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Abstract

Many graph parameters are of interest for both chemists and mathematicians, especially
when they are related to the degrees, the distances, or the eigenvalues of the adjacency matrix
of the graph. Fajtlowicz developed a program called Graffiti which proposes conjectures obtained
by comparing such parameters. We prove or disprove some of these conjectures and give a short

survey on general results concerning one of them, the Randi¢ index.

1. Introduction

Graphs are mathematical objects which can modelize various kinds of problems. In chemistry,
they are used to represent molecular structures. In particular it has been observed that there is
a relationship between the value of some graph parameters and physical or chemical properties
of the molecule represented by the graph. For instance, Wiener (14, 15] and later Randi¢ [12]
observed a correlation between the boiling point of some hydrocarbons and the geometrical
structure of their molecule, more precisely their “branching degree” (with the intuitive meaning
that a star is more branched than a path). This led them to propose a graph parameter (the
sumn of all the distances, also called Wiener index, or the branching index, later called Randié
index), as a measure of the branching degree of a tree. These parameters, as many others, are
also of interest for mathematicians who extend their study from chemical graphs to all graphs
(sce for instance [4, 7, 11]). As the Wiener index or the Randié index, most of them are related

to the degrees or the distances in the graph.



From 1984, Fajtlowicz developed an automated system named Graffiti. This program makes
conjectures by comparing simple functions of graph parameters. They are tested on a data basis
consisting of some families of graphs. When a new family disproves a conjecture, it is added
to the data basis. Among the conjectures having successfully passed the test, those which are
trivial consequences of other ones are eliminated. The remaining ones constitute a list called
Written on the Wall which can be found in [9]. Note that for material reasons explained in the
introduction of [9], some conjectures of the list, among them some conjectures which are proved
or disproved in sections 2 and 3, do not appear in the last version. They can be found in earlier
versions of Written on the Wall.

Many papers directly or undirectly related to Graffiti conjectures have already been published
(see a bibliography in [9]). In Sections 2 and 3 of this paper we respectively prove or disprove
some of them. In Section 4, specially devoted to the Randi¢ index, we resume some known

results and open problems concerning this parameter.

We first give below some definitions and notation related to a vector or to a graph.

Let A = (aj,...,a,) be a vector with real coordinates a;,. The sum of A is equal to a; +
a2 + - + a, and its mean is sum(A)/n. The deviation of A is the square root of its variance

where variance(A) = ( Z (a; —mean(A))?)/n. A classical probability formula is variance(A) =
1<i<n

mean(A?) — (mean(A))?. The length of A is equal to | Z a?. The inverse of A is the sum of
<i<

the inverses of the non-zero coordinates. The range of k;;the number of distinct coordinates.

The scope of A is the difference between the largest coordinate and the smallest one. A mode

of A is a coordinate which occurs most often and the mazimal frequency is the frequency of any

mode. When a sentence contains the word “mode”, it is necessary to specify if we consider a

particular mode or any mode of A. All these parameters related to the vector A only depend

on the collection of the coordinates of A and not on their order.

Let G = (V,E) be a simple undirected connected graph where V is the set of vertices and
E the set of edges. The order n of G is the cardinality of V', its size m is the cardinality of
E. The neighbourhood of a vertex ¢ is N(i) = {7 € V: the edge 17 is in E}. The complement
G of G has the same vertex set V as G and ij an edge of G if and only if it is not an edge of
G. An independent set of G is a set of mutually non-adjacent vertices and a clique is a set of

mutually adjacent vertices. The maximum cardinalities of an independent set and of a clique



are respectively denoted by a and w. Note that w(G) = a(G). The chromatic number x of G
is the smallest number of classes in a partition of V into independent sets. A matching of G is
a set of mutually non-adjacent edges. The matching number v is the size of a largest matching.
A perfect matching of G is a matching spanning V.

