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Abstract

An algorithm is presented for studying the discriminatory power of molecular descriptors,
which is exemplified on the Zagreb M, index and the modified Zagreb *M, index for

molecular graphs. It is found that the Zagreb M, index is more discriminative quantity than
the modified Zagreb *A, index. This result is surprising since one would expect the reverse
result because the Zagreb M, indices belong to the set of natural numbers whilst the modified
Zagreb *M, indices (o the set of rational numbers.

The discriminatory power of the first two Randi¢ connectivity indices: °y and !y was
also investigated because the Randi¢ indices are grounded in the Zagreb indices though they
were obtained in quite a different way. In this case, it is obtained that 9y and !y indices
discriminate all graphs with up to 18 vertices. In the case of graphs with 19 vertices, it has
been found a pair of graphs that cannot be discriminated by ©y and 1y indices.

*Dedicated to the memory of Professor Oskar E. Polansky (1919-1989).
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1. Introduction

A pair of graph-theoretical invariants [1], denoted by symbols M; and M,, have been

introduced in 1972 by the Zagreb Mathematical Chemistry Group [2]. These invariants were
soon used to study branching in (molecular) graphs [3] and were given name the Zagreh
(group) indices [4]. The Zagreb indices belong to a family of molecular descriptors (also
called topological indices [5]) that have found use in modeling properties of molecules [6,7]

and are included in most computer programs used for routine computation of these descriptors
[8.9].

The Zagreb M| index is the sum of squared vertex-degrees, whilst the Af) index is the
sum of edge-weights given as the products of degrees of incident vertices. The Zagreb
indices were modified by summing up the inverse values of the squared vertex-degrees (*M,)
and the inverse values of the edge-weights (*A1,) [10]. In the present report we will consider
only the Zagreb A, and *M, indices since they possess unexpected properties [11], some of
which will be discussed here. We considered their discriminatory power on the set of
molecular graphs, that is, on a set of simple connected graphs with maximal vertex-degree 4.
In order to do that, we developed a general algorithm for studying the discriminatory power
on molecular descriptors that was first applied to Zagreb indices and then to the first two

Randi¢ connectivity indices: ¢y and ! y.

2. Main results

Let us define basic notation that we shall need in the sequel. Let G be any simple connected
graph. By A(G) we denote maximal degree in graph G; by & () minimal degree in G; by
1'(G) the set of vertices of G; and by E(G) the set of edges of G. Let X be any set of vertices
in G. By G[X]wc denote graph induced by set X, i.e. graph which set of vestices is X and
which edges are those edges of G that have both end-vertices in X. Let ¥ be any set of vertices

of G disjoint from X. By G[X,Y] , we denote a graph such that V(G[X.Y]) =XuY and

edges of G[X,Y] are edges of G that have one incident vertex in .Y and other in Y.

We start with a several Lemmas:
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Lemma 1. Let C, be the cycle with s vertices and let e be number such that [ e <n. Then
there is a spanning subgraph G of C, such that A(G)-6(G) < 1.

Lemma 2. Let n25and let K, be a complete graph with n vertices. Then it is possible to
pack to cycles with » vertices in K, .

Proof: Denote ¥ (K, ) = {v,v,,..,v,} . Denote cycles with required properties by C"and C". It

is sufficient to take £(C,) = {vv;,3%,,...v,,v,,v,v, } and
E(C )= {"1"3-"&"5-----"..:""1"..Vz,";"q P _,V,,,V,}, n is odd
-} G .
(VY3 V35 s Vo Ve s Vot Ve ViV s VeV VeV Ve Vo Vi ), M iS €VED

From these two Lemmas and simple analyses of cases when n < 4, it follows:

Lemma 3. Let n, be any natural number and let p', p" be any nonnegative integers such that
(-1 3

p'SP-;(;;]—) and p'+ p“s%, then there is a graph G with », vertices and p'+ p"

edges such that A(G)-&(G) <1, and there is a simple subgraph of G with p* edges, and

also if p'+ p"2n, ~1, then G is connected and if n, 2 2 there are no loops in G.

Lemma 4. Let n, be any natural number and let r',r" be any nonnegative integers such that

n-(n —1
r'sL(z‘—l and r'+r" < 2n,, then there is a graph G with n, vertices and r'+r" edges

such that A(G)-&(G) <1 and there is a simple subgraph of G with r' edges, and also if

r'+r"2n,—1,then G is connected and if n, > 2 there are no loops in G.

We also prove:
Lemma 5. Let &/ be a natural numbers and let a,,4a,,....a,,b,,....5, be a nonnegative integers
and let

max {b,,...5,} < min{b,....0,} +1

g< man{jmin{a,,:}.ib,}.

i=] i=t

Then there is a simple bipartite graph G with g edges and partition classes 4 = {x,,...,x‘} and

B={y,..y} such that d;(x,)} < g, foreach i =1,...k and d;(y,)<b, foreach i=1,.../.
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Proof: We prove the claim by induction on k. If & =1, the claim is trivial. Let us prove the

inductive step. Distinguish three cases:

1) min{l.d(, (a‘),ib,}=t’ 9

i=)

k-l i
In this casc, we have g—I< min{z min{a,,[},Zb_ —I}, therefore there is, by inductive

i=l i=l
hypothesis a bipartite graph G' with partition classes {a,, ..... aH} and Bsuch that
dg(x)<a for each i=l..,k-1 and d,(y)sb -1 for each i=1,../. Graph

G=G"+ {a,tb1 s Gily} has the required properties.

