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In the framework of the Hueckel molecular orbital (HMO) model, an analytical
method has been elaborated which enables calculation of energy levels and wave
functions for polymethine dye molecules with arbitrary end groups characterized by
two effective additive parameters. The method represents a generalization of the
known long-chain approximation (LCA) manipulating only frontier t-MOs and

yields analytical relations for molecular characteristics based on all occupied dye n-
MOs
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In spite of the fact that the HMO approximation does not account for interelectronic
interactions exphcitly, the theory of polymethine dyes is greatly indebted to it, as this model
affords a qualitative insight into the effects caused on the chemical and optical behavior of a
dye I';-(CH)\-T"; by its end groups Iy and I, [1] On the other hand, the HMO method, as
such, is not adequate for the analytical treatment of the structure-property relationships

however simplistic this approach is. it offers only numerical potentialities for finding the energy
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spectrum and molecular wave functions. In a search for an appropriate toolkit which would
enable one to establish analytical relationships between the integral properties of a dye
molecule and its end-group characteristics, a number of approximations have been developed,
as for instance, Dewar’s perturbation theory [2,3] or the long-chain approximation (LCA) [4-
6]

The latter implies that the polymethine chain consisting of N methine units is long
enough, so that the frontier energy levels lie very close to the Fermi level, at a small energy
distance of the order (N+1+L)"' and the frontier MOs are found by expanding the
corresponding Hueckel-based expressions in this small parameter. The quantity L = [, + L,
entering in it is the sum of the effective lengths of the end fragments, they are easy to calculate
for an arbitrary specific end group, as also are other significant additive end-group parameters,
electron donor abilities [5,6]. As the energy levels of the frontier MOs exert a paramount
influence on the wavelength of the first electron transition and the reactivity of a dye (in terms
of its donor-acceptor properties), these all- important characteristics prove to be expressed, in
a very straightforward manner, in terms of the additive effective end-group parameters

Besides the properties governed by the frontier MOs, there exist a number of essential
molecular characteristics which cannot be derived without the knowledge on the entire energy
spectrum of the system concerned. Among them are atomic charges and bond orders [1], linear
and nonlinear electronic polarizabilities [7,8] etc (The treatment of the polarizabilities in the
framework of LCA was restricted to the two-level model) [9] In the present study, we
generalize LCA so as to calculate not only frontier MOs but also all the MOs mainly localized
on the polymethine chain (i.e excluding those localized completely on the end groups) For a
sufficiently long polymethine chain, it is these MOs that dictate the properties manifested by a
dye

Unlike LCA, the supposed approach implies that Green’s functions of end groups are
approximated by their “quasi-one-dimensional” analogues (i.e, Green’s functions referring to
periodic chains) Accordingly, the new approximation is called quasi-one-dimensional As is
shown later, it reduces to a particular case, LCA, as far as frontier MOs are concerned, exactly
reproduces the HMO-based spectrum for some specific dye systems, and describes, to a
sufticient accuracy, the quasi-continuous picture of a real spectrum in the general case The

applications of the approach elaborated will be exemplitied by the analytical expressions for the
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alternating contributions to m-atomic charges and nt-bond orders within the polymethine chain
with arbitrary end groups

To derive the quasi-one-dimensional approximation, we make use of the representation
of the exact HMO method formulated in the form which refers to the spectrum z, and the wave

function ¥,(¢) of the unsubstituted chain [6]:

1 N+1 (0
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Here the Coulomb integral of the carbon atom, ac, is put equal to zero, and the absolute
magnitude of the resonance integral for a bond between the neighboring carbon atoms, |fc|, is
taken equal to unity so that the energy spectrum of a dye, z,, and the resonance integrals for
the bonds adjacent to end groups, fc, are measured in units || For an unsubstituted chain,
we have f(8,) = 0 and the Egs. (1) and (2) reduce to simple analytical dependences on the level

number ¢ = 1, 2, ., N. The end groups are characterized by the Hamiltonians /;I written as

in the exact HMO method and by Green's functions (4) calculated for the end groups at the
atoms which are bound to atoms 1 and N of the polymethine chain and designated by

Functions /(8,) specified by Eq. (3) and determined by corresponding Green’s functions enter
in Eq. (1) for the varable 8, The family of solutions of this transcendent equation furnishes the
energy spectrum z, and the wave function ‘¥',(¢) specified by Eq (2), just as would be the case

if the eigenvalues and eigenfunctions of the Hueckel Hamiltonian were found
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The quasi-one-dimensional approximation consists in the linearization of the function

I8y

1,0)=9,-216, )

w

which enables determination of the energy spectrum and the wave function in a very

straightforward way:

(g +¢) ; ;
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Physically, the linearization specified by the above relation implies that real Green's

function (4) is substituted by the approximate expression
,B/Zg,(ﬁ):—cosﬁ+sin900t{(/l +I)9—7r(p/], (8)

which results from equating relations (3) and (5). Such a cotangential behavior of Green's
function is inherent in quasi-one-dimensional systems of locally attached fragments [5]. As a
particular case, at ¢, = 0 and with an integer /, formula (8) yields Green's function for a chain of
identical atoms (the end fragment j is represented by the polymethine chain). That is why, the
linearization performed by Eq (5) is exact in this situation. It is likewise exact for the end

groups represented by heteroatoms with ,B,ZC =1 and @ = *1, as is the case for nitrogen and

boron atoms). Indeed, substituting of Green's function for a heteroatom, g,(6) = -(2cosf+a,)",
in Eq (3) leads to a linear dependence in Eq. (5) at @, = 0 (a trivial instance when the
polymethine chain is lengthened by a single methine unit) and at a,= 1 For the latter case, the
parameters ¢, and /, take on the following values: ¢, =/, = 1/2 for a nitrogen atom (@, = -1) and

