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Abstract. Recently Nikolié, Trinajstié and Randi¢ put forward a novel modification ™W (G) of
the Wiener index W (G),definedas "W (G)= Y n;(u,v)" n;(v,u)" - This definition was

weE(G)

generalized to W (G) = Z "c(“ﬂ")‘ ng (v, u)‘ by Gutman and the present authors. Another
weE(G)

class of modified indices ‘W(G) ;% % }(V(G)'l —na(u,v)'l ot (v,u)‘).is studied here. Itis
weE(G

shown that some of the main properties of W(G) o T (G) and *W (G) are also properties of
AW(G) , valid for all values of the parameter 2 = (. In particular, if 7, is any n-vertex tree,
different from the n-vertex path P, and the n-vertex star S, , then for any A>/, W (P) > W
(T > W (8,), whereas forany A</, , W (P < W (T,) < ;W (S). Thus ,W(G) provides

a novel class of structure-descriptors, suitable for modeling branching-dependent properties of
organic compounds, applicable in QSPR and QSAR studies. We also demonstrate that if trees are

ordercd with regard to , W (G) then, in the general case, this ordering is different for different 2 .
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INTRODUCTION

The molecular-graph-based quantity, introduced [1] by Wiener in 1947, nowadays known
under the name Wiener number or Wiener index, is one of the most thoroughly studied
topological indices [2,3]. Its chemical applications [4-8] and mathematical properties [9,10]
are well documented. Of the several review articles on the Wiener number we mention just a
few [11-13].

A large number of modifications and extensions of the Wiener number was considered in the
chemical literature; an extensive bibliography on this matter can be found in papers [14,15].
One of the newest such modifications was put forward by Nikoli¢, Trinajsti¢ and Randi¢
[16]. This idea was generalized by Gutman and the present authors [17] where a class of
modified W iener indices w as d efined, with t he original W iener number and the Nikoli¢-
Trinajstié-Randi¢ index as special cases.

An important property of a topological index T7 are the inequalities
TI(P) > TI(T») > TI(S\) or  TI(P.) < TI(T) < TI(Sk) m

where P,, §,,and T, denote respectively the n-vertex path, the n-vertex star, and any n-
vertex tree different from P, and S, , and » is any integer greater than 4. Such topological
index may be viewed as a “‘branching index ", namely a topological index capable of
measuring the extent of branching of the carbon-atom skeleton of molecules and capable of
ordering isomers according to the extent of branching. (For more details on the problem of
measuring branching see the paper [18] and the references quoted therein.)

Among a remarkably large number of modifications and extensions of the Wiener number
put forward recently, there are many which on trees (i.e. acyclic systems) concide [19-25] or
are linearly related with it [26-30]. Therefore an interesting property of a class of newly
defined indices is that they provide distinct indices in the sense that they order the trees
differently,

More precisely, the Wiener number of a chemical graph is defined to be the sum of all
distances in the graph.

W(G) = Z d; (u,v)\

u,veb(G)

Tn the papers [31,29] by Gutman ct al., the following modification is proposed:

W (G)= Y d;(uv)', 220

uveP(G)
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It was already known to Wiener that on a tree, the Wiener number can also be computed by
summing up the edge contributions, where the contribution of each edge uv is the number of
vertices closer to the vertex x times the number of vertices closer to the vertex v. Formally,

W(G)= 3. ng(uv)ng(v,u). (2)

weE(G)

where n; (u,v) is the number of vertices closer to the vertex u than vertex v and ng (v,u) is

the number of vertices closer to the vertex v than vertex u. The modified Wiener indices
[17,31-37] are defined as

WG)= T o) mo(v)

uveE(G)

Equality (2) can be also reformulated as

w(G)

- 1 Z (V (G)l —-ng (u, v)2 -ng (v,u)z).

