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Abstract

Two similar 'magic squares' have recently been proposed as a shorthand method for the
mathematics of thermodynamics. It is based on neighborhood relations between
thermodynamic parameters. 'Magic squares' were born in China more than two thousand
years ago and were an intriguing mathematical curiosity. A 'magic square' reappeared in
Greece as a 'physicochemical magic square', while during renaissance a 'magic square' ended
up in art, and, finally, thanks to Max Born, it showed up in thermodynamics. This last type
of magic square, was used to solve a problem that intrigued P.W. Bridgam in his younger
years, i.e., how to derive in a rather easy way the multifarious relations of Thermodynamics.
Actually, Max Born 'some days' before the birth of quantum mechanics got involved in a
series of studies in thermodynamics, who tied his name to the name of a relatively unknown
mathematician, C. Carathéodory. One of the present two forms of thermodynamic 'magic
square' allows to introduce and solve the Massieu functions and, thus, let get us in touch with
this nearly unknown French scientist, F.J.D. Massieu.

Introduction

To the old Chinese (ca., 2200 B.C. [1, 2]) is credited the startling discovery that the first
nine digits of the number system disposed in a square gave rise to strange properties that
rendered the figure a 'magic square'. It should here be underlined that Chinese did not know
the concept of zero, which was born in India 2800 years later [3]. The properties of this
magic square are: the sum of the numbers along the columns, the rows, the diagonal and the
anti-diagonal is always fifteen (the so-called magic constant), the sum of all numbers is 15-d
= 45, where d is the dimension of the square. Dividing 45 by 9, the number of digits, one
obtains the number, 5, halfway between 9 and 1, and which occupies the middle cell, while

the even numbers are on the corners, and the remaining odd numbers are on the sides, i.e.,
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4 9 2
3 5 7
8 1 6

All four lines through the central 5 are in arithmetical progression, with differences 1, 2, 3, 4,
rotating anti-clockwise from 6-5-4 to 9-5-1. The sum of the squares of the 1% and 3" columns
equal 89, while the same sum for the middle column gives 107 = 89 + 18. The squares of the
numbers in the rows sum to 101, 83, 101, and 101 - 83 = 18. Further, 492* + 357> + 816” =
294% + 753%+ 618 and the same pattern is true for the columns, and for the diagonals (456,
978, 231). There are just 8 ways in which the magic total can be made by adding 3 of the
integers 1 to 9, and each of these 8 ways occurs once in the square. The original ancient
Chinese form of the magic square, known as lo-shu, [1, 2] was a combination of cyclic and
acyclic graphs (Figure 1), and, actually this is the first 'intriguing' appearance of graphs in a
mathematical subject. In these graphs the black vertices represent feminine even numbers and

open circles masculine odd numbers.
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Figure 1. The ancient Chinese form for the magic square

It is told in the "I-king’, or Book of Permutations, that this 'magic square' (we could say
'magic graph') was written upon a back of a tortoise, which appeared to the emperor Yu when
was embarking on the yellow river. It is also told that this emperor was an hydraulic

engineer. The '[-king' is often called the oldest of the Chinese classics, and the first European
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edition of this book appeared at Frankfurt in 1724. The magic square was known to the Neo-
Platonists of the third century of this era, and it fascinated Arab mathematicians and
alchemists around the 8" -10" century, and many others [4], later on in Europe, like Luca
Pacioli, Fermat, and even Leibniz, who was highly interested in Chinese mathematics, having
written a book on the subject, Philosophia Sinensium [1, 2]. The renaissance mathematician
Luca Pacioli (1445-1514), a friend of Leonardo da Vinci, left an unfinished manuscript, De
Viribus Quantitatis, in which are reported other magic squares. The influence of Pacioli, can
be seen in a celebrated engraving of A. Diirer entitled, the Melancholia, where a 4x4 magic
square with magic constant 34 is engraved, and in which, in the last row, can be read 1514,
the year the engraving was done and the year of the death of Luca Pacioli. The rows of this
magic square are: 16, 3,2, 13; 5, 10, 11, 8; 9, 6, 7, 12; 4, 15, 14, 1. Pacioli wrote in 1494
the most influential algebra book of the period, Summa de Arithmetica, Geometrica,
Proportioni et Proportionata, known as Summa, the first mathematics textbook to
overshadow 1202 Fibonacci's Liber Abaci [2].