The degree d(i) or d; of a vertex i is the number of neighbours of 7. It can be easily seen that
in any graph

Sdi=2m and STd = (di+d,) (1).
3% ieV iy€E
The dual degree d*(i) or d; of the vertex i is the mean of the degrees of the neighbours of .
Again it can be seen that in any graph
did} = Z d; for every vertex 1 and Zd,d; = Z (di + d;j) (2).
FEN(I) i€V ijEE

The deficiency df (i) of a vertex is the number of non-edges in the graph induced by the neigh-
bours of i. The temperature of a vertex i is t; = d;/(n—d;). The vector Dual Degree (Deficiency,
Temperature, respectively) of G has for components the n numbers d; (df(i), t; reépectively).
The residue R of a graph G of degree sequence S : dy > da > ... > dyp is the number of zeros
obtained by the iterative process consisting, while d; # 0, in deleting the first term d; of S,
subtracting 1 from the d; following ones and sorting down the new sequence. The depth is the
number n — R of steps in this algorithm. If we stop the process as soon as the sequence only
contains the values 1 and 0 (the number of 1 being then necessarily even), this last sequence is a
vector called the I-Residue. Note that R is equal to the number of 0 of the 1-Residue plus half
its number of 1. If we stop the process at step number |depth/2], the resulting degree sequence
is called the Mid-Degree.

A weight is often defined on the edges of a graph in relation to the degrees of the endvertices
of the edges. The most usual ones are the inverse of the arithmetic mean and the inverse
of the geomctric mean of these degrees. This allows to define the Harmonic of G as He =

Z iz ) and its Randi¢ index (also called connectwity indexr by some authors) as
Ty€E

zyel V
The tllstanrr d(l,]) between two vertices ¢ and j is the length of a shortest path joining
i and j. The mean distance ;o of a connected graph G is the average value of the distances

between the n(n — 1) pairs of vertices. For a vertex i, cven(i) is the number of vertices at even



distance (including 0) from ¢ and odd(1) is the number of vertices at odd distance from 7. Clearly,
even(t) + odd(i) = n for every vertex. The vector Even (Odd respectively) has the n numbers
even(i) (odd(i) respectively) as coordinates. The diameter of G is D = max{d(i,7); i,j € V}
and its radius is r = minjeymaxjeyd(s, 7). The girth of a graph is the length of a smallest cycle.

For a labelling 1,...,n , of the vertices of G, the adjacency matriz A of G is the symmetric
matrix with entries a;; = 1 or 0 according as 17 is or is not an edge of G . The eigenvalues of G
are those of A. Note that their set does not depend on the chosen labelling of the vertices. Since
A is real and symmetric these eigenvalues are real numbers which constitute the coordinates of
the vector Eigenvalue. We denote them A\, > --- > ). For any graph of size m > 0, they satisfy

A <0<, D A=0and A >\ for 2<i<n (3).

1<i<n
2. Proved conjectures

It is worth noting that the proofs of several conjectures of this section are corollaries of

stronger results, sometimes involving simpler parameters than the conjecture itself.

Conjecture 546 Every graph G of size m satisfies mean(Deficiency) < m/2 .

This is a corollary of the following result.

Theorem: Let G be a graph of order n and size m and let T be the number of induced subgraphs

of G isomorphic to K3. Then Z df (1) <mm/2—-m - 3T/2 .
eV
Proof Let t; denote the number of triangles containing the vertex i and t;; the number of

triangles containing the edge ij. For any vertex 1, we have df (i) = d—‘(d—.i—:—ll —t; thus Z df (1) =

eV
1/2 Z d? —m - 3T . Since Z d? = Z (di + d;) from (1), and d; +d; < n+t;; for every edge
eV €V 1yeEE
17 of G, we get Z d? < nm + 3T which gives the result. u
eV

Conjecture 140 Every graph G satisfies deviation(Eigenvalue) < He.

Proof Since deviation(Eigenvalue)= \/( A /m— ((Z) M) /n)? = 2m/n, we have to
. 2 m .
prove He > \/2m/n. As any degree is at most n — 1, He = Z — > —— . So the
'chd, + d; n—1
conjecture is true if m/(n-—-1) > 2717/7i Jthatisifmn = 0orm > 2n—4+2/n . Hence it is true
in particular for m = 0, for n = 2 and for m > 2n—3 . Suppose now n > 3 and 1 <m <2 -4 .

This implies 2m/n < 4m/(mn + 4) . For every edge 17 of any graph G we ave d, +d, < + 1.

Therefore He > 2m/(m + 1) > 2/m/(m + 4) > /2m/n . u



Conjecture 288 Every graph G of girth > 5 satisfies mean(Deficiency) < v(G).

