MATCH MATCH Commun. Math. Comput. Chem. 54 (2005) 351-362

Communications in Mathematical
and in Computer Chemistry ISSN 0340 - 6253

THE INDEX OF TREES WITH SPECIFIED MAXIMUM
DEGREE

Slobodan K. Simié!
Faculty of Computer Sciences
11 000 Belgrade, Serbia and Montenegro
e-mail: ssimic@raf.edu.yu

Dejan V. Tosié¢
School of Electrical Engineering
University of Belgrade
11 000 Belgrade, Serbia and Montenegro
e-mail: tosicQetf.bg.ac.yu

(Received March 28, 2005)
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1. INTRODUCTION

There are many papers in literature where the largest eigenvalue (or the
index) of simple graphs is being considered (see [2] for more details). One
special class of graphs, which attracts much attention among various re-
searchers, consists of trees. Within the trees of fixed order, trees with max-
imum (or minimum) indices are already identified; they are stars (respec-
tively paths) - see, for example, [9].

Further efforts were focused on some special classes of trees (say, for
trees of some fixed form, or trees with some prescribed invariants). Recall,
trees having a perfect matching, or a prescribed size of maximal matchings,
were considered in [18, 8]; coloured constrained trees were investigated in
[4]; trees with a fixed diameter were examined in [7, 15, 13]; trees with a
fixed number of pendant vertices were considered in [17], and so on.

Recall, a chemical tree is a tree with a maximum (vertex) degree at most
four. Recently, chemical trees were considered by M. Fischermann et al. in
[5]. They have conjectured (on the basis of computer search) that in the
class of trees with fixed order and maximal degree the trees with maximal
index coincide with trees with minimal Wiener index. (The problem related
to the minimal Wiener index has been solved in [6].) Here, prompted by
their investigations and the conjecture, we will focus our attention on trees
with a specified maximum degree.

Let 7(n, A) be the set of all trees on n vertices and the maximum degree
A. We will identify in 7 (n,A) the tree(s) having maximum index. (An
upper bound for the index of trees with maximum degree A and arbitrary
order is given in [14].)

For the basic notions and terminology on spectral graph theory the read-
ers are referred to [1] (see also, [3]). To make the paper more self-contained,
we will give here only a few basic facts. The spectrum of a graph is the
spectrum of its adjacency matrix. The largest eigenvalue (note, all of them
are real) is called the index (or spectral radius) of the graph. In the case
of connected graphs, the positive eigenvector corresponding to the index is
referred to as the principal eigenvector. The index of a (connected) graph
G will be denoted by i (= pa), and the corresponding principal eigenvector
by x (= x¢). In sequel, we will consider x as an n-tuple (z1,z2,...,2y),
or interchangeably as a mapping x : V(G) — R"™ (here n = |[V(G)]). With
this notation, we have that pz; = 37, ;z; for any vertex i of G; here ~
denotes that the corresponding vertices are adjacent. The latter condition
represents an eigenvalue equation for the i-th vertex.
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2. BASIC TOOLS

In order to identify the tree(s) in the set 7 (n, A) with maximum index, we
will need some results on graph perturbations (see, for example, [3]). As it
will become apparent very soon, it suffices for us to exhibit how the index
of some graph is changed after performing only two simple perturbations:
(i) a rotation of an edge and (ii) a local switching.

(i) Let e = rs be an edge of a graph G, and assume that vertex r is non-
adjacent to ¢t. The rotation (around r) consists of a deletion of the edge e
followed by an addition of the edge €’ = rt.

Theorem 1.1 Let G’ be a graph obtained from a connected graph G of
order n by the rotation defined as above. Let x = (x1,29,...,2,)" be the
principal eigenvector of G. Then the following holds:

if x¢ > x5 then pgr > ug.

(ii) Let e = st and f = wv be two edges of a graph G, and assume that
vertices s and v, and ¢ and u are non-adjacent. The local switching (with
respect to e and f) consists of a deletion of edges e and f, followed by
an addition of edges ¢’ = sv and f’ = tu. It can be easily seen that local
switching preserves degrees. Another remarkable fact is that any two graphs
of the same order and with the same degree sequence can be obtained from
one to another by local switchings in turns (see, for example, [16] p. 45).

