
MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 54 (2005) 153-162  
 

                                          ISSN 0340 - 6253  
 

Essentially Disconnected Character
of Essentially Disconnected Coronoid

Systems 1

Shouliu Wei

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, 350002, P.R.China

Chen Rong Si2

Department of Statistics, Fuzhou University, Fuzhou, Fujian, 350002, P.R.China; e−mail:

chenrongsi@fzu.edu.cn

(Received April 15, 2004)

Abstract

An essentially disconnected coronoid system is defined as a Kekuléan coronoid

system which has fixed (single or double) bonds and has at least one hole. It is

proved that the subgraph, obtained by deleting all the fixed single bonds and

all the end vertices of the fixed double bonds, is disconnected, and has at least

two normal components, which generalizes the result for essentially disconnected

benzenoid systems by Gutman et al [4].
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1. Introduction

A benzenoid system [1] is a finite connected subgraph of the infinite hexagonal lattice

without cut vertices or non-hexagonal interior faces. A coronoid system [2] is a subgraph

of a benzenoid system and has at least one ”hole”, i.e. a non-hexagonal interior face.

Coronoid systems are divided into single coronoid systems (i.e. coronoid systems with

exactly one hole) and multiple coronoid systems (i.e. coronoid systems with more than

one hole). Benzenoid systems and coronoid systems are widely used because they are

the representations of the skeletons of molecules of benzenoid hydrocarbons and coronoid

hydrocarbons. A benzenoid system H and a single coronoid system G obtained from H

are depicted in Fig.1 , and a multiple coronoid system is depicted in Fig.2.

Fig.1 A benzenoid system H and a coronoid system G obtained from H

A polyhex graph is either a benzenoid system or a coronoid system. A Kekulé structure

of a polyhex graph G is a set of disjoint edges of G which cover all the vertices of G.

A Kekuléan polyhex graph is a polyhex graph with Kekulé structures. For a Kekuléan

polyhex graph G and a Kekulé structure M of G, an M -alternating cycle is a cycle whose

edges are alternately in M and E(G) − M , where E(G) is the edge set of G. An edge of

a Kekuléan polyhex graph G is a fixed single (double) bond if it belongs to none (all) of

the Kekulé structures of G. A fixed bond is either a fixed single bond or a fixed double

bond. A polyhex graph with fixed bonds is said to be an essentially disconnected polyhex

graph [3]. Otherwise, it is said to be a normal polyhex graph.
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The structural feature of essentially disconnected benzenoid system is already known [4-

6]. For an essentially disconnected benzenoid system, after deleting all the fixed double

bonds together with their end vertices and all the fixed single bonds without their end

Fig.2 A multiple coronoid system G with four holes

vertices, there are at least two components which are normal benzenoid systems. The

aim of the present paper is to generalize the result to essentially disconnected coronoid

systems.
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2. Definitions and notations

Let G be a coronoid system, C0 the outer perimeter of G (i.e. the perimeter of the corre-

sponding benzenoid system), C1, C2, · · · , Ck the inner perimeters of G (i.e. the perimeters

of the holes). Since the concept of special edge cut plays an important role in our inves-

tigation, we give the following definitions.

Definition 1 [6] A straight line segment P1P2 is called an elementary cut segment(e−cut

segment) from Ci to Cj if:

1. P1 is the center of an edge ei on Ci, and P2 is the center of an edge ej on Cj;

2. P1P2 is orthogonal to both ei and ej;

3. any point of P1P2 is either an interior or a boundary point of some hexagon of G.

The set of all the edges intersected by an elementary cut segment P1P2 is called an ele-

mentary cut corresponding to P1P2.

Definition 2 [6] A broken line segment P1QP2 is called a generalized cut segment(g−cut

segment) from Ci to Cj if:

1. P1 is the center of an edge ei on Ci, P2 is the center of an edge ej on Cj, and Q is the

center of some hexagon of G;

2. P1Q and P2Q are orthogonal to ei and ej respectively and the angle P1QP2 is 60◦ or

300◦;

3. any point of P1QP2 is either an interior or a boundary point of some hexagon of G.

The set of all the edges intersected by a g−cut segment P1QP2 is called a g−cut corre-

sponding to P1QP2.

Definition 3 A special edge cut is either an e−cut or a g−cut from Ci to Cj, denoted

by Eij.

It is obvious that each special edge cut Eij has exactly two edges on the perimeters of G.

Eij is said to be of type I if i = j. Otherwise Eij is said to be of type II.

Since a polyhex graph G is bipartite, in the following, we may assume that the vertices
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of G is colored black and white such that any two adjacent vertices of G are differently

colored. We denote the sets of white and black vertices of G by W (G) and B(G), respec-

tively.