We will not follow the history of the magic squares, as our subject is more in keeping
with the 3x3 magic square. Let us go back to the old Greeks, and check for the existence of
another 3x3 'magic square', a ‘chemical' one, first conceived by Aristotle, and worshipped by
his followers, practically, till the advent of modern chemistry. Aristotle took a set of four
elements as the basis of the material world: {Fire, Air, Water, Earth}, as well a set of four
primary qualities {moist, dry, hot, cold}. Each element has assigned two properties, four
combinations being possible: hot and dry assigned to fire, hot and moist to air, cold and fluid

to water, and cold and dry to earth [4, 5]. Expressing it diagrammatically the following

'magic square' was obtained

Air hot Fire
moist dry
Water cold Earth

This can surely be considered the very first periodic table of the elements, which lasted for

nearly twenty centuries. The previous relations between elements and properties could be
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written in the following modern functional way (using the first letter): A = A(h, m); F = F(d,
h); E = E(c, d), and W = W(m, c). This magic square allowed column and row
transmutations, i.e., elements may pass into one another through the medium of that quality
on the same column or row, i.e., which they posses in common. Thus, water can become
earth through the medium of cold, earth can become fire through the medium of dry, and so
on. A fifth immaterial element was added, which was called as the quintessence (the central
number in the Chinese magic square), occupying the central position in the square, and which
corresponds with the ether. Magic squares could have influenced XIX century chemists in
shaping the periodic table of the elements with its well-known regularities, and which
originally had the form of a square rather than the actual form more similar to a rectangle [5].
Thus, a strange Chinese curiosity from 2200 BC ended up 'shaping' old and modern
chemistry.

Another magic square has been rediscovered in recent times, but in thermodynamics
and with very interesting and helpful properties [6-8]. Actually, it seems that the idea of such
a magic thermodynamic square came out of the fertile mind of Max Born. It is, in fact, told
[9] that, in 1929, Max Born used, privately, a mnemonic square to derive the Maxwell
relations in a straightforward way. But it was only in 1935 that such a square made its first
appearance in the literature in a paper by Koenig [10]. It should here be reminded that a
more impressive and easily traceable contribution to thermodynamics came from Max Born
during those same years, and just short before the birth of quantum mechanics. In 1921 three
fundamental papers by M. Born appeared in the literature [11-13] to support and strengthen
what was known by very few people as the axiomatic thermodynamics developed by a friend
of his, the mathematician Constantin Carathéodory, who in 1909 grounded this branch of
thermodynamics, and in 1925, only after the interest awakened by Born papers, wrote a

second and final piece to the subject [14-16].

The Problem and the Bridgam algebraic Solution

Before coming back to our thermodynamic 'magic square' let us talk about the problem
we are interested in, and one of the proposed solutions, the algebraic solution by Bridgam.
The problem consists in deriving a scheme of shorthand notation for a wide variety of
thermodynamic relationships. In this section we will center our attention on the solution
devised by P.W. Bridgam in 1914 short after his Ph.D. [17-19], and well before he became

famous for his high pressure studies for which he carned the Nobel prize in physics in 1945,



and also well before his less famous but fundamental studies in dimensional analysis [20, 21].
Actually Bridgam, starting from the late twenties, got interested also in the philosophy of
physics, and wrote very interesting and illuminating books on the subject, like the 'Logic of
modern physics' (1927), 'The Nature of Physical Theory' (1936), and 'The Nature of
Thermodynamics' (1941). An interesting and intriguing contribution in this field continues to
be the 'relativistic' definition Bridgam gave of scientific method: scientific method is just
what working scientists do, ......, is something talked about by people standing on the outside
and wondering how the scientists manages to do it,....., and there are as many scientific
methods as there are individual scientists. But let us come back to the shorthand method
proposed by Bridgam and centered on the properties of mathematical functions known as

Jacobians, which are defined as follows,

(@x/da), (/o)

Ixy) = a(x.y)/a(oB) = (%10B), (Y/3p),

= (0x/0a)p(3y/0B)a - (OX/OB)a(dy/Oct)s (1)

Reminding the following properties of the Jacobians,

Jxy) =-J(y.x); (By/0x).=1(y,2)/ J(x,2); J(a,B)=1 (@)

and rewriting the second of the three properties of eq. 2 with the following shorthand

notation, we obtain,

(3y / 0%). = (3y)2/ (8%).: (By). = )(y, 2), and (8X), = J(x,2) (3)
Now, (i) choosing T = a, and P = B, (ii) expressing the results in terms of the three
experimental properties (here, a = isobaric volume expansivity, and k = isothermal

compressibility),

(OV/aT)p=aV ; (8V/aPY=- kV ; C,= (BH/AT)p = T(3S/3T)p (4
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(iii) using the fundamental principles of thermodynamics, inclusive the Maxwell relations, an
entire set of thermodynamic relationships can be obtained, among which (eq. 1 is here the

key equation, high numbered egs. normally use results from the lower numbered egs.):