Proof Since the girth of G is at least 5, the neighbours of any vertex ¢ form an independent set
and 1 is their only common neighbour. As a consequence we obtain for any vertex i, df(i) =

d;(d; — 1)/2, and thus mean(Deficiency)= (Zd? — 2m)/2n, and Z d;j < n—1. From (1)

i€V JEN(2)
and (2), we get d;d} = Z d; for every vertex ¢ and since Z d? = Z dd;, Z d? <n(n-1).
JEN() eV i€V eV

1
Therefore mean(Deficiency)< 2—(n(n — 1) — 2m) . On the other hand, by Vizing’s Theorem,
n

there exists a partition of the edges of G into at most A(G) + 1 matchings. Hence vG >

A%)Gi : = 71(1’12(—”11 ;)2"[ . The result follows with equality if and only if § = 0. | |

Conjecture 586 Every tree satisfies mean(Deficiency) < max(Dual Degree).
Since in a tree, m = n — 1, this conjecture is a corollary of the following result.

Theorem Every Kj-free graph of maximum dual degree A* satisfies

mean(Deficiency) < %(A’ -1).

Proof As in the previous proof, the neighbourhood of any vertex is independent and

1
mean Deficiency = QL(Z d? - 2m) = 2—(2 did; — 2m). Then we get by (1),
n n

3% eV
) 1
mean Deficiency < —(A* Zd, —2m) = T—n—(A' —-1). |
2n o n

Conjecture 668 Every graph G such that sum(Even) < sum(Odd) satisfies

mean(Even) <n — v .

Proof Since odd(z) + even(z) = n for every vertex of G, the hypothesis is equivalent to
the inequality sum(Even)< n?/2, which implies mean(Even)< n/2. The result follows as

v(G) < n/2 for any graph G. | ]
Conjecture 687 Every graph G such that sum(Even) > sum(Odd) satisfies

mean(Even) > \/m/n

This is a corollary of the following result.



Theorem Every graph G such that sum(Even) > sum(Odd) satisfies

mean(Even) > /m .

Proof In any graph, odd(z) > d(z) for every vertex z, thus implying sum(Odd)> Z d(z) =
eV
2m. If sum(Even) > sum(Odd) then sum(Odd)< n?/2. Hence in this class, m < n?/4 and

mean(Even)> n/2 > /m. | |
Conjecture 272 Every graph satisfies deviation(Temperature) < Max(Odd)/2.

Since max(Odd) > A, this is an obvious corollary of the following result.

Theorem Every graph satisfies deviation(Temperature) < A/2.

Proof Since the variance of any vector remains unchanged by translation,

variance(Temperature)=variance(Temperature —A/2). The coordinates t; of the vector Tem-
perature take their values in the interval [§/(n—¢), A/(n—A)] C [0,A] . Hence the coordinates
(t: — A/2)? of the vector (Temperature—A/2)? take their values in the interval [0,(A/2)?].

Therefore variance(Temperature —A/2) < mean((Temperature — A/2)?) < A?/4 and

deviation(Temperature)= \/variance(Temperature) < A/2. ]
3. Disproved conjectures

All the conjectures which are disproved in this section are refuted by arbitrarily large graphs.

Conjecture 267 In any graph G, /length(Dual Degree) < x(G) + x(G).

Counterexample Let G, be a complete p—partite graph consisting of p independent sets,
each of order p, along with all the edges joining them. This graph is p(p — 1)—regular of

2

order n = p*. The dual degree of each vertex is thus p(p — 1) and length(Dual Degree)=

,/Zlgi%n(d;)Z =p(p - 1)yn = p*(p - 1). Hence /length(Dual Degree) = p\/p — 1. On the
other hand, x(G,) = x(G,) = p. The graph G, disproves Conjecture 267 as soon as p > 5.
Moreover, the difference \/length(Dual Degree) — (x(G) + x(G)) can take arbitrarily large values.

Conjecture 599 In any K;—free graph G, n — a(G) < x(G) + x(G) .
It is known (proof of Conjecture 595) that in any Kj-free graph G, x(G) = n — v(G). Hence

Conjecture 599 is equivalent to the following: in any K3-free graph, v(G) < x(G) + «(G).



Counterexample Let H be any connected cubic graph of order i > 8. From H we construct
another graph G as follows: we replace each vertex z of H by a graph P'(z) isomorphic to
a Petersen graph minus one vertex y and attach in a one-to-one correspondence the edges
of H incident to z to the three neighbours of y in P'(z). An example is shown in Figure 1.
G is connected, triangle-free and cubic of order n = 9h > 4. Hence by Brooks’ theorem,
X(G) < 3. The edges of G coming from those of H form a matching and in every P’ we can
choose three more independent edges. Therefore v(G) = 5. On the other hand «(G) < 4h
since an independent set of G cannot countain more than four vertices of each P’. Hence

v(G) — (x(G) +a(G)) > 9h/2 — (4h + 3) which is positive for h > 6 and can be arbitrarily large.

