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Abstract-This paper begins with a review of the Euler relation for the convex polyhedra. 
The Schläfli relation is derived from this by introducing the secondary topological 
indices of polygonality and connectivity. A topology map of the polyhedra and extended 
structures, in a Schläfli space, is illustrated and is discussed from the point of view of its 
organizational value for defining the topological relationship of structures from their 
Schläfli indices. A comment is then made with respect to the definition of the various 
vertex connectivities in structures, from knowledge of the circuit number of the vertex. It 
is shown here that vertices containing polar connections have a reduced circuit number 
from that calculated according to the prescription p(p-1)/2. Next a review is made of the 
Wells point symbols and corresponding Schläfli indices; first of the regular diamond and 
graphene nets; second of the semi-regular nets, including the Archimedean fullerene 
polyhedron and the Cooperite structure-type, and the Catalan fluorite and Waserite 
structure-types; and third of the irregular nets to include the Wellsean glitter and 
phenacite structure-types. The direct translation of the Wells point symbol to a weighted 
average polygonality, n, and a weighted average connectivity, p, is demonstrated in these 
examples.  
* Corresponding author (castro@quimica.unlp.edu.ar / direccion@inifta.unlp.edu.ar) 

 



 

1.  Introduction 

Euler's relation between the number of vertices, V, edges, E, and faces, F, of 

convex polyhedra was developed in the middle of the 18th century [1] and 

its discovery marks the origin of the discipline of topology [2]. This relation 

is shown in Equation 1 below: 

 

(1)     V - E + F = 2 

 

From this equation it is said that the Euler characteristic for the sphere is 2. 

This simply, and elegantly, means that any division of a sphere into vertices, 

edges and faces will have that combination so specified in Equation 1. It 

happens that the convex polyhedra, with all their inherent symmetry and 

internal beauty, are idealized divisions of the sphere into the topology 

suggested first by Euler in his 1758 paper [1]. 

 Some time after this, in a paper due to Schläfli, [3] the identities 

shown in Equation 2 and Equation 3 were discovered: 

 

(2)     nF = 2E 

 

(3)     pV = 2E 

 

Schläfli identified the polygonality of convex polyhedra; or any division of 

the sphere into vertices, edges and faces; as the averaged number of sides of 

the polygonal faces in the considered object derived from the sphere. He 

determined the relation shown in 2, that the averaged polygonality in the 

object, n, multiplied by its number of faces, F, is equal to twice its number of 
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edges, E. Because each edge, E, is shared by two faces (i.e. adjacent faces 

share a common edge) this relationship is rigorous. 

 Similarly in 3 we see the Schläfli relation between the connectivity of 

convex polyhedra, p, and the number of vertices, V, and edges, E. The 

connectivity, p, is identified as the averaged number of edges meeting at 

each vertex of a polyhedron. Because each of the edges terminates at two 

vertices, one can see that this Schläfli relation is rigorous. One speaks of 

averaged numbers for n and p, because unless the polyhedron is regular 

(meaning all faces are identical polygons) there are differing numbers of 

edges to each polygonal face and/or differing numbers of edges meeting at 

each polygonal vertex in the polyhedron. One speaks of the semi-regular 

polyhedra, these are the Archimedean (polyhedra with more than 1 type of 

polygonal face) and Catalan (polyhedra with more than 1 type of polygonal 

vertex) polyhedra [4]. There are in addition innumerable irregular polyhedra, 

these are polyhedra in which there is more than one type of polygonal face 

and more than one type of polygonal vertex. 

 Schläfli substituted Equations 2 and 3 into the Euler relation 

(Equation 1), as shown in Equation 4, to obtain a relation between V, E and 

F; known as the primary topological indices; and n and p; known as the 

secondary topological indices. 

 

(4)    1/n – ½ + 1/p = 1/E   

 

This latter Schläfli relation is important from the perspective of the Schläfli 

symbols (n, p) that can be identified for any polyhedral object. All polyhedra 

have rigorously determined values of n and p; just like they have rigorously 

determined values of V, E and F. The ordered pair thus formed of n and p, 
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the polyhedral Schläfli symbol, represents a location in a Cartesian-like 

space, called a Schläfli space, in which the polyhedral object can be mapped. 