1) (9T)p=- (AP)r =1

2) (@V)p=-(0P)y = (aV)p /1 =(8V)p/(8T)p=(8V /8T)p=aV

3) (8S)p=-(0P)s=(aS)p/(aT)p=C,/T

4) (E)p = - (OP)e = (GE)#/ (8T)p = Cp - PaV

5) (6H)p=-(P)u=C,

6) (3S)yr=-(dMs=aV

7) (V@ =-(dT)y=«xV

8) (GE)r=- (dT)e = - (GE / dP)r = - T(8S / &P)r - PxV = TaV - PV

9) (3S)v=-(8V)s = (8S / T)p(-kV) - (8S / OP)r(aV) = I/T[-CpkV + T(aV)?)
10) (3E)y = (8V)g = T(8S)v = [-CpxV + T(aV)?]

11) (GE)s = (8S)g = (E / aT)p(8S / 8P)r= (FE)p(- 8S)r = [Cp - PaV](- aV)
12) (8H)s =- (8S)u = - CpaV

and so on. In some case use of the cyclic relation, (3V/dT)p(T/0P)v(8P/dV)1= - 1, can
further simplify some of these expressions. Note how the cyclic relation is easily verified

witheq. 1.

The 'Magic Square' Solution

Coming back to the 'magic square’ Max Born privately used to derive the Maxwell
relations, this square has recently been further developed [6-8] to accomplish the Bridgam
'shorthand  notation' goal in a much easier way, and without the need to call for the
fundamental principles of thermodynamics. Actually, the two methods overlap only partially
in their results.

The thermodynamic ‘magic square’, which formally looks very much like the
Aristotelian 'magic square’, was developed into two 'magic squares' and used to derive by the
aid of characteristic patterns most of the thermodynamic relationships found in a
thermodynamics curriculum. The two 'magic squares’, known as diagrams for

thermodynamic relationships, have been called the E- and the S-diagram as one is an energy-



159

diagram). The arrow direction property states that any operation involving an arrow is
positive if it is performed along its direction and negative if it is performed along its anti-

direction [6-8].

E-diagram S-diagram 8'-diagram
U \4 A 8 \4 M, S V  -AT
S T U T U vT
H P G M; PT M M; PT GT
N with E-d F with E-d M with E-d
U Vv A U==-1v A

l\ 1 ¥,

L

L
ST

\
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B P ¢

P with E-d N with §-4

S«--V---M,
~

Figure 2. Top: the 'magic’ E- and S-diagrams (E-d, S-d) for thermodynamic relationships. The
S'-diagram is the explicit form of the S-diagram (see text). Borrom: examples of the different
uses of N, F, M, P, patterns with the two 'magic’ diagrams.

The use of four geometrical ‘alphabetical' patterns that trace the shape of a letter will
now be shown. These patterns that overlay the E- and S-diagrams (see Figure 2) encompass,
in a specific order, the parameters of the diagram, which have to be included in a
thermodynamic relation. Their trace indicates the relation among the thermodynamic
parameters, with the sign of the parameter being determined by the flow of the trace against

the flow of the arrow. Pattern N can be used for the fundamental relations, patterns F for the
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dimensional diagram, and the other an entropy-dimensional diagram (Figure 2). Our ability to
geometrize, allows to recognize some interesting patterns in these two diagrams that can be
used to derive, nearly from scratch, the multifarious relationships of thermodynamics of
simple PVT systems. Actually, they can also be used for other types of thermodynamic
systems [7]. The corners of the E-diagram are occupied by functions from the set of
thermodynamic energy functions {U, H, A, G}, while the comers of the S-diagram are
occupied by functions from the set of thermodynamic entropy functions {S, M, M, Ms}.
The properties from the set {P, S, T, V} are the main variables of the E-diagram, while
properties from the set {U, V, 1/T, P/T} are the main variables of the S-diagram. M;, M, and
M; are the Massieu functions, afler the French mineralogist Frangois-Jacques-Dominique
Massieu, who introduced them in 1869, while Gibbs introduced his famous potential in 1875
[9]. The two 'magic squares' allow also to solve specific problems that can be reduced into a
series of symmetry operations performed on a diagram by the aid of geometrical patterns.
These patterns have normally the form of an alphabetical letter, and their purpose is to show
which and how neighbor parameters are related in a thermodynamic relationship.