Figure 1

Conjecture 285 Every graph of girth g > 5 satisfies
inverse(Dual Degree) < maximal frequency(Even).

Counterexample Let us consider the graph G, of order 5p + 15 consisting of p cycles Cy of
vertex sets {z,uywiv}, 1 < 1 < p, one cycle Cg of vertex set {ajasbiazaqby}, one cycle C;
of vertex set = {e) fifoe2f39f4} and two other vertices ¢ and d along with the extra edges
(cbi)iz12 yexy , (rig1)i<i<p-1 » Ypd , (dei)i=12 (see Figure 2). The dual degrees of the
vertices are respectively d*(c) = d*(d) = d*(u;) = 3, d* (b)) = d"(z,) = d*(y;) = d*(e;) = 7/3.

d*(a;) = d*(v,) = d"(w,) = d*(f;) = 5/2 and d*(g) = 2. Hence inverse(Dual Degree)= EX_Z t

3(2p+4) | 2(2p+8) 118p+4 1277
7 e 5 + 7

% = 510 Let us now fix p = 2k even with & > 3. By an easy calculation

we can determine even(z) for cach vertex z. We get even(a;) = even(ry,- 1) = even(yy, ) =
even(d) = 5k + 7, even(b,) = even(uy, 1) = even(e;) = 5k +9, even(c) = even(xy,) = even(yy,) =

even(ug,) = even(g) = 5k + 8. cven(vy) = even(wyi—1) = even(f;) = 5k + 6, and even(vy, ) =



even(wq;) = 5k 4+ 10. Since k& > 3, maximal frequency(Even)=3k + 2 (attained by the value
5k + 8). Therefore inverse(Dual Degree)—maximal frequency(Even)= (103p + 857)/210 > 0,

which disproves Conjecture 285. Moreover this difference can take arbitrarily large values.

Figure 2

Conjecture 395 Every graph with a < 2 satisfies

range(Deficiency) < range(dual Degree).

Counterexample Let us consider the graph G, obtained from a clique K, with vertices labelled
1, 1 <1 < pand two other vertices labelled p+1, p+2 by adding the edges (p+2,p+1), (p+2,1)
and all the edges (i,p + 1)2<i<p-2 - The dual degrees of the vertices are d*(1) = d*(p + 1) =

d'(p+2):p—1,d'(i)=p—%for2§i§p—2,d'@)—l):d'(p):p»%fl‘hus

-

range(Dual Degree)= 3 if p > 5. On the other hand df (1) =p—1, df(2) = --- =df(p - 2) =
3,df(p-1)=df(p) =0, df(p+1) =p—3, df(p+2) =1 and range(Deficiency)=5if p > 7.

Therefore for p > 7, the graph G, is a counterexample to Conjecture 395.
Conjecture 678 Every graph G such that sum(Odd) < sumn(Even) satisfies

mode(Degree) < x(G) + x(G).

Counterexample Let g be an even integer > 10 and let G, be obtained from the complete
bipartite graph K3q 24 by adding the edges of a perfect matching in each of the two classes, A
of order 3q and B of order 2q. This graph has order n = 5¢ and size m = 6¢* + 5¢/2. Since its
diameter is 2, odd(v) = d(v) and even(v) = n—d(v) for every vertex v. Thercfore suin(Odd)= 2m
and sum(Even)= n? — 2m. Since 41 < n? from g > 10, Gy satisties sum(Odd) < sum(Even).
On the other hand, for the 3q vertices = of A, d(z) = 2¢ + 1, and for the 2¢ vertices y of B,

d(y) = 3q + 1. Hence the vector Degree has a unique mode which is equal to 2¢ + 1. Moreover,



x(G) = 4 and x(G) = 3q/2. Therefore mode(Degree) — (x(G) + x((7)) = ¢/2 - 3 which is

positive for ¢ > 10 and can take arbitrarily large values.

We define now some infinite families of graphs, each of them is used to refutc several conjec-

tures.

Family A,

Let A4, be the cartesian product K, x K3, that is the graph obtained from three cliques K, of
respective vertex sets {zi}1<i<p, {¥i}1<i<p, {zi}1<i<p by adding ail the edges z,u:, vizi, z:%: for
1<:<p.

Conjecture 185 Every graph G such that sum(Odd) < sum(Even) satisfies
length(Degree) > m/a.