 Figure 1 shows the beginnings of this topological mapping for the 

regular polyhedra. The five regular polyhedra are called the Platonic solids 

for their role as elements in Plato's philosophical treatise known as the 

Timeas [5]. The polyhedron with the highest topology is the tetrahedron 

(meaning 4 equivalent faces) with the Schläfli symbol (3, 3). It marks the 

origin of this map [6]. Similarly, there is the cube (4, 3) and the pentagonal 

dodecahedron (5, 3); lining the column underneath the tetrahedron. To the 

right of (3, 3) are the octahedron (3, 4) and the icosahedron (3, 5). One can 

see immediately the power of the Schläfli relation as an organizing principle 

in its usefulness as a mapping tool for determining the identity and relative 

location of all of the various polyhedra. One could extend this mapping to 

include the semi-regular and irregular polyhedra as well. The Archimedean 

polyhedra have fractional polygonalities, n; the Catalan polyhedra have 

fractional connectivities, p; and the irregular polyhedra have both fractional 

polygonality and fractional connectivity. 

 In the 1950's Wells began his enumerative work on 2-dimensional 

(2D) and 3-dimensional (3D) networks and novel crystal structures [3]. He 

labeled his novel networks with the Schläfli symbols (n, p) to identify them. 

For while he did not determine a Schläfli-like relation for crystal structures; 

that is collections of vertices, edges and faces filling 3-dimensional space, 

and not constrained to the surface of a sphere; he nonetheless discovered that 

both the polygonality, n, and the connectivity, p, could be rigorously 

calculated within the unit of pattern of extended structures in both 2- and 3-

dimensions [3]. He concluded that the topology map for the polyhedra, 

shown in Figure 1, could be extended in Schläfli-space by a simple 
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augmentation of the ordered pairs of numbers (n, p), the Schläfli symbols, to 

the right of those for the polyhedra. Such an augmentation of this topology 

map involved moving into frontier that included the 2-dimensional 

networks, like the regular 2D extended structures of the graphene net (6, 3), 

the square net (4, 4) and the closest packed net (3, 6); and also the semi-

regular and irregular tilings of the Euclidean plane, into the territory of the 

3-dimensional networks. Figure 2 shows the extension of the topology map 

due to Wells. Note that to the right of the solid line, the 3-dimensional nets, 

the Schläfli symbol (n, p) may represent more than one way of filling space 

with a corresponding network of the specified topology. 

 

 

 

 
 

Figure 1: Partial topology map of the polyhedra and 2D regular structures.  
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Figure 2: Complete topology map for the regular structures. 

 

Early work by Wells involved the enumeration of the regular 

networks, that is networks in which the polygonality of circuits in the net is a 

uniform number and the connectivity of the vertices in the networks is a 

uniform number. Such networks, termed regular, represent structures with 

some of the highest possible topologies. This work included such topologies 

as that represented by the Schläfli symbol (7, 3) in which the polygonality of 

the circuits in the network, n, is uniform at 7, and the connectivity of the 

vertices in the network is uniform at 3 [7]. In this work, according to Wells, 

he was attempting to extend the topology map from (5, 3), the polyhedron 

called the pentagonal dodecahedron, to (6, 3) the 2D structure known as the 

graphene net, onto (7, 3) which represents a continuation of this sequence 

into 3-dimensional space. He eventually determined 4 distinct structures, 4 

nets, that possessed the Schläfli symbol (7, 3) [6]. He did other similar 
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elegant work on 3D networks of topology (8, 3), (9, 3), (10, 3) and (12, 3) 

[7]. 

 Later on Wells turned to networks whose topology was lowered, these 

were the semi-regular and irregular 3D networks [4]. He introduced the 

Wells point symbols to represent the topology of these complex structures 

and it is the Wells point symbols that concern us in the present discussion. 

From the identification of the Wells point symbol for a network, one can in 

turn calculate the corresponding Schläfli symbol (n, p). This translation is 

important because the Schläfli symbol identifies the network and specifies 

its relative location with respect to all other networks in the topology map in 

Schläfli space. The Wells point symbol compactly summarises the polygonal 

circuitry that surrounds each of the p-connected vertices in the unit of 

pattern of a network (a model of crystalline material). The Wells point 

symbol also reflects the stoichiometry of the network. These ideas are 

described in the next Sections. 