The 'magic numbers' of the E-diagram (E-d, see Figure 2), are, thus, the energy
functions, A, G, H, and U, and the natural variables, P, S, T, and V. For the S-diagram (S-d,
see Figure 2) the 'magic numbers' are the entropy functions, M, M, M3, and S, and the
natural variables, P/T, 1/T, U, and V. The handling of the two sets of 'magic objects' in both
‘'magic squares' is governed by a series of three properties : (i) the neighborhood property, (ii)
the orthogonality property that concerns the diamond set only, and (iii) the arrow direction
property. As the relative positions of the two sets of thermodynamic objects in the E- and S-
diagrams are uniquely determined by the topology of the diagram, the two diagrams define a
‘topological’ space in which only the neighborhood relations are meaningful. The
neighborhood property states that the corner pararfleters are functions of the nearby natural
variables. In the E-diagram: A = A(V, T), G = G(T, P), H=H(P, S), and U = U(S, V), while
in the S-diagram we have: M, = M,(V, 1/T), My = My(1/T, P/T), M3 = M3(P/T, U), and S =
S(U, V). From these functional relations the total differentials are easily obtained. The
orthogonality property states that the natural variables in the diamond structure of the
thermodynamic magic squares have to be multiplied only along the same arrow and never
between orthogonal arrows. Only in this way it is possible to obtain either an energy-

dimensioned term (E-diagram), PV or ST, or an entropy dimensioned term, U/T or PV/T (S-
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Energy-function and Entropy-function derivatives, pattern M for the Maxwell relations in the
E-diagram, and pattern P for the differential energy or entropy expressions. The N pattern
used with the S-diagram allows onc to obtain the full thermodynamic expressions for the
most important Massieu functions, M,, and M, and that are shown in Figure 2, in the S'-
diagram. We will show here only some applications of the E- and S-'magic squares', for those

interested to deepen the argument perusal of articles [6-9] is mandatory.

The Fundamental Relations and the N Pattern

The superimposed dashed lines of the N pattern (see Figure 2, second row), starting

from the bottom left of letter N draw the following fundamental relation
H=U+PV )

The term PV is imposed by the orthogonality property, which helps, thus, to obtain a
homogeneous relation. The sign plus in front of PV is imposed by the arrow direction
property, as from P to V the flow of the trace of pattern N parallels the flow of the arrow.
Now, either rotating this pattern clockwise (or anti-clockwise) by 90° or reflecting it through
an arrow or rotating it by 180° around an arrow, we can obtain all other fundamental
relations, i.e, with a clockwise 90° rotation or an anti-clockwise rotation by 90° we have,

respectively

U=A+ST (6)
G=H-TS 7

And so on.
The Energy Function Derivatives and the F pattern
The superimposed F pattern, starting from the top left of the F trace (Figure 2,

second row, mid pattern), allows to derive the following energy function derivative,

(dU /V)s=-P (8)
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The minus sign arises from the arrow direction property, as the flow of the trace of the long
side of F from V to P is against the flow of the arrow. Now, either rotating this pattern
clockwise (or anti-clockwise) by 90° or reflecting through an arrow or rotating it 180° around
an arrow we can obtain all the other energy function derivatives, i.e, with an anti-clockwise
90° rotation we obtain a relation that is normally considered the thermodynamic definition of
the absolute temperature, and which is used to introduced the concept of negative

temperatures,
(@U/aSyy=T &)

Now, reflecting this last picture along the ST axis, the companion of eq, 9 for the

thermodynamic definition of the absolute temperature follows
(@H/aSp=T (10)

The Maxwell Relations and the M pattern

These were the relations that intrigued Max Born [9], and for which he conceived
the thermodynamic 'magic square'. The superimposed dashed lines of the slanted M pattern
(see Figure 2, second row, right pattern), starting either from P or from T parameters we can

derive the following Maxwell relation

(0P /8S)y =- (0T / V) (11)
The minus sign arises from the arrow direction property, as the flow of the trace of M from T
to S is against the flow of the arrow, while the flow of the trace of M from P to V is along the
flow of the arrow. Now, rotating this pattern clockwise (or anti-clockwise) by 90° (or 180°
around one of the diagonals of the arrow system) we can obtain all the other Maxwell
relations, i.e, with a clockwise 90° rotation we obtain

(S 1dVyr=(aP/aT)y (12)

And so on, keeping an attentive eye to the signs.