!
2) min {I,dc (a), 2.8, } =dg(a,).
i=l
Without loss of generality, we may assume that b, = b, >...2 b,. In this case, we have

-1,b

(B~ Loy~ Bl o

B} min{b, =1 by ) =L g yarenbi} ST

min {gmin{ai,l},da(zm(b, -1)+ i b},

i=1 imdg (1 J+
Therefore there is, by inductive hypothesis a bipartite graph G' with partition classes

{a),.a,,} and Bsuch that d,, (x,)<a, foreach i=1,..k-1,and d; (3 )<5 1 for cach

i=l,..,d;(x,),and d;(y) <b, foreach i=1,..,d,{(x). Graph G =G+ {aib,,...,a*bdum}}

has the required properties.

3) min{l,d“ (ak),,z;lb,}“- ilb .

This case is trivial.

All the cases are exhausted and the claim is proved.

Now, we can prove:

Lemima 6. Let n; and »7, be natural numbers and p', p",¢",¢",r' and r" nonnegative integers

such that:
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a)ptq+rzn +n -1;
b)2p+q < ny,
Q)2r+qgsng;
dptqzn,
eyg+rzng

Nagzl;
on(m=1)
p 5‘—2_’

kY g'Sn,-n;

n-(n,—1)

Vi<
iyr 2

where p=p'+ p", g=q'+q" and r =r'+r". Then there is a connected graph G such that :
) V(G) = Ny UNG Ny =n; [N = ny;

2) d; (x) £3, foreachx € Ny; dj; (x) £ 4, foreachx e N,;

) e(G[M]) = p+ pm e(G[Ns, N ]) = q'+ g% e(G[N,]) =r"+ 1

4) there is a simple subgraph of G[N,] with p' edges;

5) there is a simple subgraph of G[Na,N‘]wiLh q' edges;

6) there is a simple subgraph of G[N‘]with r' edges;

7)if G[N,]> 1, there are no loops in G[N,]; if G[N,]>1, there are no loops in G[N,].

Proof: Denote N, = {x,,.‘_,x"‘} and N, = {y,,...,y"' } First, let us prove that there is a graph
G, with the following properties:

D V(G) =Ny NG Ny = s [N = 75

1) d;; (x) <3, foreachx e Ny; d; (x) <4, foreachxe N,;

) e(G, [N:]) = p+ p"s (G [N N ]) = 0% (G [N,]) = rer;

IV) there is a simple subgraph of G, [N, ]with p' edges;

V) G, [Ny, N,]is a simple subgraph;

VI) there is a simple subgeaph of G, [N,]with »* edges.

VID) if G[N,] > 1, there are no loops in G[¥,); if G[N,]> 1, there are no loops in G[N,].
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Since the relations b) and g) hold, it follows that requirements of Lemma 3 are fulfilled, so

there is a graph G,(N_,] that satisfies the conditions described in Lemma 3. Analogously,

since the relations c) and i) hold, it follows that requirements of Lemma 4 are fulfilled, so

there is a graph G, [N‘] that satisfies the conditions described in Lemma 4. Note that
max {4-dy ()03 =g (%, )} = min {4 = di 1 (0n)s s =dogy (0, )} €1

So, form the previous Lemma, it follows that it is sufficient to prove that

¢'<min {i: min {3 ~deim) (x).n, } y "Z (4—do.l[h,‘] (y))} , *)

Note, that

max {3 =d (5153 =g (%o )} ~min {3 L (T M. B )} <1

Therefore, the expression (*) is equivalent to

q'Smin{imin{}-dq )5 (1-a, (yj)),n,,,‘}.

p=
Simple computation shows that this is equivalent to
q'<min{3n,-2p,4n ~2r,nn}.
Hence, it is sufficient to prove that g'< nyn,. Note that ¢'<n, +n, -1, s0 it remains to prove
that n, +n, —1 < nyn, or equivalently that (r; ~1)(n, —1) = 0, which is true.
Note that g" < min {4:14 -2p~-q'3n, - 2r - ¢'} orequivalently, that

g i {M, -3 d, (x)4n, —gdq ()ri)},

=

so it can be easily seen that there is a supergraph G, of graph G, that satisfies properties 1)-
7). Now, let us observe the family G of graphs H such that:

DV(H)=N,UN; H[N,]=G, [N, H[N,]=G,[N,];

1) e(H[N,,N,]) = g+ g' and there is a simple subgraph of H [N, N, ]with q' edges.

Note that G is not empty since at least G, is in G. Denote by G graph with the smallest

number of components in G. It is sufficient to prove that G is connected. Suppose to the

contrary. Distinguish four cases:
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CASEl: pzn,—landrzn 1.
Note that H[N,} =G, [N,]and H[N'] =G, [N‘] are connected and that ¢ 2 1. Hence G is
connected. Contradiction.

CASE2: p2n,—landr<n, - 1.

Note, H[N,]=G,[N,] is connected. Since g+r>n,, it follows that g is not less then
number of components in G[N, ] Hence, there is a component C, in G that has two edges in
E(G[NJ,N, D Denote one of them by x,y,. Let C, be any other component of G (note that

¥(C,) = N,)and p, any vertex of C,. Note that graph G - x,y, +x,y, is in G and that it has

a smaller number of components then . Contradiction.

CASE3: p<ny—landrzn, -1

Note, H[N,]=G,[N,] is connected. Since g+ p2zn,, it follows that g is not less then
number of components in GIN,], Hence, there is a component C, in G that has two edges in
E(G[N,,N,]). Denote one of them by x,y,. Let C, be any other component of G (note that

V(C,)c N,) and x, any vertex of C,. Note that graph G ~x,y, + x, y, is in G and that it has

a smaller number of components then G. Contradiction.

CASE4: p<m—landr<n 1.

Note that H[N,]=G,[N,]and H[N,]=G,[N,] are acyclic. Sincep+g+r=n, +n, -1,
there is a component C that contains a cycle. There is at least one edge in C which is in
G[N,,N,] which is not a cut-edge of C. Denote this edge by xp such that xe N, and
yeN,.Let C' be any other component. Distinguish three cases:

nrv{clen,;.

Let c € V(C") be an arbitrary vertex. Graph G —xy+ yc is in G and it has a smaller number
of components then G, which is contradiction.

nr(CYeN,.