2 peF )

Let us prove this claim. Recalling that V' (G) = n; (u,v)+ng (v,u), we get

1 1
#(G)= M;(G)(E"G () (¥ (G) =g (w,v))+ P (ru)(V(G)-ng (V»”)))
.l > ((nG (w,v)+ng (v,u))V(G)—nG (u,\,)’ —ng (v,u)2 ) =

2 weE(G)

> (V(G) =g (v =g ()}

1
2 e (G)

Therefore it is natural to study the following possible class of indices

M(G)=

3. (V((;‘)* =1 (u,v)* =g (v.u)’' ) (3)

I

2 weEiG)
which we initiate in this paper. We first prove that the indices ,W,4i#0,1, obey the
inequalities (1) and can therefore be viewed as “branching indices ". We call indices W

variable Wiener indices to distinguish them from modified Wiener indices W, . (The name

variable Wiener indices is given in analogy with the name variable Zagreb indices proposed
by Trinajstié et al.)
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Theorem L. For any real number A>1, the variable Wiener index W satisfies the
inequalities

(P > (T > (S

where Py, S., and T, denote respectively the n-vertex path, the n-vertex star, and any n-
vertex tree different from P, and S,, and n is any integer greater than 4. For any real
number A</, the variable Wiener index |W satisfies the inequalities

JV(P) < W(T) < (8.

Instead of proving Theorem 1 we prove a stronger statement (Theorem 3), which may be of
independent interest because it shades some light on the partial ordering induced by , .

Furthermore, we prove that the indices W, # 0,1, studied here provide classes of distinct
indices in the sense that they order the trees differently. More precisely, no matter what the
values of A; and A are, there always exist trees that are oppositely ordered with regard to
4 W and , W . Mere formally, let the set of all trees be denoted by T . Denote the set of some

topological indices (c. g. the set of the modified Wiener indices ;W for all values of 1) by
3 . We can define an equivalence relation = on the set 3 as

(1 =h)[(VTaTy e TY(iT) <i(To) ) <= (0{Ta) i2(Tp)) ).

In words: two topological indices i; and i; are considered to be equivalent if they order all
trees in the exactly same manner. We will prove

Theorem 2. For each two distinct real numbers A;, Ay (A, A, #0,1), the modified Wiener
indices o W and %W are not equivalent.

The Wiener number is used in many QSAR and QSPR studies. It is known that it is well
correlated with many important chemical properties of chemical compunds, Therefore, it may
be very useful to investigate the Wiener-like indices. Namely, some modifications may have
better prediction capabilities (for some chemical properties) than the original Wiener number.
Small alternations of good predicting indices can result in indices with the belter predicting
abbilities. For a very recent positive example let us recall that very shortly afler the first
paper on modified Wiener indices appeared, their applicability in QSPR/QSAR ctudies has
been demonstrated {57].

It is beyond scope of this paper to provide further motivation andior possible chemical
mterpretation cf the new indices, which is necessary for proposing it as a practicaily useful
topological descriptors. However, continuing zlong the research avenue initiated by recent
papers [16-18,29,31-36] we show that there are additiona! new I °cresting ways uof
generalization of the Wiener number w hich posses certain important 1oy "=s of W and
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may provide interesting choices for topological descriptors. Let us in conclusion resume
some noteworthy properties of the type of indices defined here: (1) ;W are in contrast to W
not integer valued, (2) W is an additive function of edge contributions, and, as shown here

(3) ;W reflects the extent of branching of the molecular graph.

PROOF OF THEOREM 1

Instead of directly proving Theorem 1 we prove a somewhat more gencral statement, namely
Theorem 3. For this, consider the trees 7”and T, depicted in Figure 1. By R we denote an
arbitrary fragment with np vertices, and @ > 0, b > /. Hence both 77 and T possess
ngt+a+b+1i vertices. Note that the vertex r belongs to the fragment R . If r would be the only
vertex of R , then it would be 7=T". Therefore, the only interesting case is when ng =2 .

b Py Poy Po =P o1y

¢+ 0 s =GP

Goa 4y, ¥4,

Figure |

Theorem 3. Let T and T* be trees the structure of which is shown in Figure 1. Then the
transformation T'— T increases W if A> I and decreases \W if A< I .