Theorem 1.2 Let G' be a graph obtained from a connected graph G of
order n by the local switching defined as above. Let x = (1,2, ... ,xn)T be
the principal eigenvector of G. Then the following holds:

if (x5 — xy) (@ — x1) > 0 then pgr > pa, with equality for the indices

if and only if vs = xy and x, = 4.

Remark These two theorems can be found in [3] in the weaker forms. The
forms given above are recently (along with the proofs) obtained in [13]. O

3. MAIN RESULTS

When considering a class of trees 7 (n,A), we will assume that A > 2 (for
A = 2 there exists just one tree, namely a path, and then our problem



-354 -

becomes trivial). For short, let Ths be a tree from 7 (n,A) whose index
attains the maximum value. By x we will denote the principal eigenvector of
Tys. In the following lemmas we focus our attention on some basic properties
of T]\,{.

Lemma 3.1 At most one vertex of Ty has degree non-equal to 1 or A.

Proof Assume to the contrary, and let s and ¢ be the vertices of Ty; such
that 1 < deg(s),deg(t) < A. Let x be the principal eigenvector of T and
assume, without loss generality, that x(s) < x(t).

Assume first that s and ¢ are non-adjacent. Let r be a vertex adjacent
to s which does not lye on the unique path between s and ¢. Then we can
rotate the edge rs (around r) to the position of the non-edge rt, to get again
a tree from 7' (n,A). But then, by Theorem 1.1, the index of the tree just
obtained is greater than that of T, a contradiction.

We next assume that s and ¢ are adjacent. Let r be any vertex, other
than ¢, adjacent to s. We can now rotate the edge rs (around r) to the
position of the non-edge rt, to get again a tree from 7 (n,A) (note, rt is
a non-edge, since otherwise there will be a triangle in Ths). But then, by
Theorem 1.1, the index of the tree just obtained is greater than that of Ty,
a contradiction.

This completes the proof. m|

Lemma 3.2 If each vertex in Ty is of degree 1 or A, then n = 2(mod(A —
1)); otherwise, if there exists a vertex (in Tyy) of degree d, 1 < d < A, then
n=d+ 1(mod(A —1)).

Proof Let k be the number of vertices in T); which are of degree A. Assume
first that each vertex of Ty is of degree 1 or A. Then, kA+n—k =2(n—1),
and therefore n = k(A — 1) + 2. Otherwise, assume (by Lemma 3.1) that
there is the unique vertex in Ths of degree d # 1,A. Then, as above,
kA+d+ (n—k—1)=2(n—1), and therefore n = k(A — 1) +d + 1. This
completes the proof. m]

In the next few lemmas we will consider the components of x.
Lemma 3.3 If s and t are two vertices of Tay such that deg(s) > deg(t)
then x(s) > x(t).

Proof Assume to the contrary that deg(s) > deg(t), but x(s) < x(t). Let r
be a vertex of Ty adjacent to s, but non-adjacent to t. Notice that such a
vertex must exist. To see this, take that r is not on the unique path between
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s and t; note also that deg(s) > 1 ensures the existence of r, as required.
We will next rotate the edge rs (around r) to the position of the non-edge
rt (notice that r cannot be adjacent to both s and ¢, since 7 does not belong
to the unique path between s and ¢; otherwise, there would exist a cycle in
Tar). Notice that after this rotation the obtained graph is again a tree from
T (n,A). By Theorem 1.2, the index of this tree is greater than the index
of Ty, a contradiction. This completes the proof. O

Lemma 3.4 There exists a vertex ¢ in Ty such that each leaf of Ty is at
distance h — 1 or h (for some h) from c.