Let ce ¥ (C") be an arbitrary vertex. Graph G —xy +xc is in G and it has a smalier number

of components then G, which is contradiction.
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HV(CYINN, =D and ¥ (C)NN, 3.
There is an edge x'y' such that x'e N, and y'e N, in ', Graph G—xy+x'y+xp'+x'y

is in G and it has a smaller number of components then G, which is contradiction.

We have obtained a contradiction in each case, so our claim is proved.

Let us prove our main theorem:

Theorem 7. Let r, and n, be any nonnegative integers and n, and r, be any natural numbers
such that there is a molecular graph H such that v(H)=(n.n.n,n) and let
My iy, i myy s, and m,, be any nonnegative integers. Then there is a
molecular graph G such that v(G) = (n,,m,, 1,5, ) and that

u(H)= (muv"’mmwmwmn M Wty Py Mgy 1y )
if and only if the following conditions hold:
Don=m +m,+m;+m,;
2) 2n, =my, + 200, +my; +m,,;
3) 3ny =myy +my, + 2myy +my,
4) dn, =my, +my +my, +2m,;
5) s = (my +m,, —m,,)/2 is nonnegative integer;
6) s+my+my, +m, 2n +n —1;
T) ny Ss+my; +my;
8) n, Ss+my, tmy;
9) ny Smy; +my Hmy,
10) ny Smy +my +my;
1y my, +m, 21,
12) my +my, 2 15
13y my, +s21;
14) (n, 2 2) or (s<m,, +m,,);
15) (1, 22) or (s <my +my,);

16) (my, +my, + my, > 0) or (m,, =0);
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(-1
17) m”gm;
2
18) my, €y -1

n.-(n‘—i)-

19) my, < ==

20) m, =0

Proof: First, let us prove sufficiency. The relations 1) — 4) and 17) - 20) are trivial. Since, G
is connected 16) follows. Denote by S the set of all induced cycles and all induced paths of
length at least two with both terminal edges of degree at least three in G . Note that |S| =5,
hence 5) holds. Let G, be a graph obtained by replacing each path in S by a single edge and

each cycle in S by a single loop and elimination of each vertex of degrees 1 and 2 in G and

their adjacent edges. Note that G, has s+ m;; +m,, +m,, edges and n; +n, vertices. Since
G, is connected, it follows that 6) holds. Let G, be a graph obtained from graph G, by
contraction of all vertices that are in N, to a single vertex. Note that G, has n, +1 vertices
and at most m,, +m,, + sedges that are not loops. Since G, is connected, it follows that 7)
holds. Analogously, let G, be a graph obtained from graph G, by contraction of all vertices
that are in N, to a single vertex. Note that G, has n, +1 vertices and at most
my, +my, + 5 edges that are not loops. Since G, is connected, it follows that 8) holds. Let G,

be a graph obtained from graph G by elimination of each vertex of degree 1 and its adjacent

edge and contraction of all vertices of degrees 2 and 4 to a single vertex. Graph G, has n, +1
vertices and at most m,, + m,, +m,, edges that are not loops. Connectivity of G, implies 9).
Analogously, let G be a graph obtained from graph G by elimination of each vertex of

degree | and its adjacent edge and contraction of all vertices of degrees 2 and 3 to a single

vertex. Graph G; has n, +1 vertices and at most m,, + m,, + m,, edges that are not loops.

Connectivity of Gy implies 10). Since G is connected, it follows that
e(G[N,, N, UN,])# D and e(G[N,,N, UN,]) % @, therefore 11) and 12) hold. Since G,

is connected, it follows that e(G, [N;,N,]) # D, therefore 13) holds.
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Suppose that x is only vertex in N,. Let S, be a set of all induced cycles in G that contain
vertex x. Note that |S,| 25— m,, and that each of this cycles has at least three edges, because

G is simple. Therefore, each of these edges has at least one edge that connects two vertices of
degree 2. It follows that m,, > ES‘,I 2 s —m,, and 14) holds. The relation 15) can be proved by
a complete analogy.
Now, let us prove necessity. Denote ¢ = my; +my, +m,,. Note that
{—ny,
2y, + My +my, = Ay,
t—rmy, —m, —m,, . 2my +my, )/ 2,
max 13 34 23 < min ( 44 24 ) :
my, (2my +myy +my -1)12,
t =y, =y,
t=1—my
Hence, there is a nonnegative integer r such that
t—ny,
2y, + My, + iy =Ry,
t =y, —my, — My, 2m,, +my, )/2,
max 33 34 23 <rg I“-III ( 44 24 ) !
my, 2my, + my, +my, —1)12,
[ =y, =y,
t=1-my
Now, we have

2ntyy +my iy, +F L,

F+t—2m,, -m, —m i t—n
max{ 4" 34 214 < min 4
ml‘

Therefrom, it follows that there is a nonnegative integer p such that

2myy +my, +my, 1,
t-n,,

m,

max{r +=2m —my, —m,,,
44

£ p<min
f—my —r,
Ly
Put r=i-p—gq,p'=my; p"=p-piq'=my;q=q-qir'=my;r"=r-r'. Note thal
pyp"q,\q"r',r" are nonnegative integers that satisfie cenditions of the Lemma 6.