First, suppose that A >1. We shall prove that W (T") <, (T").
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Let T be any acyclic molecular graph with at least one edge, veV (R} anda 20,0 21.For

the sake of the simplicity, we shail denote r = p, = g,. We have:

()= W (T)=
1

2l Z (V(T')'l —;’7.,..(11,\1)'[ —nT.(v,u)l)—— Z (v(l"'“)‘l — . (u,v))' —ny (v,u)’l)

wveE(T7) 2 we ()
.—.l ,.uv‘+ ..vul--l n.uv‘+ .v,u‘1
5.2 (o) sne ()3 3 (e (0] e ()
=5 3 [l o (o) )= ) )
+%Zj[(nr (2o P) + 10 (2o 2 ) )= (- (20 P+ 17 (Pras )‘)] + -

+%i[(”r" (qm :Q'A)Jl + Ry (QJ L )A)"(”r' (q”q“: )1 + 7 (q,mqi)ll )]"’

1
2] (- (9" + 1 (@09)' )= (r (1) 4 (109 ]
Note that, for each uv e E(R),
n,.. (u,v)Jt =ny. (u,v)x and Ty (v,u)/t =n. (v,u)l,
that, foreach i =1,...,a

My« (PM:P.)‘ +np. (P.-PH )‘l = (P.-:Pulr + 1y (PM:P, )1 s

and that foreach i =1,...,b

fy- (q-—lvq: )A +ag. (‘L’q‘-l)l = (qﬂ‘]m )A + 1y (‘Lmq. )1 Z

Therefore (4) reduces to
M- w(T7)=

=l () G Y=o (o) a0}
= %[((b+ I)‘ +(i’(R) + a)“):((y(R)_fb)l wlas l)‘ }"
Let f, (x)=x". Note that:

1) ff‘(x)>03 for x>0, A>1;
2) a+l<b+l, V(R)+H<V(R)+b;
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3 (b+1)+ (¥ (R)+a)=(a+1)+(V (R)+b).

From basic properties of convex functions (sce, for example calculus textbook [38]) onc can
casily verify that from f"(x)>0 for a<x<h and for a<x =b-d<x,=a+d<b it

follows that f(x}+ f(x,) < f(a)+ f(b). Namely, from the Lagrange’s theorem, it follows
that there is y, €[x,,b] such that f(#)-7(x,)=(6~x,)-f'(»,). Analogously, there is
y €[a,x] such that f(x)~f(a)=/"(3) (x —a). Hence, it is sufficient to prove that
(b-x)-1'(3)>(x—a)-f'(»), ie that f'(»)>/f'(»), but this follows from
f"(x)> 0 on the interval. Using the last observation on f; (x), we get

lW(T‘)—;W(T”):%[((bH)‘ +(v (R)+a)')~((7 (R) 8 +(M)l)] ”
This proves the theorem when 4 >1.

Suppose that A<1, A#0. Now W (T}> W (T") can be shown analogously as in the
proof of the previous case. In this case

()= 7 (17) =-;—[((b+l)" +(v(T)+a)')~((v(r)+b)’ +(a+1)‘)]> 0

follows from concavity of £, (x) = x*.

This completes the proof of Theorem 3.

As the path P, and the star S, can be obtained from any tree by repeated application of the
transformation I'— T or its inverse, Theorem 1 follows from Theorem 3.

PROOF OF THEOREM 2

We will distinguish five cases:

CASEl: A<l<gor A>1>u.
Note that from the proof of Theorem 3 we know that these indices order differently graphs

Tand T”.

CASE2: A, u>1,

Without loss of generality, we may assume that A <. Let f:[O.lEJx(l,Jrco) — R be the
function of two variables defined by

S{xa)=(1- x)“—' —xF
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Note that the partial derivative on the first variable is negative,
if(x,a):(a—l).(-(n-x)“—x“'2)<o. )
ox

Since f{0,a)=1 and f(%,a] =0, there is, for cach & &(1,+c0), a unique x, & [0,%}

such that f(x,,@)=—. This allows us to define the function ¢:(I,+w)->R with

1
2
#(a)=x,.Hence ¢(a) =x = f(x,a) =-;~. We have, for each x > 0,a & (1,+)
—;——f(x,a) =(1- :r)"‘I In(1-x)-x*"'Inx>0, ©)

o

From (5) and (6), it follows that the function ¢ is a strictly increasing function. Therefore,

there is a rational number g € (0%) such that ¢(A) <q <¢(u),or
f(g.2)=(1-9)"" -¢* <%;

x |

Ham)=(1-a)" =g >=.

