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Abstract

The graph of atomic orbitals (GAQ) is a novel type of molecular graphs, recently
put forward by two of the present authors. The definition of GAO is re-stated in
precise graph theoretic terms. A connection between the Wiener index of GAO and
the Wicner index of the ordinary molecular graphs, both hydrogen-depleted and
hydrogen-filled, is established.
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INTRODUCTION

Most researches in chemical graph theory are done on, or by means of, molecu-
lar graphs pertaining to covalent organic compounds [1-4]. Many different types of
molecular graphs were defined and examined. Of these, the graph in which heavy
(usually carbon) atoms are represented by vertices, whereas hydrogen atoms are ig-
nored, is employed in the vast majority of cases. Such graphs are simply called
“molecular graphs”. If, however, we want to distinguish them from other types of
molecular graphs, then the former are referred to as “hydrogen-depleted molecular
graphs”. The “hydrogen—filled molecular graphs”™ contain vertices representing hydro-
gen atoms.!

In Fig. 1 are depicted the hydrogen-depleted (G¢) and the hydrogen—filled (Gy)
molecular graphs of methyl-isopropylether.

G, G,

Fig. 1. Molecular graphs of methyl-isopropylether, CH;OC H(C H;);. Diagram
G stands for the hydrogen—depleted, whereas G for the hydrogen-filled molecular
graph.

In a series of recently published articles [6--15], two of the present authors intro-
duced a novel type of molecular graphs, the “graph of atomic orbitals”, GAO. All
the papers [6-15] were application—oriented and reported varions QSP’R and QSAR

VArthur Cayley was the first to define and consider these two types of molecular graphs [5]. He
named them “kenograms” and “plerograms”. Recall that in 1874, when the paper (5] was published,
the name “graph” was not yet coined.
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studies, in which pertinently chosen invariants of the GAO were employed. In all
these papers the vertices of the GAO were weighted by adjustable parameters, re-
flecting the nature of the group of atomic orbitals that this vertex represented. In
view of this, and in view of the terminology used in [6-15], the peculiar and inter-
esting graph—theoretic features of GAOs could have been overlooked by the rest of
chemical-graph-theoretdcal community. The aim of this article is to emphasize the
genuine graph-theoretic nature of GAOs, and to try to establish some of their general
graph-theoretic properties.

Throughout this paper we consider the GAOs as simple (schlicht) graphs, that is
as graphs without weighted and directed edges, without weighted vertices and without

self-loops. Their definition is described in the subsequent section.

DEFINITION OF GAO

In both the hydrogen-depleted and hydrogen-filled molecular graphs, vertices
represent individual atoms. The idea behind the GAO is to represent by a vertex a

group of atomic orbitals of the respective atom. These groups of atomic orbitals are

the following:

atom | groups of atomic orbitals n;
H |1t 1
C | 1s? 25 2p* 3
N | 1s? 252 2p 3
O |1s? 25? 2p* 3
P 1s? 257 2p° 3
S [ 1ls? 25% 2p° 3s* 3p* 5
Cl | 1s® 2s% 2p° 35% 3p° L]
Br | 1s? 2s? 2p5 352 3p° 3d'° 452 4p° 8
I | 1s® 25% 2p5 352 3p° 3d'0 452 4p® 4d'° 552 5p° | 11

Definition 1. Let M be a molecule and Gy its hydrogen-filled molecular graph.
Let V(Gy) = {v1,va,...,vn} be the vertex set of Gy . The graph of atomic orbitals
(GAO), pertaining to M, is obtained from Gy by replacing each of its vertex v; , 1 =
1,2,...,N, by a set V;, consisting of r; distinct vertices, where the value of n;
depends on the type of atom represented by vertex v;, as specified in the above table.
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A vertex of GAO belonging Lo V; is adjacent to a vertex belonging Lo V; if and only

if the vertices v; and v; of Gy are adjacent.

An immediate consequence of Definition 1 is that two vertices of a GAQ, belonging
to the same set V;, are never adjacent.

In Fig. 2 is depicted the GAO of methyl-isopropylether.

YATAAD Y 7
NIRL o7

DN 2 75 A N A

Fig. 2. The graph of atomic orbitals of methyl-isopropylether, cf. Fig. 1.