Therefore, there is a graph G, with the properties described in the L.emma 6. Denote by
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Hy, Hy, and H,, respectively simple subgraph of G, [N,]with p' edges, simple subgraph of
G [Ny, N, ]with g* edges and simple subgraph of G,[N,]with r' edges. Let G, be a graph
obtained from graph G, by replacing each edge in the set
E(G)\(E(Hy, ) E(H, )V E(H,,))

by a path of length 2 and adding to each vertex x in N, exactly 3-d,; (x) neighbors of
degree | and to each vertex y in N, exactly 4-d; (y) neighbors of degree 1. Note that
3 (G ) S myy < 10 (G) + 11, (G,) and that (G, )} € my, < g1y, (G, ) + 4, (G, ). Choose
iy, — iy, (G, ) edges that connect vertices of degree | and 3 in G, and my, - p,, (G, )edges
that connect vertices of degree | and 4 in G, and replace cach of them by a path of length 2.
Denote graph obtained in this way by G;. If my, =0, it is sufficient to take G=G,.
Otherwise, let G be a graph obtained from G, by replacing any edge incident to the vertex of

degree 2 by a path of length m,, . Graph G has the required propetties.

By a similar, but somewhat more simple techniques, one can prove:

Theorem 8. Let » and n, be any nonnegative integers and letn, be any natural numbers
such that there is a molecular graph H such that v(H)=(n,n,0n) and let
myy, My, My, My, iy, and m,, be any nonnegative integers. Then there is a molecular graph G
such that v(G) = (n,,m,,0,,) and that
p{H) = (mymy, 0,m my,,0,m,,,0,0,m,, )
if and only if the fellowing conditions hold:
1) oy =my +my, +m,
2) 2n, =my, + 2my, +my,
3) dny =y +my +2m,,
4) (my, —my, )/ 2 is a nonnegative integer;
5) (my, =0} or (m,, +m,, >0);

n,-(n, —1)

6) my, STﬂ

)] (ﬂ‘ P 2) or (mn 2 (m24 o mlz)lz)
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8) m, =0.

Theorem 9. Let n, and n, be any nonnegative integers and let n; be any natural numbers
such that there is a molecular graph H such that v(H)=(n,n,n,,0) and let
my, My, My, g, my, and my; be any nonnegative integers. Then there is a molecular graph G
such that v(G) = (n,n,,n,,0) and that
H(H) = (my,, my,myy, 0,1, my,,0,m,,,0,0)
if and only if the following conditions hold:
1) n =m, +m, +m,;
2) 2ny = my, + 2my, +my,;
3) 3ny =my +my +2my,;
4) ('”z; -m,, )/2 is a nonnegative integer;
5) (my, =0) or (m, +my >0);

(-1
6),,,”5%;

7) (my 22) or {my, 2 (my, —m,)/2);
8) m, =0.

Theorem 10. Let » and n, be any nonnegative numbers such that there is a molecular graph

H such that v(H)=(r,n,,0,0) and let m,,,m, and m,, be any nonnegative integers. Then

there is a molecular graph G such that V(G) = (n,,nz,0,0) and that
#(H)=(m,,m,,0,0,m,,0,0,0,0,0)

if and only if one of the following conditions hold:

D omy, =lm, =0my, =0n =2n, =0;

2) my, =0,my, =0;my, =ny;n =0;ny 23;

3) my, =0; m, =2;11/Tzz =n-Ln =2n =0.

It remains to prove:
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Theorem 11. Let #2>3 and let m,n,,n, and n, be nonnegative natural numbers such that
m +n, +n,+n, =n. There is a molccular graph G such that v(G) =(n,,n,,n,,n,) if and

only if the following conditions hold:

1yn +2n,2n -2
2 In, +4n, —n . n +n, ]
2 2

3) m, + n, is an even number.

HIf ny +n, =1 then n, 23n, +4n, —n

Proof: First let us prove sufficiency. Since G is connected, we have

n, +2n, +23n3+4n4 Bt Sttt g
which is equivalent to 1). Let G, be the graph obtained from graph G by elimination of each
vertex of degree 1 or 2 together with its adjacent edges. Note that G, has n, +n, vertices and

3y +4n, —2ny) -

at least n, edges. Since G, is simple, it follows 2). The handshaking lemma

implies 3). It remains to prove 4). Let x be the only vertex of degree 3 or 4. Note that each
induced cycle in G has at least two vertices of degree 2 and that number of induced cycles is

4 o
Vil e I )

Now, let us prove sufficiency. If n, +n, <1, the claim is trivial, so suppose that ny +n, > 1.

Distinguish two cases:
CASE - 3y +4n —ny 2 (”3 +"‘)
2 2

: : ; 3n, +4n, ~n,
Put in Lemma 4 instead of n, number n, +#n,, and instead of r' number ———— and

instead of r" number 0. Now, this Lemma assures the existence of the simple connected
graph H such that A(H)—&(H)<1. Note that at least i, vertices in # have degrec less or
equal 3. Let ny of this vertices form the set Ny and let all other vertices form the set N, . Add

to each vertex x in N, exactly 3-d,, (x) neighbors of degree 1 and add to each vertex x in
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N, exactly 4-d,, (x) neighbors of degree 1. Now, replace any edge by a path of length

n, +1. Graph obtained in this way has the required properties.

CASEz:i'i’—JfZ-"ﬁ>("’;"‘J.

. . . ny+n
Put in Lemma 4 instead of n, number rn, +n,, and instead of r’ number( d ‘}, and

instead of r" number

3n,+4n,—n Hy 0, " y
% =i N * |. Now, this Lemma assures the existence of

the connected graph H such thatA(H)< 4 and A(H)~&(H) <1 without loops such that tit
is a supergraph of complete graph H' with n, +n, vertices. Note that at least n, vertices in
H have degree less or equal 3. Let n, of this vertices form the set Ny and let all other vertices
form the set N,. Add to each vertex x in N, exactly 3 -d,, (x) neighbors of degree | and
add to each vertex x in N, exactly 4 —d,, (x) neighbors of degree 1. Now, replace all edges
in E(H)\E(H"') by a path of length 2. Afier that, choose any edge and replace it by the path

3 +dn, —n

of tength », —( 5

+a .
_£"3 5 & )]H. Graph obtained in this way has the required

properties.

3. Algorithm

First, we present an algorithm that gencrates 4-tuples (n.m,m,n) such that
o+ ny +m+n, =n and that there is a molecular graph G such that v(G) = (n.,m,m.n,).