Denote by k& denominator of the number g. Of course, kg € N . Let us first prove a lemma.

Lemma 4.
lim ~1 —(nk+1)" +2* +(nk)* - (nkq +2)" —(nk —nkg)" +(nkq)" +(nk -nkq +2)" _
n—o (nk)iq
=2/llr((l-q)lil—qk’)"l£}
Proof.
i 1~ (rk+1)" + 2 1+ (k) —(nkg +2)" ~(nk —nkq)" + (nkg)" + (nk - nkg +2)’ _
@ (nk)i-l
1020 (k4 1) = (k) = [(nkg +2)" = (nkgq)* | =] {nk — nkg)' - (nk — nkg +2)'
It (G B o ML }W()ky(' k) |=[{ok g}’ - (k- kg +2)]
s b

Using Lagrange’s theorem, we get that there are numbers a, €(0,1) wud b, ,c, €(0.2) such
that the last expression is equal to
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=11 42' _A(nk+a,)" ' 2 (nkq+b,)"" +24(nk - nkg +c,)"
lim o =
novm (nk)

a Pl -1 A= -1
=lim ~-1—H+%I~—A[I+i) 42A[(1+b—") +2Z[lgq+£’LJ E
Ll nk) (n}() nk nk nk

-1 a-1
which is, using that lin1a—”=limb—”>lime:O, lim[[+ﬂm] =1, lim{ ¢+ b—"] =q,
nsmpk asepk  neenk it LT ki nk

-1
and lim[l—q+‘i] =1-g, equal to
s nk
a2 BT R ot a1
_z[ 1-2¢*" +2(1-¢q) ]_u[((n )" -q*") 2]
as stated in the Lemma.
Hence, because we have chosen g such that #{4) < ¢ < ¢(x), we have
l'zrn[—l* ~(nk+1)" +2% +(nk)" —(nkg +2)" —(nk - nkg)" +(nkg)" + (nk — nkg + 2)‘] <0

and

lim[ 1 = (nk +1)" + 27 + (nk)" ~ (nkq +2)" ~(nk ~nkq)" + (k)" +(nk —nkg +2)" |>0

Therefore we can conclude that there is sufficiently large n € N such that

—1 —(nk + 1) + 2%+ (nk)" —(nkg +2)" —(nk - nkg)" + (nkq)'1 +(nk —nkg +2)" <0,

(7)
14— (nk+1)" 27 + (k)" ~(nkq + 2)" — (nk —nkq)" +(nkq)” +(nk —nkq+2)" > 0.

"’I ul
[ e o AR M R o ]
vl vl "J v:—l v: vz-hf vlﬂ-i "h

G(n,x)

Figure 2
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i,
vl 1'2 v] v.bl vx vx+I vh-] vh

Hn,x)
Figure 3
Denote as G(n,x) and H (n,x) graphs given on the Figure 2 and Figure 3. We have

AW(G'(nk nkq)) - W (H'(nk,nkg +1)) =

[nk+2) —it = (nk+2- )] i [(nk+2)"~i‘—(nk+2-i)T+

= imnkq+3

2 (mk+2) —1* = (e +1)" ]+ [(mz)‘_(nkq+z)‘-(n—nkq)‘]
n;il[(nk+2) —i*~(nk+2- a)]l [(rzk+2) —i*—(nk+2-i )]

1 innkge3
[ 2y -1t (k1) [ (k4 2)" 24~ (k) |+
+ (nk+2)" ~ (nkg)* -k +2- k)" |

(s 2y ~14 = (ks 1) | (4 2" = (kg +2)' = (ke —mkg) ] -
[+ 2)" 24 - (k)" ][ (4 2)" (k) = (i + 2= kg )
=1 (nk +1)" + 2% +(nk)" —(nkg + 2)" —(nk —nkg)" + (nkq)" +(nk —nkg-2)".