@ =1,1,=1/2 tor aboron atom (& = 1)
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To illustrate the accuracy of the linearization afforded by Eq. (5), compare the exact
(HMO-provided) and approximately calculated (by the model proposed) dependences f,(6) for

the end atom with the parameters o, = -1/2 and ,Blzc= 1/2 (see curves | and 2 in Fig. 1) These

values of the atomic parameters determine the effective end-group (end-atom) parameters ¢, =
1, [, = 3/2 (the linearization coeflicients in Eq. (5)). As seen from Fig 1, the approximate
linear dependence specified by Eq. (5) is tangential to the exact function at the central point 8
= /2 corresponding to the position of the Fermi level of the dye molecule. Therefore, the
approximation is particularly efficient in the vicinity of this significant peculiar point (it is just
in this region that the LCA operating on the frontier MOs is applicable adequately). The
distinctions in the dependences plotted which become rather material near the interval
boundaries (0 and ) are attributable to the contributions from the MOs localized on the end

groups, since they are not considered within the approximation concerned.

N

fi(0)

o
w

/2 n

-0.5

Fig. 1. The dependence /() based on the exact HMO method (curve 1) and approximated
by Eq. (5) (curve 2) for the end atom with the parametersa, = -1/2 and ,B,ZC =172
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We now turn to the reducibility of the quasi-one-dimensional approximation to LCA
The latter suftices in the vicinity of €= /2. The electron donor ability /-, is given by the value

1(6) at 6= 2
l:/ :f](ﬂ’/z):(D/ 7/_//2’ ©)

and the effective length L, coincides with the linearization coefficient /, in Eq (5). Most
typically, LCA manipulates polymethine chains containing odd numbers N of methine groups.
Then the values of the positive and negative energy levels closest to zero (LUMO and HOMO,
respectively) are defined by the values ¢ = (N+1)/2 and ¢ = (N-1)/2. Substitution of relation (9)
into Eqs. (1), (6), and (7) yields the LUMO value:

. nl 2n I
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2 /4 rF
Y (LUMO)=,|———sin| —n+———(n+ - F 11
o ) N+l1+L [z N+1+L( h)-r#, (n

The corresponding expressions for HOMO result from relations (10) and (11) by replacing F -
1 for /. Relations (10) and (11) just represent the pivotal outcomes of LCA [6] (A small term
containing L, in Eq. (11) which provides the wave function symmetry with respect to the end
group interchange was neglected before). The approximate equality in relation (10) holds due
to the smallness of the quantity (N+1+L)" Formula (10) elucidates the physical meaning of the
electron donor ability / (varying from 0 to 1): this parameter characterizes the HOMO and
LUMO positions relative to the Fermi level. The reciprocal of the gap between the two frontier
MOs gives the wavelength of the first electronic transition and proves to be proportional to the
factor (N+1+1.)

Comparing to LCA, the quasi-one-dimensional approximation determined by Eqs (6)
and (7) has the advantage that it enables determination of various molecular characteristics
contributed by all occupied MOs Owing to the simple form of wave function (7), the MO
contributions can be summed so that the result is expressible analytically To exemplify this

statement, we present the formulae of the quasi-one-dimensional approximation which
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determine the alternating contributions to atomic charges, p,"", and bond orders, b,
(nonalternating contributions to these quantities arise from the MOs localized on end groups

and hence being beyond the limits of present approximation)

(i) _ () sin[2ﬂ F —27rF(n+Ll)/(N+l+1,)]
o= (1) (N+l+L)sin[;rF(n+L,)/(N+1+L)] (12)

) - (- 1y cos2z Fy =2z F(n+ L, +1/2)/(N +1+ L)] 13
" (N +1+L)sin[z F(n+ L, +1/2)/(N +1+ L)] (13)

The above relationships are valid for even V. Their counterparts for odd N are obtainable from
Eqs. (12) and (13) by the substitution of /- 1/2 for F. The comparison with the results
provided by the exact HMO method evidences for a high accuracy of the quasi-one-

dimensional approximation for a variety of end groups [10].

Acknowledgments
This work was financially supported by the China Petroleum Corporation and National Science
Council of Taiwan. M. L. D. and V. MR also thankfully acknowledge the hospitality of the

Institute of Atomic and Molecular Sciences, Academia Sinica



78

References

[1] M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, VCH
Publishers, Inc., New York, 1995
[2]M ] S Dewar, J. Am. Chem. Soc 74 (1952) 3341, 3345, 3350, 3353, 3355, 3357.
[3] M. J. S Dewar and R C. Dougherty, The PMO Theory of Organic Chemistry, Plenum
Press, New York, 1975.
[4]G. G. Dyadyusha and A. D. Kachkovskii, Ukr. Khim. Zh. 44 (1978) 948 [Sov. Prog. Chem.
44, No. 9 (1978) 50]
[5] G. G. Dyadyusha, V. M. Rozenbaum and M. L Dekhtyar, Zh. Eksp. Theor Fiz. 100
(1991) 1051 [Sov. Phys. JETP 73 (1991) 581].
[6] M. L. Dekhtyar, Dyes & Pigm. 28 (1995) 261.
[7] D. R Kanis, M. A. Ratner and T. J. Marx, Chem. Rev. 94 (1994) 195
[8] J-L. Bredas, C. Adant, P. Tackx, A. Persoons and B. M. Pierce, Chem Rev. 94 (1994)
243
[91JM L Dekhtyar and V. M. Rozenbaum, J. Phys. Chem. 99 (1995) 11656, A 101 (1997)
809
[10]M Dekhtyar and W. Rettig, Phys. Chem. Chem. Phys. 3 (2001) 1602.