163

The Differential Energy Expressions and the P Pattern
The superimposed dashed lines of the P-like pattern (see Figure 2, third row. left
pattern), starting from the top left corner allow us to draw the following differential energy

expression
dU= dS-T-dV-P (13)

Upon rearranging we obtain the well-known differential relation: dU = SdT - PdV. The
minus sign originates from the arrow direction property, as the flow of the trace of P from V
to P is against the flow of the arrow. Now, either rotating this pattern clockwise (or anti-
clockwise) by 90° or rotating by 180° around an arrow, or reflecting it through an arrow we

can obtain all the other differential relations, i.e, with a clockwise 90° rotation we obtain
dA= -dT-S-dV-P (14)

upon rearranging we have: dA = -S dT - PdV. With an inversion of pattern P through the

center of the diamond we have
dG = -dT-S+dP-V (15)

and upon rearranging we have: dG = -S dT + VdP. And so on.

The Massieu Functions

The Fundamental Massieu Relations and the N Pattern

Before starting the procedure we underline that the vertical arrow in the S-diagram is
now pointing to the bottom of the diagram. The N pattern used as shown in see Figure 2,
third row (mid pattern, N with S-d), allows us to derive the explicit thermodynamic

expression for the first Massieu function
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M, =8 - (I/T)U (16)

The minus sign originates from the arrow direction property, as the flow of the trace of N
from 1/T from to U is against the flow of the arrow. Rearranging we obtain: M= (TS — U)/T,
which, thanks to an N relation of the E-diagram, A = U - TS (see eq. 6), equals — A/T, that is,
M, = - A/T. This explicit expression for M, has been introduced into the S'-diagram (see
Figure 2 first row, last diagram). Now, rotating this N pattern around the S-diagram (or
reflecting through a diamond axis) we can obtain the other expressions for M, M3 , and S,

Le.,

M, = M; - (1/T)U (17)
M;=S - (P/T)V (18)
S =M, + U/T) (19)

Inserting eq. 18 into eq. 17 we have

M,;=S - (PIT)V - (1I/T)U (20)

This last equation can be rearranged into: M, = S — (PV + U)/T, now, two N relations of the

E-diagram, H = U+PV (eq. 5), and G =H - TS (eq. 7) help us to obtain,
M;=S-H/T=-G/T (22)

The found explicit expression for M, is the well-known Planck function and has been
inserted into the S'-diagram (see Figure 2, third diagram). The M; function, which has no
practical uses in thermodynamics has been left as it is in the S'-diagram, but its explicit

relationship can also be ‘discovered’ in the same way with pattern N.

The Entropy Function Derivatives and the F pattern
The F pattern (Figure 2, third row, F with S'-d) will now be used with the S-diagram
to derive the other relationship, which can also be used to define the thermodynamic concept

of absolute temperature, i.e,
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(8S/8U)y = 1/T @n

Conclusion

‘Magic squares', born more than two thousand years ago in China not only constitute a
strange curiosity for historians of science but they represent a nice formal solution to many
scientific problems in some domains of science. In this work we have traced the strange path
that goes from an intriguing Chinese 'magic graph' endowed with a consistent set of
numerical properties, to a present thermodynamic 'magic square’ endowed of a rich set of
non-metric properties. These properties, which are based on the topology of two
thermodynamic squares, the E-diagram and the S-diagram, allow us to derive and check an
enormous set of thermodynamic relationships in a total automatic way [7, 8].

The history of 'magic tools' has recently been enriched with the discovery of a 'magic
hexagon', i, a complete graph on six points, which has been suggested as a graphical
representation of the Dirac algebra in quantum mechanics (QM). This 'magic hexagon'
showing all commutation and anti commutation relations helps to analyze some QM
theorems [22]. Actually, strange exagonal patterns emerge if the strangeness of the eight spin
1/2 baryons is plotted against their charge quantum number: six of the eight baryons form a
hexagon with the two remaining baryons at its center. The same is valid for the nine spin zero
mesons, here the three remaining mesons are at the center of the hexagon. The quarks
composition of the eight spin 1/2 baryons (each baryon is a combination of three quarks), as
well as the quark composition of the nine spin zero mesons (mesons are quark-antiquark
pairs) show the same hexagonal pattern [23].

Let us conclude with a quotation by Cajori [24] that fits the purpose of the 'magic square'
to solve complicated problems by a minimum mental effort: if it is the purpose of
mathematics to resolve complicated problems by a minimum mental effort, then this device

takes high rank.
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