Conjecture 191 Every graph G such that sum(Odd) < sum(Even) satisfies

min{Deficiency) < m/w.

Counterexamples to Conjectures 185 and 191

The graph G = A, with p > 13 is vertex-transitive of degree p + 1 and order n = 3p. Its
size is m = 3p(p + 1)/2. Since its diameter is 2, sum(Odd)= 2m and sum(Even)= n? - 2m as
already observed above, and thus sum(Odd)< sum(Even). On the other hand, o = 3 andw = p
Moreover, since p > 13, length(Degree)= Z,E\-E =(p+1)V3p <plp+1)/2 =m/a and the
deficiency of any vertex is df (z) = 2(p — 1) > 3(p + 1)/2 = m/w. Hence for p > 13, A, is a
counterexample to Conjectures 185 and 191.
Family B,
Let p be an integer > 3 and let B, be the graph consisting of a clique Ky, |, an independent
set K, and a vertex z dominating all the other vertices. This graph has order n = 3p and size
m = 2p?. Since its diameter is 2, sum(Odd)= 21 and sum(Even)= n? ~ 2m as observed above.
and the vectors Degree and Odd are the same. Thercfore By satisfies sum(Odd)<sum(Even)
since 4m < n2. Morcover By, has one vertex of degrec 3p — 1, p vertices of degree 1 and 2p — 1
vertices of degree 2p — 1. Hence the vector Degree have a unique mode which is equal to 2p -1,

and mode(Even)=n - 2p - 1) =p + L.



Conjecture 676 Every graph G such that sum(Odd) < sum(Even) satisfies

mode(Degree) <n/2.

Conjecture 679 Every graph G such that sum(Odd) < sum(Even) satisfies

mode(Degree) < mode(Even) .

Conjecture 677 Every graph G such that sum(Odd) < sum(Even) satisfies

mode(Degree) <n —a.

Counterexamples to Conjectures 676 - 679 - 677
In the graph B,, mode(Degree)—n/2 = p/2 — 1 and mode(Degree)—mode(Even)= p — 2. Since
p > 3, B, disproves Conjectures 676 and 679. Moreover, this graph shows that in the class under
consideration, mode(Degree) — n/2 and mode(Degree)—mode(Even) can be arbitrarily large.
Let B, be the graph obtained from B, by deleting one edge in the clique Kzp_;. In this
operation, sum(Even)—sum(Odd) increases by 4 and B, still satisfies sum(Odd) < sum(Even).
Moreover, in By, mode(Degree) remains equal to 2p —1if p > 6, and @ = p + 2. Therefore
n—a=p-—2< mode(Degree), which disproves Conjecture 677.
Family J,
Let J, be the graph obtained from the disjoint union of a clique K, and a star K, , by adding
a vertex z dominating all the other vertices. This graph has order n = 2p + 2 and diameter 2.
The degrees of its vertices are respectively d(z) = 2p + 1, d(y) = p for the vertices of the clique
K,, d(u) = p + 1 for the center u of the star and d(z) = 2 for the endvertices of the star. An
easy calculation gives as dual degrees d*(z) = (p? +3p+ 1)/(2p + 1), d*(y) = (p* + p + 1)/p for
all the vertices y of the clique Kp, d*(u) = (dp + 1)/(p + 1) and d*(z) = (3p + 2)/2 for all the
other vertices of the star. Hence, if p > 2. min(Dual Degree)= d*(u) = (4p + 1)/(p + 1) and
scope(Dual Degree)= d*(z) — d*(u) = 3p(p — 1)/2(p + 1). Note that min(Dual Degree)< 4.
Conjecture 544 For any graph,

scope(Dual Degree)< number of components of Mid-Degree.

Conjecture 623 For any graph of diameter 2,

mean of Mid-Degree < min(Dual Degree).



Counterexamples to Conjectures 544 and 623
Let us consider the graph J,, for p = 0 (mod 4) and let p = 4k with k > 15. The degree sequence
of J,is 2p+ 1,p + 1,p (p times), 2 (p times). We leave the reader check that the process which
determines the residue gives R = 2k + 2 and depth =n — R = 6k. At the (depth/2)t" step, the
Mid-Degree is the sequence of n—3k = 5k+2 = 2+45p/4 terms among them one is equal to k+1,
k+1 are equal to p—depth/2 = k and p = 4k are equal to 1. Since 2+5p/4 < 3p(p—1)/2(p+1)
for p > 60, this graph refutes Conjecture 544.