Proof Let ¢ be a vertex of Tpr such that x(c) = max,ey(p,,)x(v), ie.
¢ is a vertex with maximum weight (with respect to x). Assume now to
the contrary, and let u; and vy be the leaves at distances d(u1,c) = p and
d(vo, ¢) = g such that g—p > 2. Let uz, us, ..., up, cand v1, vy, ..., v4—1, ¢ be
the vertices on the unique paths from u; and vy to ¢, respectively. Let e; =
u;ui+1, while f; = viviyr (1 = 1,2,...). Consider now the local switching
of edges e; and f;, where new edges are uw;v;+1 and v;uj+1. Then, Ty is
transformed to a tree T, for each 1.

Now, by Theorem 1.2, we always have (x(u;)—x(v;))(x(vig1)—%(uit1)) <
0; otherwise, the index of T? becomes greater than the index of Ty;. A spe-
cific situation can occur when (x(u;) — x(v;))(x(vit1) — x(uir1)) = 0. If
only one of these two factors is equal to zero, then the index of T? is again
greater than the index of T (cf. Theorem 1.2). So, it remains that either
(x(ui) — x(v;)) (%x(vit1) — x(ui+1)) < 0 or that both of these two factors are
zero. With this in mind, we next have:

() (1) — x(v1)) (x(v2) — x(u2) <0,
((u2) — x(v2)) (x(v3) — x(u3)) < 0,

—
N =
—

®3)

Since deg(u1) < deg(vi), we get x(u1) < x(v1) (by Lemma 3.3). But then
from (1) we get x(u2) < x(v2); next from (2) we get x(u3) < x(v3), and
so on. Since p < ¢, at some step we obtain x(c) < x(v;) for some k, a
contradiction. So, ¢ is the vertex as required, and |¢ — p| < 1 for any two
leaves.

This completes the proof. m]

Remark The vertex ¢ as specified in Lemma 3.4 belongs to the center of
Th. To see this, we will show that rad(Tys) = h (here we assume, without
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loss of generality, that ecc(c) = h). Firstly, it is easy to see that only a vertex
adjacent to ¢ can have an eccentricity less than h + 1. Next, among these
vertices (i.e. neighbours of ¢), there is at most one vertex with eccentricity
less than h + 1. If such a vertex exists then its eccentricity is h as well, but
its weight need not be equal to the weight of ¢ (as can be seen by examples).
So, in further we will assume that c¢ is a vertex (of Ths) with maximum
weight, and as well, one of the “central” vertices. O

Lemma 3.5 Let uy (= ¢) be a root of Ty, while uy, an arbitrary leaf. Let
U, UL, U2, - - ., Uk be a path (in Tyr) starting from ug and terminating in uy.
Then

x(ug) > x(u1) > x(ug) > - > x(ug—1) > x(ug).

Proof The first and the last inequality in this chain are true (by assump-

tions, or by Lemma 3.3). We take here that k > 2, since otherwise there is
nothing to prove. Now, assume to the contrary, i.e. that for some i (1 <7 <
k) x(u;) < x(u;t1) holds. But then, since T)s has the maximal index, we
must have (by Theorem 1.2) that (x(uj—1) — x(ui+2)) (X (uit+1) — x(u;)) < 0.
Therefrom we get x(u;—1) < x(uit2). In the same way we get x(u;—2) <
x(uiy3), and so forth. At some step we will encounter that u;—s = ug or
Ujts+1 = Uk. But this is a contradiction. If u;—s = ug occurs, we get a tree
with more than two central vertices; if ;41541 = u, then the conclusion
follows from Lemma 3.3 (since uy, is a leaf). This completes the proof. O

The next lemma directly follows from the previous one.

Lemma 3.6 If u is a vertex of Ths of degree d such that 1 < d < A, then
w is at distance h — 1 from c.