The procedure x is any procedure that utilize this algorithm.

GenNumVer(n)

1)if n=2 then

1.1) x(2.0,0,0)

2)elsetf n>2

2.1) for each n, suchthat 0<n <n
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2.1.1) for each n, suchthat 0<n, Sn-n,
2.1.1.1) for each n, such that 0<n <n-n —n,
2L ng=n—n—n, —n
[n3 +2n,2n —2] and
2.1.1.1.2) if [(311,4»*’4-!:‘-n,)/‘2-nz <(ny+n)(ny +n, *l)/Z] and then
[n, +ny=0(mod2)] and [(n,+n, #1) or (n, = 3n, +4n, - n, )]
2.L11.2.1) x(n,my,ny,1,)
Now, we present an algorithm that, for each n,,n,,n,,n, € N, such that there is a molecular
graph G such that v(G) =(n,n,, n,,n, ) generates 10-tuples
(g myg s myg gy iy g sy my my, )
such that there is a molecular graph H such that v{H)=(nm,n,,n.n,) and that
HOH Y = (myysmg iy 1 oy s iy iy my ). Again, procedure x is any procedure

that utilize this algorithm.

GenNumEdges(n)

1)if (n, =0) and (n, =0) then

L1)if m, =0 then

L1 Ty X(I,O,U,O,U,U,0,0,0,0)

1.2) else if n, = 0then

1.2.1) x(0,0,0,0,nz,O,U,0,0,0)

1.3) else

1.3.1) x(0,2,0,0,m, ~1,0,0,0,0,0)

2)else if ny = 0then

2.1) for each my, such that 0 < m,, < min{n,,2n,}
21.0) my =n -m,

2.1.2) if my, < 4n, then

2.1.2.1) for each m,, such that 0 < my, < (28, = m,}/2
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2.1.2.1.0) my, =2n, —m, - 2m,,
2.1.2.1.2) m,, =(4n‘ —-m, —mu)l'Z
2.1.2.8.3)if m,, 2 Othen
["’u =m, =0 (mod2)] and [m,, —m, 2 0] and
2.1.2.1.3.0)if [(m,, =0) or (my, +m,, >0)] and then
(M < (n -1)/2] and [(n4 22} or (my, 2 (m, —mu)/'l)]
2.0203.1.1) x(0,m,,0,my,,my, 0,m,,,0,0,m,,)
3) if n, = 0then
3.1) for each m,, such that 0< m,, < min{r,,2n,}
3L my =n —-my,
3.1.2)if my < 3n, then
3.1.2.1) for each my, such that 0 <m,, <(2n, —m,)/2
30.2.10) my =2n, —my, —2m,
3.1.2.1.2) my = (3ny —myy —my, )12
3.1.2.1.3) if m,, 2 Othen
' [m,, —m,, =0 (mod 2)] and [m,, —m,, = 0] and
3.1213.0)if [(my =0) or (my, +my, >0)] and then
[m,, <ny(n, —1)1’2] and [(n3 22) or (my, = (m, —m,z)/2)]
3.1.2.1.3.1.1) x{0,m,,,0,m,,,m,,,0,m,,,0,0,m,)
4) else
4.1) for each m,, such that 0< m, < min{n,2m}
4.1.1) for cach my, such that 0 < m; < min{m —m,,,3n}
ALV my=n—m, —m;
4.1.1.2)if m,, <4n, then
4.1.1.2.1) for each m,, such that 0 < m,, <(2n, —m;,)/2
4.1.1.2.1.1) for each m,, such that 0 < m,; < min{2n, —m,, = 2my, 3, - m;}

4. L1211 my, =2n, —my, —2my, —my,
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4.1.1.2.1.1.2) if g +m,, < dn,

4.1.1.2.1.1.2.1) for each m,, such that 0 < my, < (3m —my —my,)/2

A0L12.00.2.0.1) my =3n, —my, —m,, —2m,,

4.1.1.2.1.1.2.1.2) my, =(4n, —m,, —my, —my, )2

4012.112.1.3)if m,,

20 then

411.2.112.13.1) s = (my, +myy ~m,,)/2

41.12.1.12132)if s>20

4.1.01.2.1.1.2132.0) t = s+my; +my, +my,

4.1.12.1.1.2.1.3.2.2) if

([t 2m +n 1] and [n, < s+my, +my,] and

[ne <s+my, +m,] and [ny < my +my; +my, ] and
[7 < gy + s +m,, ] and [my, +my, 21] and

[y + myy 21] and [y, +521] and

[(n3 22)or (s<smy, + mz.)] and

[(7 22) or (s € my, +my )] and

[(my, + my, +myy > 0) or (my, =0)] and

J:m” s(?]] and [, < nyn,] and {m“ s(';‘ ]]

4112.00.2.03.2.2.0) x(myy, myy iy myy iy s, My iy i )

then

4. Discriminative properties of Zagreb M, Index and

Modified Zagreb "M, Index

The aim of this section is to utilize the developed algorithm. We compare discriminative

properties of Zagreb M, index and modified Zagreb "M, index for molecular geaphs.

Let nbe a natural number larger then 4. Define by A, the set of all graphs with n vertices and

define the following functions ()., (*Ma),: 4(4,) — R by

We also define

(Mz)" (fu(G)):Ml (G}
("M,) (u(G)) ="M, (G).
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2, = {(m sy € g, (4,),m, = m }
D, = {{m.my} om0, (4,).(M3), (m) = (M), ()}
"D, = {{mm iy € g, (4).( M), (m) % ("M,), ()]
I, ={{mmy}mmy € g, (4), (), (m) = (M,), ()}
1= {{mm mmy €, (4,).0005), (m) = (8, (me)).
The probability that the pair of elements of £(4,) will be discriminated by Zagreb M, index
is |D,|/

L,

and probability that they won’t be discriminated is |/,|/|%2|. Analogously. the
probability that the pair of eiements of (4,) will be discriminated by modified Zagreb "M;

/

index is

D,

P.| and probability that they won’t be discriminated is |1,:]/ P|. Our findings

are summarized below.

