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Abstract

Let T be a tree and d, the degree of its vertex v. In this paper, we investigate the fol-
lowing topological indices fora tree T: 3~ 47, 5 d;™, 3 diim, V5 3 my
uwev(T) wev(T) ueV(T) ueVv(T)
where m > 2 is an integer. All trees with the smallest, the second and third smallest
values of the four topological indices are characterized. The same is done for all trees
with the largest, the second and third largest values of these indices.

1 Introduction

It is well known that a topological index of molecules determines a large number of molecular
properties such as boiling points, molecular volumes, energy levels, electronic populations,
etc., see [8,10} for details. A topological index of molecules is a numeric quantity that is
mathematically derived in a direct and unambiguous manner from the structural graph of a
molecule. Since isomorphic graphs possess identical values for any given topological index,
these indices are referred to as graph invariants. Many topological indices have been developed
through the years and correlated with many physicochemical nroperties [1,3-7,9,12].

Let G = (V(G), E(G)) denote a graph with V(G) as the set of vertices and E(G) as the
set of edges. The Randié index of G defined in [10] is
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where d,, denotes the degree of the veriex v in G. Randié demonstrated that his index is well
correlated with a variety of physico-chemical properties of alcanes. The index x became one
of the most popular molecular deseriptors, see [1,4-5,10-12]. The zeroth-order Randié index
x%(G) of G defined by Kier and Hall [8] is

1

0
Le)= Y —
veV(G) dy

Pavlovié {12] gave the unique graph with the largest value of x%(G). In [6], Li el al. in-
vestigated the same problem for the topological index M;(G), a Zagreb index [13], which is
defined as
M(@G) = Y. dL
veV(G)

By observing the common appearance of the Randié¢ index and the Zagreb index, we can
formulate four generalized topological indices for a (molecular) graph G as follows:
([l am(G)= ¥ d7,
veV(G)
(i) e-m(G) = ¥ ™,
w€V(G)

(i) oym(@) = T &/™,
weV(G)

() aoym(@ = T dy'™,
veV(G)
where m is a positive integer, usually, at least 2. One can see that if we take m = 2, the
above index (i) is the Zagreb index M, and the above index (iv) is the zeroth-order Randié
index x°(G). It is easy to see that there is a unified formulation for the four indices, that is,

am(G) = E( ]d{,", in which m can be any integers (including negative integers) or any of
weV(G

the fractions ,1: for any nonzero integers k. However, because sometimes they present different
properties, we have Lo distinguish them in discussions. So, we prefer to use different notations
for the four indices. In this paper, we shall investigate the above four topological indices for
special graphs of chemical interest—trees. We characterize all trees with the smallest, the
second and third smallest values of the four topological indices. The same is done for all
trees with the largest, the sccond and third largest values of these indices.

Throughout this paper, we consider finite and simple graphs only. We denote, respectively,
by S, and P, the star and path with n vertices. By Spm we denote the graph obtained from
Snsn and S,y by identifying an end-vertex of Sy, with the center of Sy, For a graph
G, we denote by D(G) the degree sequence of G, that is, if the degree sequence of G is
dy,da, - ,dn, then D(G) = [dy,da,+-+,dyn). Purthermore, D(G) = [z{!, 252, -, zf'] means
that G has e; vertices of degree z;, where 1 = 1,2,---,¢. Denote by 7 the sct of trees T
with n vertices and D(T) = [3,2"7%,1%] and by T2 the set of trees T with n vertices and
D(T) = [3%,2%75,14]. Undefined notations and terminology will conform to those in [2].

2 The Extremal Values for the Four Indices of Trees

For convenience, in the sequel we always assume that G is a graph with D(G) = [dy,dy, -+, dy)
such that d; > d; + 2, and G' is a graph obtained from G by replacing the pair (d;, d;) by the
pair (ﬂ!g*l, dj '171), that is, D(G’) = [til,dz, coydioy,di—1,digy, ,dj_l,dj-l'l,dj+2, s ,dn1-



Lemma 1. For two graphs G and G’, we have
(i) am(G) > am(G");
(ii) @—n(G) > a-m(G');
(iii)allm(G) < O’1,‘n\(G‘);
(iv) a_im(G) > a_ym(G").
Proof. (i) Note that
& +dP = (di = 1)™ — (d; + 1)
= (di= L+ 1)™ 4 {dj o+ 1= 1)™ = (d; — 1)™ = (d -+ 1)™
=T, ( o) (- R (- DFE + ).

So, by d; > d;j + 2, we have

anfG) ~ (G = i ( T ) ((di = 1)™* + (=1)¥(d; + 1)™*) > 0.
k=1

(i) is thus proved.
(ii) By di > d; + 2, we have

1 1 1 1
T A C P L s ) o
- {d=lmedn | (Ga)mdn
Ve A T

=5 m ] E__ 1
_k’g:;l & (d“"—_jcd,-mm +(-1) Tﬁ_d,-(d.-—l)ﬂ) > 0.