Proof Assume to the contrary that u is at distance k from ¢, where k # h—1.
Since k # h, we can assume that k¥ < h — 2. Consider any maximal path
starting at ¢, passing through u and terminating in r (which is, of course, a
leaf). Then, we can rotate a hanging edge incident to r (around r) to make
it a hanging edge at u. But then, by Theorem 1.1 (and Lemma 3.5), we get
a contradiction, in fact a tree whose index is greater than the index of Tj;.
This completes the proof. O

Consider now the partition

V(Tum) = Vo(e) U Vi(e) U -+ U Vimi(c) U Vi(o),
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where Vi (c) = {u | d(c,u) =k} (k=0,1,...,h — 1,h). It will be called the
distance partition of the vertex set of Ty with respect to ¢. The next lemma
is a slight generalization of Lemma 3.5. It is noteworthy to mention that
we will not need it in attempting to prove our main result, but we include
it here only to gain attention on one interesting phenomenon.

Lemma 3.7 Ifu e Vi(c) and v € Vj(c), where i < j, then x(u) > x(v).

Proof Assume first that ¢ is not on the unique path between u and v.
Then the proof follows from Lemma 3.5. We next assume that ¢ is on
the unique path between u an v. If so, assume to the contrary, and let
x(u) < x(v). Without loss of generality, we can also take that j is the
largest possible. If v is a leaf, but not u we are done (by Lemma 3.3). So,
assume next that both u and v are leaves. But then ¢ = j — 1 (by Lemma
3.4). Proceeding as in the proof of Lemma 3.4, let ug = u,uq,... be the
vertices on the unique path between u and ¢; also, let vg = v, vy, ... be the
vertices on the unique path between v and c. Then by performing the local
switching on the edges w;u;+1 and v;vi41 (¢ = 0,1,...) as in the proof of
Lemma 3.4 we arrive at the condition x(c) < x(vj—1). If x(¢) < x(vj—1) we
are done (in fact we get a contradiction). So consider the situation when
x(c) = x(vj—1). By tracing backwards the chain of conditions stemming
from Theorem 1.2, namely the conditions x(u;) = x(v;), we arrive at the
condition x(u1) = x(v1). But then we get a contradiction x(ug) = x(vg) (by
applying eigenvalue equations for vertices u and v). Consequently, it follows
that v has a neighbor, say v', belonging to Vj+i(c). On the other hand, u
has a neighbor, say ', belonging to V;;; (as can be argued by Lemma 3.6).
Making use of Theorem 1.2, we have that (x(u') — x(v"))(x(v) — x(u)) < 0.
But then, we get that x(u') < x(v'), a contradiction to the choice of v. This
completes the proof. O

Remark In the general case, in contrast to Lemma 3.5, we cannot put
x(u) > x(v) instead of x(u) > x(v). This will be explained later. O

From the above lemmas it follows that T); is a tree which satisfies:
(i

(ii) its height with respect to ¢ is equal to h (= h(Tn));

=

it is a rooted tree with ¢ (the center of Tys) as the root;

(iii) each leaf is at distance h — 1 or h from ¢;

(iv) each vertex, except possibly one, is of degree 1 or A;
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(v) the vertex of degree d (1 < d < A), if any, is at distance h — 1 from c.

Notice also (as follows from above) that a tree Ty with the height at
most 2, is determined by (i)-(v) up to isomorphism. So, assume that further
on h(Th) is greater than 2.

Recall now that a rooted tree is a balanced tree if all vertices at any (but
fixed) distance from the root have the same degree; see, for example, [11],
p. 106. So, such a tree (of height h) can be described by h parameters
D0, P1y - - - s Ph—1, Where p; is the degree of any vertex at i-th layer. If T is a
balanced tree with the above parameters, we write 7' = T(po, p1, - - - s Ph—1)-
So, T is an induced subgraph of

h

—
TN A, A),

which can be abbreviated to T'(h, A). Thus, for Th; we have
T(h—1,A) C Tyy € T(h, A);

here C denotes the fact that the first graph is an induced subgraph of the
second one. Actually, T)s can be obtained from T'(h — 1,A) by attaching
the appropriate number of bouquets with A — 1 edges to the vertices on
the (h — 1)-th layer, and possibly only one bouquet with d — 1 edges to one
vertex on the same layer.