7
i

AT R A A

I

e

D,

p|

L

L}

5 0.00000000 1.00000000 0.05238095 0.94761905 Not defined
6 0.00186480 0.99813520 0.01724942 0.98275058 9.25000000
7 0.00472813 0.99527187 0.01536643 0.98463357 3.25000000
8 0.00608154 0.99391846 0.01415128 0.98584872 2.32692308
9 0.00621716‘ 0.99378284 0.01237858 0.98762142 1.99103390
10 0.00619617 099380383 0.01108734 0.98891266 [.78938770
11 0.00603875 0.99396125 0.00993674 0.99006326 1.64549741
12 0.00582063 0.99417937 0.00902557 (.99097443 1.55061876
13 0.00558597 0.99441403 0.00825816 0.99174184 1.47837380
14 0.00535675 0.99464325 0.00763061 0.99236939 1.42448536
15 0.00513608 0.99486392 0.00709174 0.99290826 1.38076962
16 0.00492681 0.99507319 0.00663258 0.99336742 1.34622159
17 0.00472759 0.99527241 0.00622986 0.99377014 1.31776853
18 0.00453984 0.99546016 0.00587785 0.99412215 1.29472683
19 0.00436312 0.99563688 0.00556556 0.99443444 1.27559160
20 0.00419698 0.99580302 0.00528736 0.99471264 1.25979960
21 0.00404094 0.99595906 0.00503723 0.99496277 1.24654920
22 0.00389452 0.99610548 0.00481149 099518851 1.23545068
23 0.00375713 0.99624287 0.00460628 0.99539372 1.22600914
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24 0.00362818 0.99637182 0.00441904 0.99558096 1.21797718
25 0.00350705 0.99649295 0.00424736 0.99575264 1.21109151
26 0.00339323 0.99660677 0.00408941 0.99591059 1.20516758
27 0.00328615 0.99671385 0.00394345 0.99605655 1.20002244

28 0.00318528 0.99681472 0.00380818 0.99619182 1.19555384
29 0.00309018 0.99690982 0.00368238 0.99631762 1.19163898
30 0.00300042 0.99699958 0.00356511 0.99643489 1.18820427
31 0.00291557 0.99708443 0.00345545 0.99654455 1.18517210
32 0.00283529 0.99716471 0.00335269 0.99664731 1.18248630
33 0.00275923 0.99724077 0.00325615 0.99674385 1.18009685
34 0.00268708 0.99731292 0.00316529 0.99683471 1.17796610
35 0.00261857 0.99738143 0.00307958 0.99692042 1.17605469
36 0.00255343 0.99744657 0.00299859 0.99700141 1.17433813
37 0.00249143 0.99750857 0.00292193 0.99707807 1.17279014
38 0.00243236 0.99756764 0.00284925 0.99715075 1.17138962
39 0.00237602 0.99762398 0.00278023 0.99721977 1.17011850
40 0.00232223 0.99767777 0.00271460 0.99728540 1.16896276
41 0.00227082 0.99772918 0.00265210 0.99734790 1.16790770
42 0.00222163 0.99777837 0.00259252 0.99740748 1.16694294
43 0.00217454 0.99782546 0.00253564 0.99746436 1.16605318
44 0.00212941 0.99787059 0.00248128 0.99751872 [.16524491
45 0.00208611 0.99791389 0.00242927 0.99757073 1.16449546
46 0.00204455 0.99795545 0.00237946 0.99762054 1.16380372
47 0.00200462 0.99799538 0.00233170 0.99766830 1.16316341
48 0.00196623 0.99803377 0.00228588 0.99771412 1.16256983
49 0.00192929 0.99807071 0.00224187 0.99775813 1.16201838
50 0.00189371 0.99810629 0.00219956 0.99780044 1.16[150514

We conclude that discriminative properties of Zagreb M, Index supersede those of modified

*M, Zagreb index for graphs with the at most 50 vertices.
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5. Additional results

In this section, we shall demonstrate another utilization of our algorithm. We want to find
how discriminative the Randi¢ connectivity indices [6,12] °  and ' 7 together are for graphs
with the same number of vertices. One may think that the Zagreb * M index was precursor

for the Randi¢ connectivity index 'y. Obviously, if we have two graphs G, and G, such that
#(G,) = u(G,), then these graphs cannot be discriminated by indices ° ¥ and ' 7 . Therefore,
we want to find out if the relation

["2(G)="x(G,) and '2(G,) ="2(G;)]= u(G,) = u(G,)
holds for all molecular graphs G, and G, with the same number of vertices and if not so to
find a smallest 7 such that there is a pair of graphs with # vertices such that

°2(G)="%(G,) and '7(G,} ='x(G,) and u(G,) # u(G,).

First, we shall need few lemmas. It can be easily proved that:

Lemma 12. Let a,b,c,d € Q. Ifa+by2 +c3 +d6 = 0, then all numbers g, b, ¢ and d are
equal to 0.

Lemma 13. Let G, and G, be molecular graphs with the same number of vertices. If
'2(G)="%(G,), then v(G,) =v(G,).
Proof: Note that
1 1 1
*2(G)= |(Gl)+ﬁ"z (G|)+'\7§""z (GI)+5V~1 (G);
1 ! 1
2(G) =4 (G4 (@) G (6) 34 (G,
hence
M(G) 434 (G) = (G, + 34 (G)im (G) =12 (G, )iws (G) = (63).
Since, G, and G, have the same number of vertices, we have

(G + v (G)+w(G)+v,(G)=v(G,)+v,(G,)+v, (G)+v(G,).