Moreover, mean of Mid-Degree= (k2 + 6k +1)/(5k +2) >4 >min(Dual Degree) for k > 15.
Hence Conjecture 623 is also refuted.
Family H,
Let H, be the graph obtained from a star K 2,41 of center = and endvertices z,y1, ), Yp, Up
by adding the 2p edges zy;,zy; with 1 < i < p. This graph has diameter 2 and satisfies
n=2p+2, a(Hy) =p+1=n/2, v(H,) =p+1=n/2, x(Hy) = 3 and x(H,) = p+1. Therefore
x(Hy) = n — v(H,).

Conjecture 642 Every graph such that x(G) = n — v(G) satisfies

scope(Dual Degree) < a(G).

Conjecture 643 Every graph such that x(G) = n — v(G) satisfies
scope(Dual Degree)< number of components of Mid-Degree.

Conjecture 625 Every graph of diameter 2 satisfies length(1-Residue)< x(G)

Counterexamples to Conjectures 642 - 643 - 625 Let us consider the graph H, for p odd
> 5. The dual degrees of its vertices are respectively d*(z) = (dp+1)/(2p+1), d"(y;) = d"(y}) =
(2p+3)/2for1 <1i<pandd’(z) = 2p+1. Hence scope(Dual Degree)= 2p+1-(4p+1)/(2p+1) =
4p?/(2p + 1). Therefore scope(Dual Degree)—a(G) = (2p* — 3p — 1)/2p + 1) is positive and
arbitrarily large, which disproves Conjecture 642.

The degree sequence of Hy, is 2p 4+ 1,2 (2p times), 1. In the process of the determination of
the residue, we get the 1-Residue at the first step (sequence of 2p times 1 and one 0). Therefore
length of 1-residue= \/2p > 3 = x(G), which disproved Conjecture 625. Morcover, R = p + 1,
depth=n - R = p+ 1 and since p is odd, the number of components of Mid-Degree is equal to

n—(p+1)/2 =3(p+1)/2, which also disproved Conjecture 643.



.

».q» Where the part A is complete

Family Ly Let Ly q be obtained from a complete split graph K,
of order 2¢ and the part B is an independent set of order 2p > 8, by adding p independent edges
in B. This graph satisfies n = 2(p + q), m = ¢(2¢ — 1) + 4pq + p, v = n/2, x(Lpq) = 2¢ + 2
and x(Lpq) = p. Hence n — v = n/2 = p+ g and x(Lpg) + x(Lpg) = p+ 2¢ + 2. Since Ly,
has diameter 2, even(z) = n — d(z) = 1 for each vertex z in 4 and even(y) =n —d(y) =2p -1
for each vertex y in B. Moreover, sum(Odd)<sum(Even) if and only if 4m < n?, that is when
(p—q)(p+q—1) > 2pq. In particular, if ¢ = p— 2, then sum(Even)<sum(Odd) since p > 4 and
if p = 3¢, then sum(Odd)<sum(Even).

Conjecture 667 Every graph G such that sum(Even) < sum(Odd) satisfies
mode(Even) < n — v.

Conjecture 682 Every graph G such that sum(Odd) < sum(Even) satisfies
max(Dual Degree) < x(G) + x(G).

Conjecture 683 Every graph G such that sum(Odd) < sum(Even) satisfies

mean(Dual Degree) < number of components of Mid-Degree.

Counterexample to Conjecture 667

We saw that the graph G = L, ;2 with p > 4 is such that sum(Even) < sum(Odd).
Since |B| > |A|, the vector Even has a unique mode which is equal to 2p—1 > 2p—2 = n—v(G).

Therefore this graph disproves Conjecture 667.

Counterexamples to Conjectures 682 and 683

We saw that the graph G = L3q 4 is such that sum(Odd)<sum(Even).

In G, d'(y) = ((2¢ + 1) +2q(8g — 1))/(2g + 1) = (16¢% + 1)/(2¢ + 1) for the 6q vertices of
B and d*(r) = (6q(2q + 1) + (2¢ — 1)(8¢ — 1))/(8q — 1) = (28¢*> - 4¢q + 1)/(8q — 1) for the 2q
vertices of A. Since d*(y) > 5q + 2 = x(L3qq) + x(L3q4,4), this graph disproves Conjecture 682.