 

2. Comment on Circuit Numbers and Vertex Connectivity 

There are two components to the mapping of structures in Schläfli space, as 

is shown in Figure 1 and 2 above. The polygonality is given the symbol n 

and it is derived from knowledge of the connectivities of the vertices, given 

by the symbol p, in the pattern of the structure. Of primacy in determining 

the Wells point symbol for a structure, and translating this point symbol into 

a Schläfli symbol (n, p), is the translation of the vertex connectivity in a 

structure from the circuit number about the vertex. The circuit number refers 

to the number of independent circuits that surround a particular point in the 

structural pattern. In a strict topological sense it would appear that circuit 

numbers for vertices would be given by Equation 5 [4]: 
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(5)    circuit # = p(p-1)/2  

  

 From this circuit number relation it would appear that a 3-connected 

point would have 3 circuits about it, a 4-connected point would have 6 

circuits about it, a 5-connected point would have 10 circuits about it, and so 

on. This would strictly be the case if not for the polar circuits, those circuits 

formed by connections within the vertex 180° opposed from each other. One 

must correct the circuit number expression in Equation 5 for the number of 

these polar circuits in the vertex, called q. Equation 6 shows the correct 

expression for the circuit number about a given vertex: 

 

(6)    circuit # = p(p-1)/2 - q 

  

 For example, consider a square planar vertex, as is shown in Figure 3 

below. It would appear that such a vertex would have 6 independent circuits 

about it from inspection of all the pairs of connections that could possibly be 

drawn from the vertex.  

In fact there are only 4 independent, non-polar pairs of connections 

that define the independent circuits about this vertex. The 2 polar pairs of 

connections do not play a role in the ultimate, actual topology of a structure 

containing this vertex. To see why this is so, consider an infinity proof as is 

outlined here for the square net. 
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Figure 3: Square planar vertex topology. 

 

 

 
Figure 4: The square net (4, 4). 
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In the Wells point symbol the exponent is the circuit number, with a value of 

4 it is understood to represent a structure composed of square planar vertices 

which are involved in four 4-gon circuits about each vertex in the structure 

of the square planar network. The base 4 is the polygonality of the circuitry. 

This all will be discussed more fully below. 

 From the Schläfli symbol (4, 4) it can be seen that the averaged 

polygonality, n, is 4 and the averaged connectivity, p, is 4, as well. This is 

easy to see in this case, because the network has a very regular topology. If 

one substitutes the values of n = 4 and p = 4 into the Schläfli relation shown 

in Equation 2 above, one sees that indeed the square net is a 2-dimensional 

extended structure which is infinite in extent. The infinite extent of the 

network is evident from Equation 2 because the number of edges, E, is 

calculated to be ∞. 

 Now, if one were to compute n and p by including the 2 polar pairs of 

connections, as is diagrammed in Figure 5. 

 One gets the same four 4-gons as in the previous analysis, and one, in 

addition, yields two 6-gons from forming the shortest circuits about the two 

polar pairs of connections. The corresponding Wells point symbol of the 

square net would appear to be 4462, where in this case we have a circuit 

number of 6 for the square planar vertex, this corresponds to the sum of the 

exponents in the Wells point symbol. In addition we have both 4-gons and 6-

gons in the square net structural pattern. 

 We can translate the Wells point symbol into a corresponding Schläfli 

symbol of (42/3, 4). The connectivity, p, of 4 arises from the fact that the 

square planar network is composed of 4-connected square planar vertices. 