Comparing Figs. 1 and 2 we see that the structure of a GAO appears to be
much more complicated than the structure of an ordinary molecular graph. Yet,
as demonstrated elsewhere [6-15], the GAQ renders a suitable basis for QSPR and
QSAR studies (of course, provided its vertices are appropriately weighted).

[n what follows we determine certain mathematical properties of GAOs that are

independent of any weighting of their vertices.

DISTANCES IN GAO

If G is a connected graph and z and y are its verlices, then the distance between z
and y, denoted by d(z,y|G) is the length of (= number of edges in) the shortest path
connecting z and y in G. The sum of the distances between all pairs of vertices of

G is the Wiener index of (¢, denoted by W((G). More details on distances in graphs
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and their Wiener indices are found elsewhere [2,16-19].

Throughout this paper we use the following notation and conventions. By G,
Gy, and G* are denoted, respectively, the hydrogen-depleted molecular graph, the
hydrogen-filled molecular graph, and the GAO, pertaining to the same molecule
M. As before, the vertex set of Gy is V(Gy) = {vi,va,...,un}. The vertices
of Gy are labelled so that v, vs,...,u, represent the heavy atoms of M, whercas
Unt1)VUnt2,---,Un the hydrogen atoms. If so, then the hydrogen-depleted molecular
graph G has n vertices, and V(G¢) = {v1,v2,...,vx} . Using the notation explained
in Definition 1 we have that .

V(G = U Vi
implying that G* possesses ny +ng +--- + n:,_ul vertices.

The basic result concerning distances in a GAO is the following Lemma, which
is a straightforward consequence of the way in which the molecular graphs G¢ , Gy,

and G* are constructed.

Lemma 2. Using the notation specified in Definition 1, if =,y € V; and = # y, then
d(z,y|G*) = 2. Ifx € V; and y € V;, such that i # 7, then d(z, y|G") = d(vi,v,|Gx) -
Furthermore, if i,7 < n (i. e., if neither v; nor v; represent hydrogen atoms of M),
then d(z,y|G*) = d(v;,v;|Ge) .

Bearing Lemma 2 in mind we can now express the Wiener index of a GAO as:
Nl
- 1
W(G):EQ(2)+ Z n;n,'d(v;,Uj]G:g) i (l)
i=1 1<i<GEN
The first term on the right-hand side of (1) is obtained by observing that in the set
Vi there are ("2) vertex pairs, cach at distance 2. The second terin corresponds to
vertex pairs of G*, belonging to different sets V; and V;. There are n;n; such pairs,
each at distance d(v;, v,|Gp).
A vertex v; of Gy pertains either to some heavy atom of M , in which casen; > 3,
or to hydrogen, in which case n; = 1. This means that n; > 3 holds for 1 <: < n,
whereas n; =1 for n 41 <1 < N. In view of this,

W(G*) = znzz(r;‘)-{- z n,‘njd(l);’v]lGH)-*- Z n,‘d(U{,Ui‘l(,;H)

i=1 1<igjsn 1<i<n<j<N

+ 2 dvvlGh) . 2

n<i<j<N
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In the most frequently occurring case, when all heavy atoms belong to the second
row of the periodic system, i. e., when n; = 3 for all ¢ = 1,2,...,n, formula (2) is
simplified as

W(G*) = 6n+9 3 du,ulGu)+3 Y dv,v|Gr)

1<i<)<n 1<ign< SN

+ 3 dvi,vlCn) (3)

nr<j<N

Combining Eq. (3) with the expressions for the Wiener indices of the hydrogen-
depleted and hydrogen-filled molecular graphs:

W(Ge) = Y d(vi,v5|Gr)
1gi<jgn

W(G[,') = Z d(u,',v_.,'IG},v)-l- E d(v;,v‘,‘lcy)—F Z d(v;,u1|G;;)
1<i<i<n 1<idn<j<N n<i<GEN

we arrive at

Theorem 3. The Wiener indices of the graph of atomic orbitals, the hydrogen-
depleted, and the hydrogen-filled molecular graphs (pertaining to the same molecule

in which all heavy atoms are from the second row of the periodic system) are related
as

W(G") =6n+6W(Gc) +3W(Gn) —2Wx(Gy) (4)

where n is the number of vertices of the hydrogen-depleted molecular graph, and
Wy (Gy) is the sum of distances between pairs of vertices corresponding to hydrogen
atoms.