Morcover mean(Dual Degree)= (6¢gd*(y) + 2qd*(x))/8q = 55q/8 + O(1) when ¢ — +00. On
the other hand. the calculus of the residue leads to a sequence of 6q elements equal to 1. Hence
R = 3q and depth=n — R = 5¢. If we choose ¢ even, the number of components of Mid-Degree
isn - 5q/2 = 11¢/2 which is less than 55¢/8. Therefore this graph disproves Conjecture 683 for

q sufficiently large.



4. Some results and problems on the Randi¢ index

There exist interesting results and problems on the Randi¢ index of a graph G among Graffiti
Conjectures and in relation to the order of G, its size, the degree of its vertices, the distance

parameters or the eigenvalues of its adjacency matrix. We survey here some of them.

Recall the respective values, easy to compute, of the radius r, the mean distance 4 and the

Randié¢ index Rc of a path P, and of a star K ,_; of order n:

m(P) = 3] w(Pp) = 2 Re(Py) = nf3;23[2

r(Kin-1) =1 p(Kino) =2-2 Re(Kipn-1) =vn-—1

4.a Randié index, order and size

It is well known that every graph of order n satisfies Rc < n/2 with equality if and only if
§ > 1 and every component of G is regular (see for instance the comment following Conjecture
67 in [9]). In [1], Bollobds and Erdés proved the following lower bounds on Rc in terms of the

order or the size of G.

Theorem 4.1[1]: 1. In every graph G of order n with §(G) > 1, Re(G) > v/n — 1 with equality
if and only if G is a star Ky 1.

2. In every graph G of size m, Rc(G) > with equality if and only if G consists of

< V8m+1+1
4

a clique K, and n — p isolated vertices.

m o V8m +1+1
- 4

We can remark that > < ,l%l + 1. When the graph G has girth at least
four or five, Favaron, Mahéo and Saclé got higher lower bounds for Re. The first part of Theorem
4.2 (Corollary 2.12 of [10]) proved Conjecture 213 of [9]. The second part is a consequence of

Corollaries 2.11 and 2.6 of [10].

Theorem 4.2 [10]: 1. In every triangle-free graph G of order n, Rc > \/m with equality if and

only if G consists of a clique K, and n — p isolated vertices.

. . . . m
2. In every graph G of order n and size m with girth at least five, Re(G) > i1
n—
In trees of order n, which are connected graphs of size n = n — 1 and with infinite girth,

the minimum value of the Randié¢ index is attained for stars (particular case of Theorem 4.1)

and its maximun value is attained by paths as shown by different authors (sce for instance (2],
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[16] or the research report [5)). This is conform to Randi¢’s idea to take this parameter as a
molecular branching index.
4.b Randi¢ index and degrees

The lower bound v —1 on Rc(G) given in Theorem 4.1 holds for minimum degree at
least one. In [5], Delorme, Favaron and Rautenbach found a larger bound under the stronger
hypothesis that §(G) > 2 and gave a conjecture for the general case §(G) > §. The extremal
graphs are the complete split graphs Kj s generalizing the stars and obtained from a complete

bipartite graph Ks,_s by joining each pair of vertices in the part with § vertices by a new edge.

Theorem 4.3 [5]: Let G be a graph of order n with §(G) > 2. Then

RC(G)Z‘/Q("_1)+H11_ fl

with equality if and only if G = K3 ,,_,.

Conjecture 4.4 [5]: Let G be a graph of order n with §(G) > é. Then

§(n - 6) 5\ 1
Re(C) 2 d(n—1) * <2> n—1

with equality if and only if G = K‘;’n“,.
If moreover the graph G is triangle-free, they also got the following bound:

Theorem 4.5 [5]: Let G be a triangle-free graph of order n with §(G) > 6 > 1. Then
Re(G) > +/8(n — 6)

with equality if and only if G = K5 ,_s.

Note that the two lower bounds \/m and /3(n — d) on the Randi¢ index of triangle-free
graphs respectively given in Theorems 4.2 and 4.5 are not comparable. For instance for n even
> 2, if G is obtained from the complete bipartite graph K%‘% by deleting the edges of a perfect
matching, then m < §(n — §), while if G is obtained from Ky a by deleting at least two edges
incident to a vertex v, then m > d(n — 4).

Let us cite two more conjectures of Graffiti related to the Randi¢ index and the degrees and

which remain open.

Conjecture 4.6 (27 of [9]): For every graph G, Deviation(Degree) < Re(G)
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A partial result is that this property is true in triangle-free graphs (Corollary 2.29 of [10}).
Conjecture 4.7 (136 of [9)): For every graph G, Deviation(Temperature) < Re(G).