The polygonality, n, is generated from taking a weighted average over the 
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circuits present about each vertex in the net, such a calculation is shown in 

Equation 7: 

 

(7)    n = [4x4 + 6x2]/6 = 42/3 

 

 

 

 
 

Figure 5: Alternative polygon analysis of the square net. 
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Now if we take the latter expression of the Schläfli indices and substitute 

into Equation 4, the Schläfli relation, one obtains the following equality for 

the infinite square planar network: 

 

(8a)     1/E = -0.03571 

 

(8b)     E = -28.00 

 

Clearly, this result, the Schläfli symbol (42/3,4), is not consistent with the 

topology of the infinite square net as the number of edges is not ∞ but is in 

fact computed to be about –8. On the other hand, omitting the polar pairs of 

connections in the square planar vertex leads to a Schläfli symbol (4,4) 

which is consistent with the topology of the infinite square net as the 

corresponding number of edges is properly ∞. From inspection, then, we 

have tabulated the following rules for converting a circuit number into a 

vertex connectivity, in light of the infinitely proof, for the first 8 vertexes 

which are found to form common connectivity motifs in the structure of 

matter. 

 Connectivities of 7, 9, 10 and 11 are of course possible and will be 

explored elsewhere. 

 

3. Wells Point Symbols for Regular Nets: Graphite and Diamond 

We begin with the simple case of the topologically regular structures. Such 

structures are termed regular because all vertex connections are identical and 

all polygonal circuits are uniform as well. The graphite and diamond 

structure-types are the archetypal allotropic forms of carbon and are both 

topologically regular structures [8]. It is also true that graphite and diamond 
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have both unusually high symmetries. The graphene sheet, shown in Figure 

6, is the fundamental component of the graphite structure-type. 
 
Table 1: Names, vertex connectivities and circuit numbers for the first 8 
commonly occurring vertex topologies.        

 
name 

 
vertex connectivity 

 
circuit number 

 
trigonal planar 

 
3 

 
3 

 
square planar 

 
4 

 
4 

 
tetrahedral 

 
4 

 
6 

 
trigonal bipyramidal 

 
5 

 
9 

 
octahedral 

 
6 

 
12 

 
body centered 

 
8 

 
24 

 
10-connected 

 
10 

 
40 

 
closest packed 

 
12 

 
60 

 

 
 

Figure 6: The graphene sheet (6, 3). 
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Such graphene sheets belong to the plane group p6mm [9]. They are layered 

onto each other in an alternating .....ABAB.... sequence to generate the 

rhombohedral graphite structure-type in space group R3c, number 167, and 

they are layered onto each other in an ....ABCABC.... sequence to generate 
the hexagonal graphite structure-type in space group P63/mmc, number 194 

[10]. The topology of graphite is expressed fully through the component 

graphene sheets. Inspection of Figure 6 reveals that all the polygons in 

graphene are 6-gons and all vertices are 3-connected and trigonal planar. It is 

therefore a trivial matter to write down the Schläfli symbol for graphene, it 

is just (6, 3).  

 One can see its location in the topology map of Figure 2, it is just 

beyond (5, 3) the pentagonal dodecahedron, in the diagonal panel to the 

immediate left of the solid line that separates 3D structures from 2D 

structures. The graphene sheet is an archetypal tiling pattern used in 

honeycombs and in the interior decorating of homes and public buildings. 

The Wells point symbol corresponding to (6, 3) is 63. The similarity between 

the Schläfli symbol and the Wells point symbol for the graphene sheet is a 

bit deceptive, later examples will show that translation of the Wells point 

symbol into a Schläfli symbol for a network, which is the focus of this 

paper, is not usually so straightforward as this. From 63 we may first identify 

the connectivity, this point symbol is for a uninodal net, hence its simplicity, 

and we identify the exponent 3 in the point symbol as the circuit number 

belonging to the trigonal planar vertex. This translation was obtained from 

the data in Table 1 above.  

 To get at the polygonality, which we have already trivially identified 

as 6 from inspection of the sketch of the graphene sheet, one simply sums all 

the sides of all the polygonal circuits about the vertices in this uninodal net 
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and divides by the number of polygonal circuits common to each such 

vertex. Such a computation is trivial in this case and is shown in complete 

form in Equation 9. 

 

(9)     n = 3x6/3 = 6 

 

 The unit cell of the cubic diamond lattice is shown in Figure 7, it lies 

in space group Fd3m, number 227. The lattice can be envisioned as a 

sequence of ......ABCABC......layering of carbon atoms, or alternatively as a 

stacking of all chair cyclohexaneoid units to fill 3D space.  