From the relations (7), it directly follows that
W (G'(n,nkq))— W (H'(n,nkq +1)) <0
and, analogously,
(G (nonkq))~ W (H(nnkg +1))> 0
which proves the claim in this case.

CASE3: 0<A,u<l.

Note that 2 + 1 # 2% +1 or equivalently that
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238 o8 3 Zayeg Badal-d Paleg
2 -1 2t -1 2% -1 -1

At least one of the following must hold:
2% 434 -2 2+3 -2

SUBCASE 3.1: v
2" -1 2/ —1
2 A _9 “ £ A
Without loss of generality, we may assume that - ;3 7 =< 2 ;3 3 2, Hence, there is a
a4 A # Ho_
rational number g such that g ;3 : 2 <g< : ;3 i 2. Denote q:%,c,bEN. Let us

first calculate a useful limit.

Lemma 5.
(a+b)-((a+3b+1)" -1 ~(a+30)")+b-((a+3b+1)" ~2* ~(a+3b-1)' )+

lim| +6-((a+3b+1)" =3 ~(a+35-2)' )~ (a+3b—c)-((a+36+1) -1* ~(a+38)'}-
~c-((a+35+1)" ~2* ~(a+35-1)")

94 _14
=b(1—2‘)-(212_—2f—q]

Proof. Using Lagrange's theorem, we get that for each a € N there are numbers x, e(O,!),
¥,€(0,2) and z, € (0,3) such that

(a+8)-((a+3b+1) =1 ~(a+36) J+b-((a+30+1) =2 ~(a+30-1)" )+

lim| +b-((a+30+1)" =3 =(a+36-2)")=(a+3b-c)-((a+36+1) =1 = (a+36) )~ | =
~e-((a+3b+1) =2 ~(a+35-1)'")
(a+b)-(A-(a+3b4x)" =1 )4b-(24-(ar3b-1+ )" -2 )4

=limf +5-(32-(a+3b-2+2)"" =3 )~(a+ 36 —c)-(A-(a+3b+x)"" - 1)
—c-(24-(a+36-1+ )" -2%)

which, using that for A<l lim(a+3b+¢x)" =0, fim(a+3b+1-y)" =0, and

lim(a+3b+1- Z)H =0, equals
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:Eﬁ_lll,((a+h)-(—l‘)+b»(—2‘)*h-(—3l)--(a+3h -:.')l(~l")~¢.‘-(-~2‘))=

=b(2-2°-3")-c-(1-2%) =b(1—2*)-[31€2:3‘ ,,q]

as claimed in the statement of the Lemma.

2“+3"—2< P
241 1 2=
Lemma 5 has positive value, and, replacing 1 with #, the respective limit is negative

For a rationai number g such that , the limit computed in the

(a+5)-((a+36+1)" ~ 1" ~(a+3b)" )4 b-((a+3b+1)" ~2* ~(a+3b6-1)") +
lim +b-((a+35+l)y—3"—(a+3b—2)”)—(a+35»0)‘((04-3171‘1)#‘-1"*((!'0‘3[))")— <0,
—c-((a+3b+1) —2#~(a+3b-1)")

Hence, there is sufficiently large @ € N such that

(a+b)-((a+36+1) =1 —(a+30)" ) +b-((a+3b+1)' ~2* —(a+3b-1)")+
+b-((a+3b+1) =3* ~(a+36-2)")~(a+3b-c)-((a+3b 1) =1 —(a+38)"} - |>0;
—c-((a+3b+1)" ~2* = (a+36-1)")

(a+8)-((a+3b+1Y —1¥ —(a+36)" )+ b-((a+ 3641 ~2* ~(a+36-1)")+
+b-((a+38+1)" =3% —(a+36-2)" )~ (a+ 3 -c)-((a+3b+1)" = 1" ~(a+38)") - | <0.
—e-((a+36+1)" 27~ (a+36-1)")

