R_q.
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