 
 

Figure 7: The cubic diamond lattice (6, 4). 

 

Yet another polytype of diamond is known as hexagonal diamond, or 

Lonsdaleite after the famous British crystallographer. Hexagonal diamond 
lies in space group P63/mmc, number 194, like hexagonal graphite, and 
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possesses a stacking sequence of carbon atoms in the pattern 

.....ABAB.....The topology of all diamond polytypes is the same, as will 

easily be revealed in an extended drawing or by building models [10].  

 Inspection of Figure 7 reveals all carbon atoms are tetrahedral, 

therefore the diamond net is uninodal and the circuit number of the 

tetrahedral vertex can be identified from Table 1 as 6. There are 6 circuits 

emanating from the tetrahedral vertices in diamond. By drawing extended 

sketches of the lattice, so that the 6 circuits of one of the tetrahedral nodes 

can be traced, it will become obvious that the polygonal circuits, all 6 of 

them, are 6-gons. The Wells point symbol for diamond is therefore 66. It is 

an easy matter to translate the point symbol into the Schläfli symbol (6, 4). 

The computation of n for diamond is shown in Equation 10. 

 

(10)     n = 6x6/6 = 6 

 

4. Wells Point Symbols for Semi-Regular Nets 

Archimedean Structures 

The Archimedean polyhedra, and related 2D and 3D structures, are semi-

regular structures in that they consist of uniform vertex connections while 

possessing more than one type of polygonal circuit in their structures. As 

such, the Archimedean structures will have integer vertex connectivity in the 

Wells point symbol and corresponding Schläfli symbol, and fractional 

polygonality. We begin with an evocative example of modern day topology 

at work, this the famous molecule known as Buckminsterfullerene [11]. 

Figure 8 shows a drawing of the carbon allotrope, it is in the icosahedral 
symmetry point group Ih. By inspection one can write down the Wells point 

symbol.  
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Figure 8: The Archimedean Buckminsterfullerene polyhedron (52/3, 3). 

 

 The net is uninodal with all vertices 3-connected, quasi-trigonal 

planar. From Table 1 it is clear that the exponent in the Wells point symbol 

for this structure will be 3. However, due to its Archimedean nature, there 

are indeed two types of polygons common to each 3-connected vertex. One 

can see that two 6-gons and one 5-gon meet at each vertex. It is a simple 

matter to represent this in a point symbol as (562). The exponent for the 5-

gons is just 1 where we leave this out, the exponent for the 6-gons is 2. One 

can see immediately that the sum of the exponents, 2 + 1, is in fact equal to 3 

as it must be for trigonal planar connectivity. 

 To get at the polygonality for the structure, one needs to take a 

weighted average over the circuitry about the uninodal, trigonal planar 

vertices. This is accomplished by summing the products of all the exponents 
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multplied by their respective bases and dividing by the sum of the 

exponents, as is shown in gory detail in Equation 11. 

 

 

(11)    n = [(1x5) + (2x6)]/3 = 52/3 

 

Therefore the Schläfli symbol for Buckminsterfullerene is just (52/3, 3) [12]. 

 As an example of an extended structure which is Archimedean, one 

may consider the Cooperite structure-type which is the structure of PtS and 
PdO [13]. It is a tetragonal structure-type in the space group P42/mmc, 

number 131. The net is shown in Figure 9 where one notes immediately that 

the structure consists of a mixture of tetrahedral and square planar vertices. 

Technically, it would be considered an irregular net as the vertices are not 

equivalent, and it consists of more than one kind of polygonal circuit. 

However, as the tetrahedral and square planar vertices are both 4-connected, 

we can consider it to nominally be Archimedean 

. 

 
 

Figure 9: The Archimedean Cooperite network (62/5, 4). 
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 To get at the Wells point symbol we first note its stoichiometry. As is 

evident in Figure 9 there is a 1 to 1 ratio of square planar to tetrahedral 

vertices in the net. A point symbol will need to be written down which 

consists of two brackets, one to indicate the topology about the square planar 

vertex, and one to indicate the topology about the tetrahedral vertex. Further, 

the sum of the exponents in the first bracket should be equal to 4, as this is 

the circuit number translation for square planar connectivity from Table 1. 

