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Abstract Let #R7(m, n) be the number of Kekule structures of the oblate
rectangle R7(m,n). Chen et al obtained some formulas for #R7(m, n) and
expected to obtain an explicit formula for #R7(m,n) in which there are
not trigonometric functions. In this paper, by using a theorem discovered
by M.Ciucu, we obtain a formula for #R7(m, 2"*! —2)(n > 0) ) in addition
to the previously known formulas. Particularly, this makes possible to
obtain the limit value of the quantities of ]35#—“',"@"311& when m — oo
and n — oo.

1. Introduction

A hexagonal system is a finite connected graph without cut vertices in which every interior
face is bounded by a regular hexagon of side length 1. Hexagonal systems are the natural
graph representations of benzenoid hydrocarbons. A perfect matching of a graph G is a
set of independent edges of G covering all vertices of G, which is called Kekule structure
in chemistry. Since a hexagonal system with at least one IKekule structure is the carbon
atoms skeleton of a benezenoid hydrocarbon molecule, various topological properties of
hexagonal systems were extensively treated by chemists. See for example the prestigious
books |7, 18-20] of S.J.Cyvin and 1.Gutman. The number of Kekule structures is an im-
portant topological index which had been applied for estimation of the resonant energy
and m—electron energy and calculation of Pauling bond order ( [22, 25, 30] ). So far,
enumerative problems on Kekule structures of hexagonal systeins are still considerable
for mathematicians, physicists and chemists( [6, 26, 32] ).
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The hexagonal system whose structure is indicated in Figure 1 is called the oblate
rectangle and is denoted by R7(m,n). This is a hexagonal systems with Kekule structures

('see chapter 9 in (7] ).

Fig. 1 R/(m,n) .

Throughout this paper, let #G denote the number of perfect matchings of a graph G.

For #R’(m,n) with fixed m < 8 or n < 5, explicit formulas were obtained in [1-4,
8-14, 16, 21, 24, 29] ( or see S.J.Cyvin and L.Gutman’s book [7] ). In [4]. by using the
John-Sachs theorem from (23], a determinant formula for #R7(m,n) was obtained as

follows.
Proposition 1[4, 7]

Ciz  Cpa Glua oo Cafm? Cam)
(n+2) Chi; Cr.l+~l e C2n’:;15 C;ﬂr;}‘

#R?(m,n) = 0 (n+2) Ciy - Clinly Cimli | (1)
0 0 0 - (n+2) C2,

This is an m x m determinant The first row and last column are special.

In (5], by using the transfer-matrix method ( see P.R.Stanley (28] ), a formula for
#R7(m,n) was obtained as follows:

Proposition 2(5] For fixed n, we have

2 n+1 kn 2
R(m,n) = —— cot ———| AT 2
#R(m,n) n+ 2 2n+2)] “* &
; -2
where only odd values of k give nonvanishing terms, and Ay = "—}3 [sin X::—z)] .

Chen et al in [5] claimed the above formulas (1) and (2) could not be called being "ex-

slicit”, since formula (2) contained trigonometric functions and formula (1) was expressed
I



by a determinant whose entries are expressed by combinatorial numbers, particularly, we
could not obtain an asymptotic estimation in terms of formula (1), which is physicists
and chemists concern ( see section 3.4 in [5] ). Furthermore, it was claimed in [5] that an
"explicit” formula for #RJ(m,n), where both m and n were arbitrary, was not known,
and seemed not likely ever to be found. In this paper, we use some results from [31] and
a theorem from M.Ciucu [6] to obtain the following formula (3) for #R7(m,2"*! - 2) in
addition to the previously known formulas (1) and (2). Particularly, this makes possible

. T o 1 _
to obtain the limit value of the quantities of 2E#R(m2=2) \whon 1y o6 and n — oc.

mn
In order to give formula (3) for #R7(m,2"*! — 2), we introduce some notations as
follows. Denote by {S,}%, the following sequence of the sets.