Formulas (3) and (4) hold for the vast majority of organic compounds. In parti-

cular, they are applicable to hydrocarbons.

WIENER INDEX OF GAO OF ALKANES

In the case of alkanes (compounds consisting of n carbon and 2n + 2 hydrogen
atoms) the relations between the Wiener indices of the various molecular graphs are

significantly simpler:
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Theorem 4. If G* , G¢ , and Gy are the graph of atomic orbitals, hydrogen-depleted
molecular graph, and hydrogen-filled molecular graph, respectively, of an alkane with

n carbon atoms, then the respective Wiener indices are related as

W(G") = 25W(Gg)+15 4 1dn+1 (5)
2 2

w(G) = (g) W(Gy) - 9n* - (n + %) (6)

W(Gy) = 9W(Ge)+ (Bn+1)%. )

Proof. Eq. (7) was proven in an carlier work [20]. Therefore, bearing in mind
identity (4), what remains to be proven is an expression for Wy(Gy) in terms of

W(Gc¢) and n. This expressions reads
Wi(Gu) =4W(Ge)+(2n+1)(3n+1). (8)

Its proof is given in the Appendix.
Substituting (7) and (8) back into (4), we obtain (5). Combining (5) and (7), we
obtain (6). O

APPENDIX: PROOF OF FORMULA (8)

Because formula (8) is independent of the GAO concept, its proof is given sep-
arately. Let T' be an n-vertex chemical tree, 1. e., a hydrogen-depleted molecular
graph of an alkane C, o2 . Its vertex set is V(T') = {v1,v2,...,va}. Let the degree
(= number of first neighbors) of the vertex v; of T' be §;.

By Ty we denote the hydrogen-filled molecular graph, corresponding to T'. 1t is
an (3n + 2)-vertex tree, possessing 2n + 2 pendent vertices (= vertices of degree 1).
Ty is obtained from T, by attaching 4 — §; pendent vertices to the vertex v; € V(T),
and doing this for all i = 1,2,...,n.

The quantity Wy(Ty) is just the sum of distances between all pairs of pendent
vertices of Ty . In other words, Wy(Ty) is the sum of (topological) distances between

all pairs of hydrogen atoms of the alkane molecule considered.
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Any two pendent vertices of Ty , attached to the same vertex of T', are at distance

2. The sum of all such distances is equal to

?::12 (4 —2 6.-) _ 2(4 — BB

S-a)a-8)- 3-8 =T -67-Cnt2. O

=1
For i # j, there exist (4 — &;)(4 — §;) pairs of pendent vertices, one attached to
v;, the other attached to v;. Each such pair is at distance d(v;,v,|T) + 2. The sum
of all such distances is equal to

¥ (4= 8)(4 - 8)d(vi, v |T) + 2]

1<i<ign
=2 3 (d-8&)-8&)+ 3 (4-6)4-6)dv,ylT).  (10)
1<i<jgn 1€i<j<n

Now,

2 (4-8)(-6)=) Y-8 6) - Y-8~ &)

l<|<_7<n i=1 j=1 =1

= {‘](4—6)] 5)z=(2n+2)7—2n:(4—6;)2. (11)

i=1
The sum of (9) and (10 is equal to Wy (Tx). By taking into account (11) we
obtain

f=1

Wi(Ty) = [):(4_5)’ (2n+2)] [(2n+2 }:(4 &)

+ 2 (=& )dv,yIT) . (12)

1<i<j<n
The last term on the right-hand side of (12} can be rewritten as
16 Y dlwi,vy|T) =4 3 (&+6&)dw,v|T)+ 3. &6dv,v|T) . (13)
1<1<3En 1<i<i<n 1gi<i<n
Evidently, E d(v,,v_,|[‘) is just the Wiener index W(T') if the hydrogen-depleted
molecular gra.ph ln [21] it has been demonstrated that

Y (6 +8)d(v,v;|T) = 4W(T)=n(n—1) (14)

1<igj<n

Y &ibid(vi,vlT)

1<i<j<n

AW(T) - (2n—1)(n—1). (15)
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When identities (14) and (15) are substituted back into (13), and this combined with

(12}, we obtain after some calculation:

Wi(Ty) =4W(T) 460 +5n + 1

which is just another way of writing Eq. (8). 0.
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