Similarly from Tabel 1, the bracket representing the tetrahedral vertex 

should have exponents that add to 6. 

 In order to visualize the circuitry about the two vertices in this binodal 

network, it is just necessary to resort to sketches that show completely the 

polygonal circuits about all 4 non-polar connection pairs in the square planar 

node, and all 6 connection pairs in the tetrahedral node. Upon analyzing 

sketches one sees that there are two 4-gons and two 8-gons about the square 

planar node, and there are two 4-gons and four 8-gons about the tetrahedral 

node. The Wells point symbol is just (4282)(4284) for Cooperite. One can 

obtain the polygonality, n, in the manner just outlined in the case of the 

Archimedean Buckminsterfullerene polyhedron, above: 

 

(12) n = [(2x4) + (2x8) + (2x4) + (4x8)]/[2 + 2 + 2 + 4] = 62/5 

 

The connectivity index, p, is just 4 as Table 1 reveals. Therefore, the Schläfli 

symbol is given by (62/5, 4). 

Catalan Structures 

The Catalan polyhedra were discovered in the 19th century after the 

Archimedean polyhedra had been enumerated in Ancient Greece more than 

2000 years before. The Catalan polyhedra are known as the duals of the 
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Archimedean polyhedra. This is evident from the Schläfli symbol of the 

polyhedron where the following duality relationship holds [3][5]: 

 
(13)    (n, p) = (p, n)dual 

 

Being the duals of the Archimedean polyhedra, the Catalan polyhedra 

possess more than one type of vertex and uniform polygonal circuits in their 

structures. Thus, in the Schläfli index of a Catalan structure, the polygonality 

will be integer and the connectivity will be fractional.  

 The Catalan polyhedra can be constructed from their dual 

Archimedean polyhedron counterparts by joining the midpoints of all 

adjacent faces together. Such a reciprocal construction exists in 2D as well, 

where the square net (4, 4) is self-dual and the hexagonal net can be 

tesselated inside the close packed net and vice versa. This reciprocity 

extends to the semi-regular plane tilings as well. Although, formally, there 

exist dual relationships of the 3-dimensional networks; like (6, 4), the 

Schläfli symbol for the diamond net, is the 3D dual of (4, 6), the primitive 

cubic net; the construction of one 3D net from the other by joining midpoints 

of adjacent faces together is not, in practice, possible. 

 Here is described the translation of the Wells point symbol to the 

corresponding Schläfli symbol for two Catalan extended structures. Perhaps 

it would have been illustrative to show a translation of a Catalan polyhedron, 

but the extended structures are more complex and illustrate the process of 

translation more fully. Shown in Figure 10 is the fluorite structure-type, this 

is a Catalan network. It is a cubic structure-type in space group Fm3m, 

number 225 [14].  
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Figure 10: The Catalan fluorite lattice (4, 51/3). 

 

One can see by inspection in the drawing that there are eight tetrahedral 4-

connected points in the unit cell and four body centered 8-connected points 
in the unit cell. The stoichiometry is thus AB2, with A being 8-connected 

and B being 4-connected. 

 By drawing a sketch of an extension of the fluorite unit cell showing 

the complete circuitry about one of the body centered lattice points and one 

of the tetrahedral lattice points, one can identify the polygons within the 

Wells point symbol for this complex network. Inspection of such a sketch 
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reveals the simplicity of the topology of fluorite as all polygonal circuits in 

the structure-type are 4-gons. At first sight this sketching seems a bit 

involved as there are 24 independent connection pairs about the 8-connected 

body centered vertices in the lattice, but in fact the tracing is straightforward. 
The Wells point symbol is immediately written down as (424)(46)2. The 

exponents in the point symbol reveal the vertex connectivities of the vertices 

in fluorite. From Table 1 we see that a circuit number of 24 corresponds to 

an 8-connected body centered vertex, and 6 is the circuit number for the 4-

connected tetrahedral vertex. Note the additional coding of the 1 to 2 

stoichiometry of body centered to tetrahedral vertexes by the inclusion of the 

proper subscripts in the point symbol. Finally, the bases in the point symbol, 

which refer to the relative occurrences of the polygonal circuits, are all 4. 