Denote by G'(a,b) and H'(a,b,c) graphs on a+3b+/ vertices depicted on Figure 4 and
Figure 5.
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Figure 4

at+3b-2c

H'(a,b,c)

Figure 5

Note that

M (G'(a,b))-, W (H'(a,b,c))=
(a+b)-((a+3b+1) —1* ~(a+36)" Jb-((a+3b+1)" ~2* ~(a+36-1)' )+

=|+b-((a+30+1)" 3" ~(a+36-2)")~(a+3b—c)-((a+3b+1)" -1 ~(a+38)' )= |>0
~c-((a+35+1)" 2% ~(a+36-1)")

MH(G(a.8))-, W (H (a,b,c))=
(a+b)-((a+3041) ~1" ~(a+30)" )+ 5-((a+3b+1)" =27 ~(a+3b-1)" 4

=|#b-{(a+36+1)" =3 ~(a+35-2)" ) ~(a+3b-c)-((a+3b+1)" -1 - (a+30)") - | <0.
~c-((a+3b+1)" -2" ~(a+36-1)")

The claim is proved in this subcase.

1 1 i_ B u_
L e L Dok e s o |

24 -1 2" =1
: ; 2434 44" =3 2¥ 43 44 -3
Without loss of generality, we may assume that T3 < = + = Hence,
: : 2434 447 - 3 24 43 4 4" —
there 1s a rational number ¢ such that g <g< > 1 3. Denote

g= %, b,ce N. Let us calculate
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(u+b)v((a+4b+1) —1* —(a +4b) )+h (a+4b+1 -2*—(u+4h-1)‘)+
lim +b-((a+ b +1)" =3* ~(a+4b-2) )')+ b(a+4b+l -4‘-(a+4b~3)‘)—
~(a+ab—c)-((a+ab+1) —1* = (a+ab)' ) —c-((a+4b+1)’ 2 —(a+ab-1)')

Using Lagrange's theorem, we get that there are numbers x, €(0,1), y, €(0,2), z, € (0.,3)
and w, € (0,4) such that the limit is equal to

(a+b)-( (a+4b+x“— ) ( a+4b——l+y —2")+
tim| +5-{A-(a+ab-2+42)" =3 )4 b-(4 (a+ab-3+w)" 4]~
—(a+4b-c) (/1 (a+3b+x)"" - 1") (,1 (a+4b-1+y)" -2 )

- (e 8)- (-1 0: () (o (4) (a0 40-0)- (1) e ()

=b(]_21)(3_2—;_3:_;4‘_q]>0.

Completely analogously, replacing replacing A with 5, it can be shown that

(a+b)~((a+4b+1)” ~(a+4b)')+b-((ar4b+1)" ) -2 ~(a+db-1)")+
lim +b-((a+4b+1)"—3“ (a+4b-2) ) (a+4b+1 —4"—(a+4b—3)ﬂ)— <0,

—(a+4b-c)- ((a+4b+l) -1 - (a+4b)") ((a+4b+1) 2 —‘(a+4b—l)")
Therefore, there is sufficiently large @ ¢ N such that

(a+b)-((a+4b+1)‘~1‘ a+4b) )+b(a+4b+l (a+4b~1);')+
wbo((a+abr1) =3 ~(arab-2)')+o-((ardb 1) -4t = (arab-3)') - |>0
~(a+4b-c)- ((a+4b+1) 1 = (a+4b)' ) ((a+4b+1) s (a+4b-1)*)

(a+)-({a+ab+1)" =17 = (a+4b)")+b-((a+ab+1) —2¢ ~(a+db-1)")+

(
sb-((a+4b41) =3 —(a+ab-2))+o-((a+db41) —4" ~(a+ab-3)" )~ |<0.
e

-(a+4bfc)4((a+4b+1)“ ~1# —(a +4b)" ((a+4b+\)" 72”7(a+4b—1)")