Definition 4 [6] Let Ei1i2 , Ei2i3 , · · · , Eit−1it, Eiti1 be t pairwise disjoint special edge

cut of type II corresponding to an e−cut or g−cut segment from Cij to Cij+1
and

i1 6= i2 6= · · · 6= it; E = Ei1i2 ∪ Ei2i3 ∪ · · · ∪ Eit−1it ∪ Eiti1 . E is said to be a stan-

dard combination if the end vertices of the edges of E have the same color when they

lie in the same component of G − E, where G − E is the subgraph obtained from G by

deleting all the edges of E.

In Fig.2, let E01 be the g−cut corresponding to the g−cut segment P1dQdP2d, E12 the

e−cut corresponding to the e−cut segment P1hP2h, E23 the e−cut corresponding to the

e−cut segment P1cP2c, E34 the e−cut corresponding to the e−cut segment P1eP2e, E40 the

e−cut corresponding to the e−cut segment P1gP2g. Then E = E01 ∪E12 ∪E23 ∪E34 ∪E40

is a standard combination. While the three e−cuts corresponding to e−cut segments

P1gP2g, P1eP2e and P1cP2c, respectively, and the g-cut corresponding to the g-cut segment

P1bQP2b do not constitute a standard combination.

In [6], a necessary and sufficient condition for a Kekuléan coronoid system to be essen-

tially disconnected was given.

Theorem 1 [6] Let G be a Kekuléan coronoid system, C0 the outer perimeter of G,

C1,· · ·,Ck(k ≥ 1) the inner perimeters of G. Then G is essentially disconnected if and

only if G possesses a special edge cut R of type I, or a standard combination E of type

II, satisfying: |B(G1)| = |W (G1)| and |B(G2)| = |W (G2)|, where Gi(i = 1, 2) are the

two components of G − R or G − E.

The above theorem implies that for an essentially disconnected coronoid system G, after

deleting the fixed single bonds which form a special edge cut R of type I or a standard

combination E of type II, the subgraph G−R or G−E is disconnected and has at least
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two components.

3. Main results

Let G be a polyhex graph, A a set of vertices of G. G − A designates the subgraph

obtained by deleting all the vertices of A together with their incident edges.

Lemma 1 Let G be a coronoid system, C0 the outer perimeter of G, C1, · · · , Ck the inner

perimeters of G. Let v1, · · · , vs be s vertices simultaneously on some perimeter Ct of G,

A = {v1, · · · , vs}. Suppose that in G−A, the perimeter Ct is broken into s segments with

even lengths. If G−A has a Kekulé structure M , then G−A has an M -alternating cycle.

Proof: Assume that G has n vertices, m edges, k holes and h hexagons. We may further

assume that G has p external edges (i.e. the edges lying on the perimeters of G), then

G has m − p internal edges (i.e. the edges not lying on the perimeters of G). Evidently,

each internal edge belongs to two hexagons. Thus we have:

6h = 2(m − p) + p, i.e.

m = 3h + p/2. (1)

By Euler formula which says that for a connected plane graph, the number of vertices

plus the number of faces is equal to the number of edges plus two[7], we have:

n + (h + k + 1) = m + 2, i.e.

n − m + h = 1 − k, (2)

which together with (1) yields the following:

n − 2h − p/2 = 1 − k, (3)

Suppose that M is a Kekulé structure of G− A. If there are r external edges of G in M ,

then there are (n − s)/2 − r internal edges of G in M . By the assumption, in G − A
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the perimeter Ct of G is broken into s segments each of which contains even number

edges. Let ri be the number of edges on perimeter Ci which are contained in M , pi

the number of edges on perimeter Ci. Therefore, we have: r = r0 + r1 + r2 + · · · + rk,

p = p0 + p1 + p2 + · · ·+ pk, rt ≤ (pt − 2s)/2 and rj ≤ pj/2 (j 6= t, 0 ≤ j ≤ k). If some of

the perimeters C0, C1, · · · , Ck is an M -alternating cycle, then there is nothing to prove.

Now suppose that none of the perimeters C0, C1, · · · , Ck is an M -alternating cycle. Thus,

we have rt ≤ (pt − 2s)/2 and rj ≤ pj/2 − 1 (j 6= t, 0 ≤ j ≤ k). Therefore,

r = r0 + r1 + r2 + · · ·+ rk ≤
Pt − 2s

2
+
∑
j 6=t

(
Pj

2
−1) =

k∑
j=0

(
Pj

2
) − s−k = p/2 − s−k,

i.e.

r ≤ p/2 − s − k, (4)

If none of the hexagons of G − A is an M -alternating cycle, then at most two edges of

each hexagon of G belong to M . Hence we have: 2h ≥ r + 2((n − s)/2 − r),

i.e.