From the last four equations, the claim follows.
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Lemma 14, Let n23 and let G, and G, be molecular graphs with n vertices. If
'}((G,) =’I(Gz) , then
6444 (G, ) + 64, (G ) + 44, (G ) + 31, (G ) = 64, (G ) + 641, (G, ) + 444, (G) + 3414, (G)
244, (GI) + My (Gl) =2p, (Gz) + My (Gz)
2p, (G, ) + 1, (GI) =2u, (61 ) + Hyy (Gz)
Ay (GI) = Hy (Gz)
Proof: We have
0=' 2(G)-'2(G,) =

(6140 (G)+ 64, (Gl )+ s (GI V434, (G) = 1, (G, ) =615 (Gz ) =413, (G, ) =311 (G, )) ¥

. %(2.“11 (Gl) + 16, (G) = 214 (G) - 124 (G, )) V24

‘é‘(zn“’u (G)+ 145 (G) =245 (G}~ 14 (G, ))‘E + %(ﬂun (G)-ma (G, )) J6

and the claim follows from Lemma 12.
Theorem 15. Let A,B,C,D,m.,n,,n,n, e N such that n #0;n,#0 and that
n, +ny +ny +n, > 3. There are molecular graphs G, and G, such that:

a(G,)=a(G,) = 4:b(G,) =b(G,) = Bic(G,) = ¢(G,) = C:d(G,) = d(G,) = D;

v(G,)=v(G,) = (m.m.ny,n,) and u(G,) # u(G,),

ifand only if »n, 2 3 and n, 2 4 one of the following holds:
1) Max-Min = 8;
2) (Max > Min) and [(~Min- B=2D +4n, =0) or (D+ Min>0)];
where Min is the smallest natural number such that
0,[ b-2d }

3

-4 =
lrﬁjfw_EO_D]_ 3B+ 6n, +8n, +8n, +8n,,

Min > max {%]—53~4C~6D+6n‘+8n,+6nl+8n‘, (1)

-23B-20C +28n, +32n,
3
"-—4,4 +13C-20D~-nyn,
3

“A2Am10D+l2n2+l2n3,

“—5B+6n, +8n, +8n,y +8n,,



132

and that 38 +2D = Min (mod 4); and Max is the largest natural number such that

b,
—2A4A-8B-7C—-10D+10n, +12n, +12n, +12n,,
=B +2D +4n,,

~4A4-13C-20D
=
-23B-20C +37n,
S A
—4A+16m +28n,
=
=124 -40C - 58D + 74n,

B
~2A=TB-6C ~10D+8n +12n, +12n; +14n,,
LL;J_HE}*ZA ~10D+9m, +12n, +12n, +12n,,

l~l~lSB—I3C‘

J~SB+6n, +8n, +8n, +8n,,
J—-2A—IOD+9", +12n, +12n,,

J~-5.B'—4C—6D+Sn2 +8n,,

J—5B+6n, +8n, +8n,,

Max < min

2
[—1—4A~13C—19D
3
[—4-I6A—6IB—52C—78D+96n1 +96n, +96n4J
+8n

J—ZA—IUD+9M, +12n, +12n, +12n,,

J—53+Gn] +8n, +8n; +8n,,

9 )

2
|"4A+MJ—SB-4C-6D+611, +8n, +8n,

Yzw-zocns", +31n,, +n

3 —2A—10D+E2n2+|2n1J

and that 3B+ 2D = Max (mod4).

Proof: From Theorem 7 and Lemma |3 and 14, it follows that graphs with the required
properties exist if and only if there are numbers m,., foreach 1<u<v<dand |l <i<2 such
that following 55 relations hold:

L) m,, €Z, foreach ISu<v<4;

i,2) m,, 20, foreach ISu<v<4;

i,3) A=06m,, +6m,y,, +4my, +3m

L 5

i.4) my, =0;
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i,5) B=2my,, +my,;

i,6) C=2m,, +my,;

i,7) D=m,,;

1,8) m = LR P o P L PP

1,9) 2m, =, +2my,, +myy iy,
1,10) 3n, = myy, +omyy +2myy, g
i,11) 4n, = My, vy, o, + 2my,,;
,12) 8, =myy, +my, —m,, 20;

i,13) s, is an integer;

L14) 5, +myy, +my,, Fotg, Z o+ -l
LIS) my <5, iy, iy g

L16) ny sy, + My 5

LIT7) ny Smyy +myy, 5

L,18) my Ly, +imy, +my,

i,19) my, +my,, 215

1,20) my,, +myy, 215

1,21) ny,, +5, 210,

1,22) (n; 22} or (s, £myy, +my,, );
123} (m, 22) or (s Sy, +my, )

1,24) (m,,., i,y 0) or (mn_, = 0)',

1,25) my;, il ) (;3 = l)_;

1,26) my,, <nyeng;

i27) m,,, < &;‘1)

28)

LUTREL R RLL TARTC PR LR - mll.l'mll.l'mlz.l'mld,z’mn.Z’]
>

Mgy 1o M5y M3 15 Mgy g s Mg M350 M3 20 M5y 50 My 50 Mgy

where 1 £/ <2, Note that, for i = 1,2, relations i,3) - i,11) can be rewritten as
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i,1*) m,, =0

B my,
L) O
1,2%) my, 2 2

i3%) myy, = %+%(4A+ISB+ 14C + 20D - 18n, — 24n, - 24n,)

i4%) my,, = =24~8B~7C = 10D +10n, +12n, +12n, +12n,;

m.
1,5%) my,, =— :‘-’ +%(—B*2D+4n.‘);

i,6%)y my, =D,

1L,7%) my,, =

3m.
4’“ +~ll4-(4a+15b+12c+18d—l8n, —24n, ~18n, - 24n,);

i,8%) my,, ==3m,,, —4a—15b—13¢ - 20d +18n, +24n, + 24n, +24n,;

3
L,9%) my,, = _’”;L + %(6:1 +23b +20c¢ +30d - 28n, - 36n, - 36n, - 32n,) 5

Hence, (m”v,,mnl‘,,mn',,mu_l,mn‘,,mm,nzl,_,,mﬁl,,mm,m“l) is uniquely determined by the
value of m,,, , therefore

*

l ) ml‘,l # ’"Z-l,i

Denote right-handside of (1) as Minv and denote right-handside of (2) as Maxv. Note that i,1)

and i,13) can be rewritten as
L11%) my, =3B+2D (mod4).
Relations i,2), 1,12), i,15) —i,21) and i,25) — i,27) are equivalent to Minv < m,,, < Maxv.

