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Abstract

We introduce random graphs as a concept to model molecules. For any ran-
dom graph model we show that a class of distance-based topological descriptors
(or indices) may be strongly correlated, which makes structure-activity relationship
studies more difficult. We show that centering results in uncorrelated descriptors if
vertex-properties are independent of the graph. A simulation with chemical struc-
tures confirms our findings.

1 Introduction

For the needs of computational chemistry a variety of descriptors has been developed. A
descriptor is a function or an algorithm that accepts a representation of a molecule or
an atom as input and outputs some data (real numbers, bitstrings, vectors). Descriptors
are used in computational chemistry for tasks such as similarity analysis, clustering, and
quantitative structure-activity relationship (QSAR) studies [1], a method to relate the
structure of a molecule to a specific biological property. Both descriptors for planar
(2D) and for spatial (3D) molecule representations are utilized. While a 3D-descriptor
usually changes its values if the molecule shifts to a different spatial conformation, a
2D-descriptor does not do so, which can be an advantage if the final conformation is not
known in advance. Topological descriptors or indices [2] are 2D-descriptors computed
from the molecular graph, usually without hydrogen atoms (hydrogen-suppressed-graph).
Though these descriptors were the first to be used by chemists, they are still useful
in QSAR and, owing to their minimal computational requirements, to analyze virtual
combinatorial libraries or large chemical databascs.
[n this paper, we represent the molecular structure as a graph G and properties of vertices
or atoms as real values assigned to the vertices of G. In applications, these may be physico-
- chemical properties of atoms or graph-theoretical properties of vertices. The descriptors
we analyze here are of the formn
1
Ag = 5 Z L (1)
T (u)EDy
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whereby Dy = {(u,v) | d(u,v) = d} is the set of pairs of vertices (u,v) having distance d
(length of shortest path from u to v) and z, a real-value assigned to vertex u.

As a distance-based function, Ay is invariant for different labellings of G| hence, (1) can
be defined as the descriptor of the molecule corresponding to G.

Many common descriptors are of the form (1). Let 2, = deg(u)®, whereby deg(u) is the
degree (valence) of vertex u. For a = 1, (1) is called Zagreb group inder [3]. Randic [4]
considered the cases @ = —1 and @ = —1/2; especially, in the latter case, (1) is called
Randic connectivity indez, which is one of the most often applied topological indices in
QSAR-studies. The Randic index measures the branching of the carbon skeleton of a
molecule. If z, is some physico-chemical property of atom wu, (1) is called autocorrelation
descriptor [5]. Devillers (6, 7] and Gasteiger (8, 9] have used this descriptor for toxicological
and pharmaceutical research, and for clustering and similarity analysis of chemical data.
To analyze correlation properties of descriptor (1), we model molecules as random graphs
(10, 11] that have a random variable associated with each vertex. While randomly gen-
erated were already applied to computational chemistry [12, 13], the concept of random
graphs has for long only been used in mathematics and theoretical physics.

In the most general case, a random graph can be

defined as a probability distribution on a set of (5
graphs, or, equivalently, as a random element map-
ping to a set of graphs. Probability space Graph

In (14], we used graphs on n vertices whose edges are selected independently with a
probability p, so that the expected number of edges equals n. For this random graph
model G,,, and distance d = 1 we provided explicit formulas for the correlation of
descriptor (1).

In this paper, we use a distribution-free model that does not make any assumptions on
the random graphs. That is, the results we derive are true for any probability distribution
on any set of graphs. Especially, this model is valid for all chemical structures.

To model properties of atoms, we associate with each vertexv € V' = {1,..., N} arandom
variable X,. Hence, the function (1) becomes a random variable

1 . . .
AX) =5 T XX, X=(X,...,Xp)

(u.v)€Dy

and Dy is now a random set describing the random graph. In particular, D, C V? is the
8 g

random set of edges. X is the vector of properties X, attributed to atom u, u = 1,..., N.
The number of vertices N is an arbitrarily distributed random variable.
For the vertex properties, we assume that for every fixed N, X,,..., X'y are independent

with same expectation E(X) and independent of Dy, i.e. independent of the graphical
structure.

In chemistry, vertex properties are more or less dependent on each other and on the graph-
ical structure. However, we show that even with these idealistic assumptions, descriptors
may be strongly correlated.