2h ≥ n − r − s, (5)

Bearing in mind the inequality (4), we have: 2h ≥ n−r−s ≥ n−p/2+k, i.e. n−2h−p/2 ≤

−k, which contradicts (3). This contradiction implies that G−A has at least one hexagon

being an M -alternating cycle if none of the perimeters C0, C1, · · · , Ck is an M -alternating

cycle.

The lemma is thus proved.

Lemma 2 Let G be a benzenoid system, C0 the perimeter of G. Let v1, · · · , vs be s

vertices simultaneously on C0, A = {v1, · · · , vs}. Suppose that in G − A, the perimeter

C0 is broken into s segments with even lengths. If G−A has a Kekulé structure M , then

G − A has an M -alternating cycle.

The proof of the above lemma is analogous to that of Lemma 1. In other words, if one

puts k = 0 in the proof of Lemma 1, one can reach the conclusion for benzenoid systems.
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In the following we introduce a special kind of graphs called generalized coronoid system.

A generalized coronoid system G is a subgraph of a benzenoid system H and has at least

one hole with at least one edge not belonging to any hexagon of G (see Fig.3).

Fig.3 Two generalized coronoid systems with two holes

Lemma 3 Let G be a generalized coronoid system, C0 the outer perimeter of G,

C1, · · · , Ck the inner perimeters of G, v1, · · · , vs be s vertices simultaneously on some

perimeter Ct of G, A = {v1, · · · , vs}. Suppose that in G − A, the perimeter Ct is broken

into s segments with even lengths. If G − A has a Kekulé structure M , then G − A has

an M -alternating cycle.

The proof of the above lemma is fully analogous to that of lemma 1. Hence we omit the

details.

By lemmas 1-3, if we put A = φ, i.e. s = 0 in the proof of the lemmas, we immediately

have the following result.

Lemma 4 Let G be a polyhex graph or a generalized coronoid system with a Kekulé

structure M , then G has an M -alternating cycle.

We are now in the position to formulate our main result.

Theorem 2 If G is an essentially disconnected coronoid system, then the subgraph from

G obtained by deleting all the fixed single bonds and all the end vertices of the fixed

double bonds is disconnected.

Proof: By theorem 1, G has a special edge cut R of type I or a standard combination
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E of type II such that the edges of R or E are fixed single bonds. Then after deleting

all the fixed single bonds of R or E, G has at least two components G1 and G2. Each of

them may be a component with or without one pendent edge; with or without one hole.

In the following, we prove that each component Gi has some non-fixed bonds, i.e. Gi has

a normal component which is also a normal component of G . We distinguish two cases:

Case 1. Suppose that Gi has no pendent edge. Then Gi is itself a benzenoid system,

or a coronoid system , or a generalized coronoid system. Thus by lemma 4, Gi has some

non-fixed bonds (note that all the edges on an M -alternating cycle are non-fixed bonds).

Thus, after deleting all the fixed single bonds and all the end vertices of the fixed double

bonds, Gi has a component consisting of non-fixed bonds, i.e. a normal component. Evi-

dently, this normal component is also a normal component of G and is a normal benzenoid

system or a normal coronoid system , or a normal generalized coronoid system.

Case 2. Suppose that Gi has some pendent edges, say uijvij(j = 1, 2, · · · , s), where uij

is a vertex of degree 1 in Gi. Since G is a Kekuléan coronoid system and all the edges of

R or E are fixed single bonds, all the pendent edges uijvij (j = 1, 2, · · · , s) of Gi are fixed

double bonds. By deleting all the pendent edges uijvij (j = 1, 2, · · · , s) together with the

end vertices uij, we obtain a benzenoid system, or a coronoid system, or a generalized

coronoid system G∗
i . Put Ai = {vi1, vi2, · · · , vis}. Then G∗

i − Ai has a Kekulé structure.

Keep in mind the definitions of special edge cut of type I and the standard combination

of type II, one can easily check that Ai satisfies the condition in lemmas 1-3. Therefore,

G∗
i −Ai has some non-fixed bonds. Consequently, G∗

i −Ai has at least a normal component

which is also a normal component of G and is a normal benzenoid system or a normal

coronoid system , or a normal generalized coronoid system..

So we now come to the conclusion that G has at least two normal components, one from

G1, and the other from G2. Each of them may be a normal generalized coronoid system,

or a normal coronoid system, or a normal benzenoid system.

The theorem is thus proved.
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