Taking into account the relation i,11*), these can be rewritten as:

1,12%) Min <m,,, < Max .
Relations 1,24) can be rewritten as
i,13%) (=my, = B=2D+4n, =0) ot (D+my,, >0)

From 10*) and i,11¥) it follows that Maxv— Minv 2 4 . Specially, it follows that

~23B-20C +28n, +31n, +nl -23B-20C +28n, +32n, |
3 - 3 >4
~24-10D +12n, +12n, —24-10D+12n, +12n,
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|
3 -1 3 >4

~5B—4C -6D +6n, +8n, +8n, Gy +8n, +6n, +8n,

run 16n, +2n,? J

From these relations easily follows that

14*) n, 23 and n, > 4. Hence, the relations i,14), 1,22) and i,23) are fulfilled.

So far, we have proved that graphs G, and G, with the required properties exist if and only if
14*) holds and there are nonnegative integers m,,, and m,, , that satisfy 10*) and i,11*) -
1,13%),

Distinguish three cases:

CASE 1: Max— Min< 4.
There is a single number that satisfies relations i,11*) and i,12*), therefore the relation 10%)

can not be satisfied, so there are no graphs with the required properties.

CASE2: 4 < Max - Min<7.
The only two different numbers that satisfy the relations 10), i,11*) and i,12*) are

Min and Min+4 . Note that D+ Min+4 >0, therefore graphs G, and G,with the required

properties exist if and only if [(fMin —-B-2D+4n, =0) or (D + Min > 0)] -

CASE 3: Max—Min>38.
Note that D+ Min+4 >0 and D+ Min+8> 0, so it is sufficient to take m,,, = Min+4 and
ny,, = Min+8.

This concludes the proof of our theorem.

Now, we shall utilize this theorem 1o create the following algorithm:
Nn=7

2) For each (nl,nz,npn‘) generated by GenNumVer (n) do

2.1)if ny 23 and 1, > 4 then

2.1.1) for each d such that 0 < d < min{2n,,3n,}

2.1.1.1) for each ¢ such that 0 < c £2(3n, —d)

2.1.1.1.1) for each b such that 0 < b < 2(2n2 -d)
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b
2.1.1.1.1.1) for each a such that OSGS6[MI +2n, +3n; +4n, --2--%7(1)

2.1.LLLLI1) If(Max - Min > 8)
2.1.LLL.LLLI) Putm,,, = Min+4 and m,;, = Min+8

2.1.1.1.1.1.1.2) Calculate numbers m,

v

A <u<v<4,1<i<2 using formulas [,1*) - 1,9%)
from the last Theorem

2.1.1.1.1.1.1.3) Output numbers n,1 <i<4m, J<Susv<4,1<i<2,4,B,C,D
2.1.1.1.1.1.1.4) Exit program

2L1L1LL2) If (Max > Min) and [(~Min—B~2D+ 4n, =0) or (D+ Min>0)] then
2.1.1.1.1.1.2.1) Putm,,, = Min and my, , = Min+4

2.1.1.1.1.1.1.2) Calculate numbers m,, 1 Su<v< 4,1<i<2 using formulas i,1*) - 1,9%)

from the last Theorem

2.1.1.1.1.1.2.3) Output numbers n,1<i<4m, l<susv<412i<2,4,8,C,D

2.1.1.1.1.1.2.4) Exit program

3) Increment n and go to 2)

The output of this algorithm is:
m=Tm=%n=5n=4a=30b=4%c=14d=2;
Mgy =2Zmy =hmg =4 my =1 omyy, =2 my, =05 my = 0;my,, =12,m,,, =0;

My, =0m, =Tm, =00my, =0, my, =2my, =4 0y, =30my,, =0;my,, = 6.

Therefore, for graphs G, and ¢, with at most 18 vertices holds
[ ‘2(G)="2(G,) and '2(G,}= IZ(Gz)] = u(G) = u(G,),
and there are graphs G, and G, with 19 vertices such that
*2(G)="2(G,) and '2(G\) ='x(G,) and 4(G) # u(G,).

Namely, for graphs G, and G, given on the following diagrams
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we have:
n(G,)=n(G,)=19

OI(G|)=°X(G?)=9+§\E+§J§

1(G)='2(G) = 4B+ 6
#(G,)=(0,2,1,4,1,2,0,0,12,0)
#(G,)=(0,0,7,0,0,2,4,3,0,6)

6. Concluding remarks

We presented an efficacious algorithm for studying the discriminatory power of molecular

descriptors, that was tested on the Zagreb M, index and the modified Zagreb *M, index for all
kinds of (molecular) graphs. The result of our analysis is surprising — Zagreb M, index is
more discriminative than the modified Zagreb *}, index. One would expect the reverse
result because the Zagreb M, indices belong to the set of natural numbers and the modified

Zagreb *M, indices to the set of rational numbers.

We also investigated the discriminatory power of the first two Randi¢ connectivity indices: 9y
and Iy, We did this because the Randi¢ indices are grounded in the Zagreb indices though
they were obtained in quite a different way. In this case we obtained that °y and 1y indices
discriminate all graphs with up to 18 vertices. We also found a pair of graphs with 19 vertices

for which the above is not valid.
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