2 Analysis with random graphs

Let N be any integer-valued random variable and X,..., Xy, Y),..., Yy be independent
and independent of Dy for every fixed N. Also, let E(X) = E(X,), E(Y) = E(Y)) be the
respective expectations. By 1 we denote the constant vector (1,...,1).
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In section 4 we prove for all d > 0

lim Aq(X), A4(1)) =11
E(_\.)Aiwﬂ( a(X), Ag(1))
and
lim p (Ag(X), A(Y)) =1

E(X),E()r£o00 (Aa(X), Aa(X))
Remember that a correlation p = 1 means that the two random variables are linearly
dependent. These results show that A,(X), A4(Y), and |D,| = 24,4(1) are strongly
correlated for large values of [F(X)| and |E(Y)| even if properties X and Y are inde-
pendent. This correlation converges rapidly. In [14], we show for random graph model
Grp, that p(A(X), A;(1)) > 0.8 for [E(.X)| > 4 if the edge probability p, is chosen in
a way such that the expected number of edges equals the number of vertices. If X is a
physico-chemical property, then 44(X) contains almost only structural information, all
physico-chemical information on the vertices is lost as |E(X')| tends versus infinite.
In contrast, descriptors are uncorrelated if vertex properties are centered, i.e. if E(X') = 0.
In section 3 we prove that for £(.X') = 0 holds:

1. Aq (X) and Ay, (X) are uncorrelated for different distances d;, d,.

2. Aq (X) and A4 (Y) are uncorrelated for all distances dy,d, > 0. If additionally
Var(X) =1 and

M=

Ao(X) = 3(X2 - 1) = A(X) - N (2)

u=1

15 used instead of A4¢(X) then this is true for all d;,d, > 0.

The non-mathematical reader may skip the following sections 3 and 4.

3 The case F(X) =0

For simplicity, we omit factor % in (1) in the following calculations.

As usual, we denote by L, = {\' | E(|.X?]) < oo} the set of p-times integrable random
variables. Let Dy be a random set of edges, NV the number of vertices of the graph defined
by D, (without isolated vertices), and X a random vector having the property

(ie) X = (Xy,..., Xy) and all X, € L, are independent and independent of D, with
E(N,) =FE(X) (u=1,...,N)

For case of notation, we write (') instead of £(X,). Let

1 if (u,v) € Dy

H@wmen,) = { 0 else

denote the indicator function of {(w,v) € Dy}, d > 0. Then,

N
AdX) = NNy Humenyy

=1
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and

Mx

E(A«X)) = Y E(A«XIN =n)) P(N =n)

= Z E( Z XoXy Yumengy | N = n) P(N =n)
n=t \wo=1

(Remember that the conditional expectation E(X|A) for a randomn variable X and an
event A is defined as ﬁ [ XdP, which requires to multiply the sum by P(N =n).)
If d > 0, this equals

XS E< S wmenyy | N = n) P(N =n) (3)
=l

u,u=1

since Xy, X, are independent for u # v.
Let Y be a random vector with property (iie) and Xk, Y; be independent for k # [, but
not necessarily independent of X. This includes the case X=Y. Then

E(Ag, (X)Ag, (Y Z E(Ag, (X)Ag,(Y) | N = n) P(N = n)

1l
™8

E( 2 KXY ey, ) Hesens,) | N = ") P(N =n) (4)

1 u,v,1,j=1

g

To determine Cov(Aq, (X), Ag,(Y)) for distances dy,d; > 0 and E(X) = 0 we consider
the following cases:

1. d) = d» = 0 and X4, Y; are independent for all k, . In this case,

E(A(X)|IN =n) P(N =n) = E(i XZ) =nE(X?)

u=1
and
E(A4g(X)Ao(Y)|IN =n) P(N =n) = ( Z X2y “> =n*E(X)E(QY?)
u,v=1
Hence,
Cov(Ap(X), / Z n*E(X “YP(N = n)
n=1
=S nE(XH)P(N =n)- Y nEQ?)P(N = n)
n=1 n=1

= E(XY)E(Y))E(N?) - E(X)E(N)E(Y?)E(N)
= E(X)E(Y*) Var(N) >0
il X.Y #£0, N # ¢ for a constant c.
If however we apply modification (2) then

Cov(Ag(X), Ao(Y)) = E(X? = )E(V?) Var(N) = 0

il E(X?) = 1 for all w. This condition is equivalent to Var(X) = 1 in the case
E(N) =0, 1e if X is centered and normalized.
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2.dy > 0,dy > 0,d, # dy and XY € L,. Then, without loss of generalization, X, is
independent of the other variables, hence

B(Aa (X)Aq,(Y) [ N =) =

E(X) E( Y XYY Nameny) Honepa) | N = n) =0

u,v,i,j=1
The second factor is always finite by Cauchy-Schwarz’-Inequality and XY € L,. By
(3), E(Aq, (X)) = 0; by (4), E(Aq, (X)Ag,(Y)) = 0, hence Cou(A4y, (X), 44, (Y)) =
0.