Denote by G"(a,b,c) and H"(a,b,c) graphs on a+4b+]J vertices on Figu=» 6 and Figure 7.
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G"'(a,b)

Figure 6

a+4Db-2¢ 5

H''(a,b,c)

Figure 7

We have
(G (a,b)) -, (H"(a,b,c)) =
("*b)'((“+4b+l)l -1 --(a+4/;)*)+h.((0+4b+1)* _94 w([H%__])A-)‘r
([ a+4h+]) -3 "(“+4/7'*2)z)+b-((a+4b+])‘l _ 42 —(u+4.’;-3)1}g <G

l (a+4b -c) ({1+4h+l) -1 (u+-4b)‘)*c-((a+4b+I))‘—2‘—(u¢4hml)i)



400

MG (a.b))- W (H " (a,b,c))=
(a+b)-((a+2b+1) —1" ~(a +abY )wb-((a+abr1) =24 —(ar4b-1)" )+
+b-((a+4b+|)” —3 —(a+4b—2)")+b~((a+4b+ 1y —4 -(a+4b-3)")- <0.

~(a+db-c)-((a+ab+1)" = 1* = (a+4b)" )=c-((a+ab+1)" =2 ~(a+ab-1)")

This proves the Subcase 3.2 and completes proof of the Case 3.

CASE4: A,u<0.
This case can be proved analogously as the Case 3.

CASE 5: (A4 <0 and O<g <1) or (u <0 and 0<A <1).

Without loss of generality, we may assume that A <0andO<u <1. Let g be a rational

22 4342 27434 -
Bl

2
number such that q>max{ } Denote q:%,c,bEN. Let us

calculate

(a+)-((a+36+1)" 1" =(a+30)")+b-((a+3b+1) ~2* ~(a+36-1)")+
lim| +5-((a+3b+1) =3* ~(a+35-2)" )~ (a+36-c)-((a+3b+1) =1 - (a+36)') -
—c.((a+3b+l)'l -2¢ -(a+3b—1)‘)

Using Lagrange's theorem, we get that there are numbers x, €(0,1), y, €(0,2), and
z, €(0,3) such that the limit is equal to

(a+b)( (a+3b+,\)a]-I*}+b-(2i(a+3b—l+y)“_2‘)+
lim| +b-(32-(a+3b-2+2)" =3") = (a+3b=c)-{A-(a+3p+x)"" -1)- | =
—e-(22-(a+3b-14 )" -24)

=lim{(a+b)-(~1*)+b-(-2*)+ b-(-3*) = (a+3b-c)(~1*) = (-2*)} =
4:(1-2“,(—22—3 q)<04

Completely analogously, it can be shown that



8.

9.
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(a+b)-((a+3041)" <1 (a4 38Y Jabo((a+3b+1)" 2" ~(a+36-1)" )+
lim| +b-((a+36+1)" =3 ~(a+3b-2)")=(a+3b-c)-((a+ 36 +1)" 1" ~(a+36)" )~ > 0.

—c-((a+3b+1) -2 ~(a+3b-1)")
Hence, there is sufficiently large @ € N such that

(a+b)-((a+3b+1) 1" ~(a+36) )4 b-((a+ 3b41) =24 ~(a+36-1)" )+

sb-((a+3b+1)' =3 ~(a+36-2)')=(a+3b-c)-((a+3b+1) ~1* ~(a+36)") - | <0;
~e-{(a+3b+1)" =24 ~(a+35-1)")

(a+8)-((a+3b+1y =1 = (a+36)" J+b-((a+30+1) 2" ~(a+36-1)" )+

+b-((a+3b+1)" -3 ~(a+36-2)")-(a+3b=c)-((a+3b+1)" -1 ~(a+36)")-|>0.

—e-((a+30+1)" ~2* ~(a+36-1)")

Let G'(a,b) and H'(a,b,c) be the graphs defined in the Case 3. Note that

W(G'(a,b))-, W (H(a,b,c)) <0 and W (G'(a,b))-, W (H'(a,b,c))>0
This completes the proof of the theorem.
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