S, = 2:tJ2iV2:t\/~--i\/2:t\/§ ;

where all 2" combinations of signs have to be considered. It is obvious that there are 2"
different real numbers in S,.

In this paper, we prove the following results:
1. For fixed n > 0, we have

4-0

#R] (7”)2n+1 _ 2) — 2m(n+l)—2n—1 Z —, (3)
9€S,, 0
where the suinmation ranges over every number in S,.
2. We have
log #R7(m, 2"+ — 2
lim log #R/(m, 277~ 2) _ log 2. (4)
(m,n)—+(00,00) mmn

2. Breaking the oblate rectangle into two parts

Now we use a theorem from M.Ciucu [6] to factorize the number of Kekule structures
of R’(m,n). Roughly speaking, break the oblate rectangle R7(m, n) into two subgraphs
R (m,n) and R? (m,n). Before we state it we need a few definitions. First, let G be a
graph and assign to each of its edges a number, the weight of the edge. Then the weight
of a perfect matching of G is the product of all weights of edges contained in the perfect
matching. The weighted enumeration A (G) is just the sum of the weights of all possible
perfect matchingsb. Il every edge has weight 1 then M(G) reduces to #G (the number of
perfect matchings of G).

Let G be a plane graph. We say G is symmetric if it is invariant under the reflec-
tion across some straight line. Figure 2(a) shows an example of a symmetric graph. A
weighted symmetric graph is a symmetric graph equipped with weight on every edge of
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G that is constant on the orbits of the reflection. The width of a symmetric graph G,
denoted by w(G), is defined to be half the number of vertices of G lying on the symmetric
axis. Clearly, if w(G) is not an integer then M(G) = 0. Hence we suppose that there are
even number of vertices of G lying on the symmetric axis.

(a)

Fig2. (a). A symmetric graph G. (b). The cutting operations of symmetric graph G.

Let G be a weighted symmetric bipartite graph with symmetric axis {, which we con-
sider to be horizontal. Let ay, by, az, s, -, ayG), bu(c) be the vertices lying on [ as they
occur from left to right. Let us color the vertices of G in two bipartition classes black and
white. For definiteness, choose the leftmost vertex lying on the symmetric axis  to be
white. We define two subgraphs G and G_ as follows. Perform cutting operations above
all white ajs and black bjs and below all black ajs and white bjs. Note that this procedure
yields cuts of the same kind at the endpoints of each edge lying on . Reduce the weight of
each such edge by half, leave all other weights unchanged. Since [ separates G, the gi 1ph
produced by above precess is disconnected into one component lying above [, which we
denote by G, and one below [, denoted by G_. Figure 2(b) illustrates this procedure for
the graph pictured in Figure 2(a) ( the edges whose weights have been reduced by half

are marked by § ).

Now we can state the matchings factorization theorem from (6] as follows:
Lemma 2.1[6] Let G be a planar bipartite weighted, symmetric graph, which splits into
two parts G, and G_ after removal of the vertices of the symmetric axis. Then

M(G) = 2OOM(G,IM(G..),

where M(G) denotes the weighted count of perfect matchings of graph G, and G, and G_
denote the upper and lower half obtained by the procedure of separating G as described
above. w(G) is the width of G, which is half the number of vertices of G lying on the



symmetric axis.

We apply lemma 2.1 to the oblate rectangle R7(m, 2n), showed in Figure 3(a). In our

cases, RY, (1, 2n) are shown in Fig. 3(b) and 3(c), respectively.

n
n-1
1/2
1/2
B 2m-1
2m—1 /2
1/2
(b) c)

Fig 3. (a). R7(m,2n). (b). Ri(m,2n).  (c). R.(m,2n).

By lemma 2.1, we have:
Lemma 2.2
#R(m, 2n) = 2™ M (RZ,(m, 2n)) M (R’ (mn, 2n)).

where R (m, 2n) are shown in Fig. 3(b) and 3(c), respectively.