We will now precise the structure of Ths (as suggested by our computer
experiments with Mathematica). For this aim, consider T'(h — 1,A) and
traverse it (starting from its root) in a depth-first search (DFS) manner
(see, for example, [12]). Then the vertices from the layers are labeled in
order as they were encountered (for the first time) by the DFS. After this
step, we add bouquets (of sizes as above) to the vertices from the last layer
in T'(h — 1, A) respecting the order in which they were encountered - that
means the vertices first encountered first get the bouquets. This tree will be
denoted by B(n,A). We next give some further explanations.

Let u be any vertex of Ty other than c. Denote by T* a subtree hanging
at u, i.e. it contains u and all vertices v for which u belongs to the unique
path between v and ¢. We can classify trees T as follows: (i) L-type (large
trees) - balanced with height h — d(c,u); (ii) M-type (medium trees)- non-
balanced with height h — d(c,u); (iii) S-type (small trees)- balanced with
height h — 1 — d(c,u). Now, if T)s is not a balanced tree, then the trees T
for u € Vi(c) are all but possibly one of type L or S. If T for u; € Vi(c)
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is a tree of type M, then its subtrees T" for u € Va(c) are all but one of
type L or S. If T2 for us € Va(c) is a tree of type M, then its subtrees are
all but one of types L or S, and so forth. In the final stage, all subtrees are
of type L or S. Consequently, there are no two subtrees of type M whose
roots are on the same layer; otherwise, that situation will be referred to as
a failure.

Lemma 3.8 For any two subtrees (of Tar), attached at vertices from the
same layer, there are no failures.

Proof Assume to the contrary that there exists a failure. Let «’ and v’ be the
vertices (from the same layer) giving rise to a failure. Then there is a path
from u’ to some vertex, say ug, from the (h — 2)-th layer for which 7“2 is of
type M. Similarly, there is a path from v’ to some vertex, say vy, from the
(h — 2)-th layer for which T2 is of type M. Assume first that u; and vy are
the vertices of Vj,_1(c) chosen so that u; is adjacent to ug and deg(ui) = 1,
while vy is adjacent to ve and deg(ve) > 1. If so, by Theorem 1.2 (and
Lemma 3.3), and since Ths has the maximum index, we get x(v2) > x(u2).
Conversely, we next take that deg(u;) > 1, while deg(v;) = 1. But then, in
the same way, we get x(u2) > x(v2), a contradiction. This completes the
proof. m]

Collecting the above results, we immediately get our main result.

Theorem 3.9 There is a unique graph in T (n,A) (for eachn and A) with
the largest index; it is equal to B(n,A).

Proof We start from the first layer. If there are no subtrees of type M
whose roots are at the first layer, we are done (Ty; = B(n,A)). Otherwise,
there is a unique subtree T of type M, with u; € Vi(c). We then proceed
with the second layer focusing our attention only to the neighbours of u;. If
there are no subtrees of type M whose roots are the observed vertices of the
second layer we are done (Ths = B(n, A)). Continuing in this way, and using
(repeatedly) Lemma 3.8, we will get a tree which is equal to B(n,A). Note,
in each step subtrees of type L can be relocated to the left, next subtrees of
type S can be relocated to the right, while those of type M are kept in the
middle. This is in accordance with DFS strategy used in constructing the
graphs B(n, A). This completes the proof. m]

Example Assume first that n = 37 and A = 3. Then the corresponding
maximal graph is shown in Fig. 1. Its center consists of one vertex (top
one).
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Fig. 1: A tree with maximum index in 7°(37, 3).

Assume now that n = 26 and A = 4. Then the corresponding maximal
graph is shown in Fig. 2. Its center consists of two (adjacent) vertices
(middle ones).

Fig. 2: A tree with maximum index in 7 (26, 4).

In this situation, we have a tree which is balanced in the sense that all
vertices at any (but fixed) distance from the center are of the same degree.
With such trees, if we take one of the central vertices as a root we can have
that two vertices from different layers have the same weight (with respect
to the principal eigenvector); see also the remark after Lemma 3.7. O
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