This is in keeping with the fluorite structure-type being a Catalan network. 

 To get at the polygonality, n, one simply sums the products of the 

stoichiometric subscript factors with the corresponding circuit numbers and 

the corresponding polygonalities and divides by the number of polygons so 

coded, this is given by the sum of the products of the stoichiometric 

subscript factors with the corresponding circuit numbers: 

 

(14)  n = [(1x24x4) + (2x6x4)]/[(1x24) + (2x6)] = 4 

 

The connectivity, p, is gotten by taking a weighted average of the relative 

connectivities in the unit cell considering the stoichiometric subscript factors 

and the translation of the circuit numbers in the exponents of the point 

symbol into vertex connectivities. The denominator in such an expression is 

the sum of the vertexes in the stoichiometric formula unit: 

(15)    p = [(1x8) + (2x4)]/3 = 51/3 
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Hence, the Wells point symbol (424)(46)2 is translated into the Schläfli 

symbol (4, 51/3). 
 The unit cell of the Catalan network of Waserite, Pt3O4, is shown in 

Figure 11 below. It is a 3-,4-connected cubic structural pattern in space 

group Pm3n, number 223 [15]. 

 

 
 

Figure 11: The Catalan Waserite network (8, 3.4285). 

 

One can see immediately on inspection of the unit cell that there are six 4-

connected square planar vertices and eight 3-connected trigonal planar 
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vertices in the unit cell. It is a beautiful example of a 3-,4-connected network 

because of its high cubic symmetry and that it displays strain-free ideal bond 

angles of 90° and 120° about the square planar and trigonal planar vertices, 

respectively. 

 By drawing an extended sketch of the Waserite unit cell, one can trace 

the 3 polygonal circuits about the trigonal planar vertices and the 4 

polygonal circuits about the square planar vertices, respectively. The relative 

simplicity of the topology of Waserite is revealed in such an analysis as all 

shortest polygonal circuits about all vertices are 8-gons. It is an octagonal 

structure-type. From the stoichiometry identified above, one can 

immediately write down the Wells point symbol for the network as 
(84)3(83)4, where the exponents and subscripts are seen to correspond the six 

4-connected square planar vertices in the unit cell to eight 3-connected 

trigonal planar vertices in the Waserite unit cell. The matter of translation is 

trivial, the value of n and p are indicated in Equations 16 and 17: 

 

(16)   n = [3x4x8) + (4x3x8)]/[(3x4) + (4x3)] = 8 

 

(17)    p = [(3x4) + (4x3)] / 7 = 3.4285....... 

 

Hence, the Schläfli symbol for Waserite is simply (8, 3.4285). Here the 

connectivity shows up as a continued fraction. 
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5. Wells Point Symbols for Irregular Nets 

Finally, we turn to the topologically irregular structures. These structures 

have been previously labeled as the Wellsean structures [8]. The structures 

are labeled irregular, or Wellsean, because they consist of more than one 

type of vertex connectivity and they possess more than one kind of shortest 

polygonal circuit about one or the other, or both, vertices. Such structures, 

therefore, contain fractional polygonality and fractional connectivity in their 

structural pattern. It is important to point out at the beginning that there may, 

in fact, be more complex networks than this, including those with more than 

2 distinct vertex connectivities.  

 As the first example of such a network, we consider the glitter 

structure-type first published in 1994 [16]. An extended view of the glitter 

structure is shown in Figure 12 below: 

 

 
 

Figure 12: Extended view of the topologically irregular glitter network with 

the corresponding Schläfli symbol of (7, 31/3). 
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The structure is of tetragonal symmetry, in space group P42/mmc, number 

131. It is interesting in this connection that the space group of Cooperite is 

identical to that of glitter. In fact one can move from the Cooperite structure-

type to the glitter structure-type by replacing the 4-connected square planar 

vertices with 3-connected trigonal planar atom pairs. It is an elementary 

topological substitution of the type of which Wells was a master designer. 

 Figure 13 shows the elementary unit cell of glitter. One can see by 

inspection of the unit cell that there are four 3-connected trigonal planar 

vertices for every two 4-connected tetrahedral vertices. 