This implies (ii).
(iii) By d; > d; + 2, it follows that
VE+ YT - VET- GTT
T T VAT pr el

<0

This implies (iii).
(iv) Similar to (iii), for d; > d; + 2 we have

1 1 1 1
v t w/d; 'W.-l-l *fd; +1

= T + L > 0.
VEVETLL, V@0 /g /G T, R e

So, (iv) is implied. O

From Lemma 1, one can see that there are many topological indices f(G) such that
f(G) > f{G") or f(G) < f(G"). In the following, we shall investigate the extremal trees with
respect to a topological index f(G) such that f(G) > f(G') or f(G) < f(G").

Theorem 1. Let f(&) be a topological index such that f(G) > f(G'). Then for a tree T
with n vertices, we have

(i) f(T) attains the largest value if and only if T' = S,,, f(T) attains the sccond largest

value if and only if T = Sp_3; and f(T) attains the third largest value if and only if
T = Sa_qp-
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(ii) f£(T) attains the smallest value if and only if T = P, f(T) attains the second smallest
value if and only if T € 7" and f(T') attains the third smallest value if and only if 7' € 72.

Proof. (i) Let T be a tree with n vertices and D(T) = [z1,Z2," -, Zn). Note that if T % §,,
then there must be a pair (z;,z;) such that n — 2 > z; > z; > 2. We construct a graph
Ty by replacing the pair (z;,z;) by the pair (z; + 1,z; — 1). According to the condition of
the theorem, we take G = T} and G' = T. Thus, it is not hard to see that f(T}) > f(T).
Repeating the above operation until there is no pair (z;, ;) such that n -2 > 2; > z; > 2,
we can obtain a tree sequence T, T\,T%,--,Ts—1, T such that Ty = S, that is, D(T,) =
[n = 1,171, Clearly, f(T) < f(T1) < f(Ta) < --- < f(Ts-1) < f(Sn). So, for any tree
T % Sn, f(T) < £(Sn).

Since S, is obtained from Ty_; by replacing the pair (z;,2;) by the pair (z; +1,z; — 1)
and D(S,) = [n—1,1""!], where n —2 > z; > z; > 2, one can see that D(T,_;) =
[n —2,2,1""?] and T,_; must be Sn,_3;. Similarly, D(T;_,) has the following two cases:
D(TYy) = [n—3,2,2,1""% and D(T2,) = [n - 3,3,1,1*"%]. Note that T2 , = S,,_4 and
D(T?_;) can be obtained by replacing the pair (2,2) of D(T}_,) by the p.ir (3,1). From
the condition of the theorem, we have that f(Sh_42) > f(Pn_44) and f(Sn) > f(Sa-3,.) >
F(Sn-42) > f(Ts=i) > f(T) for all T & {Sn,Sn-3,1,Sn-42} and i > 3. The proof of (i) is
thus complete.

(ii) Let 7" be a tree with n vertices and let its degree sequence be yi,%2,**,yn. It is
not difficult to see that if " % Py, then there must be a pair (y;,y;) such that y; > y; + 2.
We construct a graph Ty by replacing the pair (yi,y;) by the pair (y; — 1,y; + 1). From the
condition of the theorem, we have G = T' and G' = T}. So, f(T") > f(T]). Repeating the
above operation until there is no pair (y;,y;) such that y; — y; > 2 for all 1, j, we can obtain
a tree sequence T', T, T4,--- ,Ti_,, T, such that T; = P,. Clearly, f(T') > f(T}) > f(T3) >
o> f(Ty1) > f(Py)- So, for any tree T' # Py, f(T') > f(Fa)-

Note that D(P,) = [2"~2,1?] and P, is obtained from T_, by replacing the pair (y;,y;)
by the pair (y; — 1,y; + 1), where y; > yj + 2. It is easy to see that D(T;_)) = [3,2"%,1%).
So, Ti_; € T'. Similarly, D(T!_,) has the following cases: D(Ti,) = [3,3,2"% 1],
or D(T2,) = [4,2,2"7%,1%). By using the pair (3,3) to replace the pair (4,2), we ob-
tain (3,3,2"7% 1Y) from {4,2,2"75,11. So, from the condition of the theorem we have
F(T2,) > f(TiL,). Since TiL, € T2, we have f(Pn) < f(T1) < f(T?} < f(T)_;) < f(T") for
all T g {P.}UT'UT? and i > 3, where T! € 7! and T? € T2. This completes the proof
of (ii). D

Similar to the proof of Theorem 1, we can show

Theorem 2. Let f(G) be a topological index such that f(G) < f(G"). Then for a tree T'
with n vertices, we have

(i) f(T') attains the smallest value if and only if T = S, f(T) attains the second smallest
value if and only if T = 5,,_3, and f(T) attains the third smallest value if and only if
T 2= Sn-g2

(ii) f(T') attains the largest value if and only if T = P,, f(T') attains the second largest
value if and only if T € 7" and f(T') attains the third largest value if and only if T € T2

From Lemma 1, one can see that the topological indices am(G), @—m(G) and a_,;m(G)
have the property that f(G) > f(G'); whereas @,/ (G) has the property that f(G) < f(G').
So, from Theorems 1 and 2 it is not hard to get the smallest, the second and third smallest
values of the above four topological indices, as well as the largest, the second and third largest
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values of these indices. In the following, we give the smallest and the largest values and omit
other values.