4.c Randié¢ index and distances

Let us first remark that some conjectures of [9] related to distances in graphs appear in
rather similar versions respectively involving the radius and the mean distance of the graph.
Such conjectures are not easily comparable because the radius can be less or more than the

mean distance (see [8]). For instance for a star, 7 < u and for a path of order at least 5, r > p.

Conjecture 3 of (9] claims that in every connected graph the mean distance is at most the
Randi¢ index. This conjecture is still open and with the aid of their program AutographiX,

Caporossi and Hansen refined it to be

Conjecture 4.8 (Conjecture 3’ of [3]): Every connected graph of order n satisfies
2
u(G)+\/n—1+;—‘2§ Rc(G).

If true, Conjecture 4.8 would be sharp since equality holds for stars.

Another interesting Graffiti conjecture (12) is that for every connected graph of radius r,

r <14 Rec. As above, this conjecture was strengthened in [3] to be

Conjecture 4.9 (Conjecture 12’ of [3]): Every connected graph different from a path of even

order satifies r(G) < Re(G) (for even paths, Re(Poy) = k + V2 — % < k =r(Pax)).
Moreover Caporossi and Hansen proved their new conjecture for trees.

Theorem 4.10 [3]: For all trees except even paths, r < Rc.

4.d Randié¢ index and eigenvalues of the adjacency matrix

The following two theorems of Favaron, Mahéo and Saclé were not conjectured under this
form by Graffiti, but the authors established them with the aim of proving some conjectures of
[9]. Recall that the eigenvalues A} > Xy > --- X, satisfy (3).
Theorem 4.11 (Corollary 2.11 of [10]): Every non-empty graph G satisfies Re(G) > m/ N,

As already said above, Theorem 4.2 is a consequence of Theorem 4.11.

Theorem 4.12 (Corollary 2.16 of [10]): Every graph satisfies Re(G) > || for 2 <@ < n.
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Theorem 4.12 was used in [10] to prove Conjecture 19 (case i = n), Conjecture 556 (case

i = 2), Conjecture 713 and Conjecture 200 (with some exceptions) of [9).

Let us cite to end an interesting conjecture of AutographiX related to another parameter,
the chromatic number of G. If true, this conjecture is sharp since equality holds for K, and

Kl,n-

Conjecture 4.13 [3]: For any connected graph of order n > 2 with chromatic number x(G),

Re(6) > XO =24 L /@)~ 1+ n-x(@)

References

(1] B. Bollobés and P. Erdés, Graphs of extremal weights, Ars Combin. 50 (1998), 225-233.

[2] G. Caporossi, I. Gutman and P. Hansen, Variable neighborhood search for extremal graphs

IV: Chemical trees with extremal connectivity index, Comput. Chem., 23 (1999), 469-477.

[3] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs: 1 The

AutographiX system, Discrete Math. 212 (2000), 29-44.

4

L.H. Clark and J.W. Moon, On the general Randié¢ index for certain families of trees, Ars

Combin. 54 (2000), 223-235.

[5] C. Delorme, O. Favaron and D. Rautenbach, On the Randi¢ index, Discrete
Math.257(1)(2002), 29-38 and Research report 1214, LRI, Université Paris-Sud, 1999.

[6] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener Index of Trees: Theory and Applica-
tions, Acta Appl. Math. 66 (2001), 211-249.

7

R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J.
26 (1976), 283-296.

(8] P. Erdés, J. Pach and J. Spencer, On the mean distance between points of a graph, Con-

gressus Numerantiun 64(1988), 121-124.

(9] S. Fajtlowicz, Written on the Wall, a list of Conjectures of Graffiti, last version available

at http://www.math.uh.cdu/ sicmion.



23

(10] O. Favaron, M. Mahéo and J.-F. Saclé, Some eigenvalues properties in graphs (conjectures

of Graffiti-11), Discrete Math. 111 (1993), 197-220.

[11) J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984),
1-24.

[12] M. Randi¢, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975),

6609-6615.

[13] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, WILEY-VCH, Wein-
heim (2000).

[14] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69
(1947), 1-24.

[15] H. Wiener, Correlation of heats of isomerization, and differences in heats of vaporization of

isomers, among the paraffin hydrocarbons, J. Am. Chem. Soc. 69 (1947), 2636-2638.

(16] P. Yu, An upper bound for the Randi¢ of trees, J. Math. Studies (Chinese) 31 (1998),
225-230.