3.d =0,dy>0,XY € Ly and E(X2) =1 for all u. In this case, it follows as above
that :
Cov(An(X), 44,(Y)) =0

4. dy = dy > 0 and X, Y, are independent for all k # [. Then X, is independent of
the other variables and Cov(A4y, (X), 44,(Y)) = 0.

4 The case F(X),E(Y) #0

Let N >0,d >0, N € L, and let X, Y be independent random vectors having property
(iie).
By (3), ,

E(Aq(X)) = E(X)” E(A4(1)) ()
By (4), )

E(AdX)AdY)) = E(X)’ E(Y)? E(44(1)?)
Hence, by (5),
Cov(A4(X), Ad(Y)) = E(X)? E(Y)* Cou(Ag(1), Aa(1))

= E(X)* E(Y)? Var(44(1)) (6)

To determine E(A44(X)?), consider

E(AqX)|N = n)

= E( S XuNu XX Nwena Hogeny | N = ”) (7)

wu,ig=1

We dissect the sum according to [{u,v}N{z.j}| = k for k = 0, 1,2. For symmetry reasons.
these cases each have same expectation. By independence and linearity (7) thus becomes

n

2 PR
- (())E( 2 NW NN Lnen Napena | N = ”)

wwvag=1

(u.w}n{i)=0

wwia=l

2 L . 2
+‘-’(1>E( > NLNIN e g Lmengy | N = “)

u#t
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2 B ccsovess
+2<9>E( ST OXIXZ Yumengy | N = n)

uv=1
=EX) Y E(Lwmena lunena | N =n)
(u)niigy=0

+4E(X2) E()()2 i E(l((u'u)egd)‘1((,‘,,)€Dd) [ N = n)

u,vi

u#i

+2E(X'-’)2 i E(l((u)u)EDd) I N = n)

u,v=1
It follows that

BAXVIN =) , g (1IN =n) (B(X) = £o0)

E(X)*
converges monotonously and we may apply the monotonous convergence theorem, giving
E(A«(X)?) 2 -
5 E(A41)?) (E(X) = +o0)
By (3), Var (A 5)
ar(Aq ;
—ET(/\T — Var(A4(1)) (E(X) — £o0)

Finally, for the correlation follows by (6)

E(,\l;Timp (Aa(X), 4a(1)) =1
and

E(X),ll)](r)]})—vioop (Aa(X), Aq(Y)) =1

With a very similar calculation it can be seen that these results also hold for d = 0.

5 Simulation with chemical structures

To validate our results, we carried out a simulation on 1128 randomly selected struc-
tures from the Available Chemicals Directory for a normally distributed property X
and the constant Y = (1,1,...,1). The figures below show the correlation matrices
p((Ao(X), .. ... 19(X)), (Ao(Y), ..., Ag(Y))) with X ~ N (1,1) ! and ¥V = 1 (figure 1).
and X ~ N (0.1) and Y = 1 (figure 2), respectively. In figure 2 we also applied modifica-
tion (2) for ¢ = 0. Shades represent absolute values of the matrix entries, ranging from
0.0 (white) to 1.0 (black). Note that in both charts matrix position (1,1) is in the lower
left corner.

Figure 1 shows considerable correlation among A4(X) (d = 0,...,9) (lower left quadrant)
and among Ag(Y) (d = 0,...,9) (upper right quadrant) as well as between Ay (X), Ay, (Y)
(dy,dy = 0,....9) (upper left and lower right quadrants). As predicted, no correlation
is present in figure 2 among A4(X) and between Ay, (X), A4, (Y) since X is centered
(E(X) =0).

"normal distribuntion with mean 1 and variance 1
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0 X 90 Y 9

Figure 1: Correlation matrix for X ~ Figure 2: Correlation matrix for X ~

N(1,1),Y =1 N(0,1),Y =1

6 Discussion

We proved that descriptors Ay4(X) and A4(Y) or A4(1) are strongly correlated for large
values of |E(X)| and |E(Y)|. Correlated descriptors complicate the statistical analysis of
the generated data and make QSAR studies very difficult as there is no clear distinction
of contributions from property X and property Y.

Principal component analysis (PCA) is a method from multivariate statistics to obtain
uncorrelated principal components from correlated data and to reduce the number of
dimensions. However, principal components are linear combinations of all components.
Thus, applying PCA to strongly correlated descriptors results in essentially one linear
combination (the first principal component) of these descriptors, which is of little use for
QSAR.

We proved that descriptors A4(X) and A4(Y) or 44(1) are uncorrelated for E(X) = 0.
This does not mean that centering properties (the step X' — X — X whereby .Y is the
mean of X) always yields uncorrelated descriptors: since the assumption that X, ..., Xy
are independent and independent of the graphical structure does not hold for chemical
descriptors, we cannot expect them to become uncorrelated. However, it is reasonable to
assume that centering decreases correlations.
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