 

 
 

Figure 13: Unit of pattern of the topologically irregular glitter network with 

the Schläfli symbol of (7, 31/3). 
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 The stoichiometry of the lattice is therefore 1 to 2 tetrahedral vertices for 

trigonal planar vertices. From Table 1 we know that there are indeed 6 

polygonal circuits about the 1 tetrahedral vertex in the stoichiometry, and 3 

polygonal circuits about each of the 2 trigonal planar vertexes in the 

stoichiometry of glitter. The point symbol about the trigonal planar vertices 

is trivial to work out from an extended sketch of glitter, as two 6-gons and 

one 8-gon meet at each such vertex in the pattern. The partial point symbol 

about the trigonal planar vertices is thus (628). Working out the tetrahedral 

point symbol requires more work, because there are 6 polygonal circuits 

about these vertices. By sketching and carefully tracing, one can see that the 

partial point symbol for the tetrahedral connections in glitter is (6284). 

 By specifying the stoichiometry of glitter, the Wells point symbol is 
established from these two parts as (6284)(628)2. One can immediately get at 

the averaged polygonality and connectivity in the unit cell of glitter, as is 

shown in Equations 18 and 19: 

 

(18) n = [(1x2x6)+(1x4x8)+(2x2x6)+(2x1x8)]/[(1x2)+(1x4)+(2x2)+(2x1)]= 

7 

 

(19)   p = [(1x4) + (2x3)] / 3 = 31/3 

 

Hence one can see that the Schläfli symbol is just (7, 31/3) for glitter [17]. It 

appears to correspond to the Schläfli symbols for the Catalan networks 

because its polygonality is integer. However, as the Wells point symbol 

reveals, it is an irregular net consisting of 3- and 4-connected points in 6- 

and 8-gon circuits. 
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 The phenacite structure-type was discovered in 1930 by Bragg et al. 

[18]. It is a challenging structure-type consisting of trigonal planar 3-

connected vertices and tetrahedral 4-connected vertices that alternate in 3-

dimensions to form a hexagonal structural pattern. The unit cell is shown in 
Figure 14, the structure belongs to space group P63/m, number 176. 

 

 
 

Figure 14: Unit of pattern of the topologically irregular phenacite network 

with the Schläfli symbol (64/5, 3.4285). 

 

It clearly requires concentration to see that the stoichiometry of this 

topologically irregular network is four trigonal planar 3-connected vertices 

to three tetrahedral 4-connected vertices. Also it would be difficult to draw 

an accurate extended sketch of such a complex structure to get at the 

polygonal circuits in the structure, but one can build an extended model and 

from this identify those polygonal circuits. There are thus, topologically, 3 

types of vertex in the phenacite structure type. Two types of circuitry about 
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3-connected trigonal planar atoms and one type of circuitry about the 4-

connected tetrahedral atoms. One can see this in Figure 13 if one 

concentrates. 

 The Wells point symbol for the phenacite structure-type is given by 
(63)6(83)2(6383)6. [4] Therefore we have a 3 to 1 ratio of trigonal planar 

vertices with all 6-gon and all 8-gon circuitry about them, respectively. And 

we have three 4-connected tetrahedral formula units with the topology 

(6383) in its circuitry. Note, as in Table 1, the exponents in the tetrahedral 

vertex point symbol add to a circuit number of 6, as they must. It is an easy 

matter now to translate this complex point symbol into a Schläfli symbol for 

the network as is shown in Equation 20 and 21: 

 

(20) n = [(6x3x6)+(2x3x8)+(6x3x6)+(6x3x8)]/[(6x3)+(2x3)+(6x3)2] = 64/5 

 

(21)   p = [(6x3) + (2x3) + (6x4)] / 14 = 3.4285........ 

 

Hence the Schläfli symbol for phenacite is (64/5, 3.4285). It is indeed a 

Wellsean network with a fractional polygonality and a fractional 

connectivity. It is interesting here to see that the connectivity of phenacite is 

the same continued fraction, 3.4285........, as in the much simpler Waserite 

structure-type. This is because the stoichiometries of these two 3-,4-
connected nets are identical at A3B4, where A is 4-connected and B is 3-

connected. 
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