Corollary 1. For a tree T with n vertices, we have

H(n-22"+2< an(T)<n-1)"+n-1,

(i) (n~-22"+2<ap(T)<(n-1)"™+n-1,

(1i)(n = 2)2/™ 4.2 2 ayp(T) 2 (n - V™ 0 -1,

(iv) (n =227V 4 2 S o y(T) S (=)™ -1
and for each of the inequalities, the equality on the left-hand side holds if and only if T" = P,;
whereas the equality on the right-hand side holds if and only if T = 5.

Theorem 3. Let f(G) be a topological index such that f(G) > f(G’). Then for a chemical
tree 7" with n vertices and n — 2 = 3a +1,i = 0,1, 2, we have

(i) f(T) attains the largest value if and only if D(T) = [4°,i + 1,1"72" 1],

(ii) F(T) attains the second largest value if and only if D(T) = [4°71,3,2,1"7%7!] for
i=1, D(T) = [42",32,1" %! for i = 2 and D(T) = [4%,22,1"7972] for i = 3,
where a chemical tree is such a tree that has no vertex with degree greater than 4 .

Proof. (i) Let T be a chemical tree with n vertices and let its degree sequence be
21,22, 2. Assume that 4 > z; > z; > 2. We construct the graph Ty by replacing
the pair (2;,z;) by the pair (z; + 1,z; — 1). According to the condition of the theorem, we
have G = T, and G' = T. Thus, it is not hard to see that f(T}) > f(T). Repeating the
above operation until there is no pair (2, 2;) such that 3 > z; > z; > 2, we can obtain a tree
sequence T, Ty, T3,--+, Ts—1,Ts. So, f(T) < f(Th) < f(T2) < -+ < f(Ts-y) < f(Ts) and T
has some vertices of degree 4 or some vertices of degree 1 except for at most one vertex of
degree 2 or degree 3. We denote, respectively, by a, b, ¢ and d the number of the vertices of
degrees 4,3,2 and 1. Then we have

4da+3b+2c+d = 2n-2.
at+b+c+d = n
b+c < L

From the above equations, we have

(1) a= 'lg-z,b=f.=0 and d =n —a if n — 2 = 0(mod3);

(a=23b=0c=1landd=n—-a-1ifn—2=1(mod3);

(3)0:9-3:5&: l,e=0andd=n-a-1if n - 2= 2(mod3).

This completes the proof of ().

(ii) For i = 3, from the proof of (i) we know that D(Ty) = [4%,3,1772"1]. Since D(Ty) is
obtained from T;_y by replacing the pair (z;,x;) by the pair (z; + 1,z; = 1), where 3 > z; >
z; > 2, one can see that D(Ts_,) has the following two cases: D(T}_,) = [42,2¢, 17777
and D(T% ) = [4°7,3%,2,1"%?]. Note that D(T]_,) can be obtained by replacing the
pair (3,3) of D(T2 ) by the pair (4,2). From the condition of the theorem, we have that
F(TLy) > F(TZ,). Yor i = 1,2, by a similar argument to the case i = 3, the proof of (ii) can
be complete. O

Similarly, we have

Theorem 4. Let f(G) be a topological index such that f(G) < f(G'). Then for a chemical
tree T with n vertices and n — 2 = 3a +1,i = 0, 1,2, we have

(i) f(T) attains the smallest value if and only if D(T) = [4%,i + 1,121,
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(ii) f(T) attains the sccond smallest value if and only if D(T) = [4°71,3,2,1""%"!] for
i=1, D(T) = [4°"1,3%,1"°!) for i = 2 and D(T) = [4%,22,1""%"2] for i = 3.

From Lemma 1 and Theorems 3 and 4, we have

Corollary 2. For a chemical tree T with n vertices and n — 2 = 3a + 1,1 = 0, 1,2, we have
(iam(T)<ax4"+(i+1)"+n—-1-a,
(ii) m(T) e x4™ +(i+1)™ +n-1-a,
(iia/m(T) 2 a x AV™ 4 (i + 1)V 4 n - 1 — ¢,
(iv) a_yym(T) S ax 47Um L (14 1) Ym pn ],
and for each of the inequalities, the equality holds if and only if T has a vertices of degree 4,
one vertex of degree 1 + 1 and n — a — 1 vertices of degree 1.
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