By lemma 2.2, we need to count M (R (1n,2n)) and M (R (m, 2n)).
Lemma 2.3([15] Let G be a simple graph, and e = (u,v) be an edge in G, then #G =
#G\e + #G\uv, where G\e is the graph obtained from G by deleting edge e, and G\uv
denotes the induced subgraph of G obtained by deleting vertices u and v from G.

The following result is immediate from lemma 2.3.

Lemma 2.4( see chapter 9 in [7] ) Let R m, 2n) be the same as in lemma 2.2. Then
p +

M (R (m,2n)) = (n+1)™".

3. Main results

Let R’ (m,2n)) be the same as in lemma 2.2, and let A,,, = M(RL(m,2n)), and

hy(z) = 5 Apma™ for fixed n > 0, where Ao = (3)™. and fo(x) = 7% . By using
m>0

lemma 2.3 and the theory of orthogonal polynomials, we obtained the following results in
[31]).
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51
Lemma 3.1[31] Let P_,(2) = 2, Po(2) = 2=, and Py(z) = (2—z)""'+ ¥ (=1)°[Chy )+
1=1

C,’;:;-](Z — z)"'"% for n > 1, where [2] denotes the least integer no less than 5. Then
hn(z) = P’;,—,‘I(‘z()ﬂ forn > 0.

Lemma 3.2(31] Let {Py(z)}n>-1 be the same as in lemma 3.1. Then we have

(1). Pa(z) = (2 = 2)Paci(z) — Pa—a(z) for n > 1, where P_y(z) = 2, and Py(z) =2 — z.
(2). Let po(z) = 1, and pa(z) = (=1)""' Py (x) for n > 1. Then {pn(2)}n>o is a sequence
of orthogonal polynomials.

(3). Pn(z) has n+ 1 different real roots.

(4). Forn >0, ha(z) = P;,—(‘('I)ﬂ = 2 %ﬁf—;, where the summation ranges over all roots
" 9:P, (0)=0

of P,(z), and ¢(f) = fl",;—(‘a()ﬁA

Lemma 3.3[31] Let {P,(z)}n>0 be the same as in lemma 3.1. Then, for n > 0, we have

2 — 1z +1? —41)"+l N (2 —z—-Vz? —4;5)"“

(5)

P = (22225 .

Lemma 3.4[31] Let R” (m, 2n) be the same as in lemma 2.2. Then

I —

42, 050

MR (m,2n)) = Apm = 40—;0

Where the summation ranges over all zeros 6 of Pyn(z).

Lemma 3.5 Let {P;(z)}i>-1 be the same as in lemma 3.1. Then the set of roots of
Pypn_y(2) is S, for any n > 0.

Proof By lemma 3.2, Pyo_i(z) = 2 —z,Pp_)(z) = (2 —2)(2 —2) — 2 = 2 — 4z + 2*.
Hence when n = 0 or 1 the lemma holds. We assume inductively the lemma holds for
n = k. Then the set of roots of Pyx_,;(z) is Sx. Noting equation (5), we have

2k 2k
2—(2-z)2+/(2-1)2-4(2-1)? 2—(2-1)2—\/(2-1)*-4(2—-1)?
sz_l[(Q—I)z]z( o/ ) +( ey

2 )

2

2 2 " o 2
_ (—-17+4z~2+\/2(2—:)7[12—411) & (—1'+4xfz—‘/(241)-[x~—4x]) = Pipanelizls

Hence every root of Pak+1_,(x) has the form 2 £ \/c, where ¢ € Sk. This shows that the
set of Py+i_j(2) is Sk4+1. Hence, by the induction, the lemma is thus proved.
The following result is immediate from lemmas 3.4 and 3.5.

Corollary 3.6 Let R (m, 2n) be the same as in lemma 2.2. Then

1
M(R2(m, 2" = 2)) = Aguoyan = S 3
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where the summation ranges over every number 0 in S,.
Theorem 3.7 For n > 0, we have

4-0

#Rj('lll, 2n+l _ 2) — 2m(n+l)—'1n—l Z -

€S

Theorem 3.7 follows from lemmas 2.2 and 2.4 and corollary 3.6. Furthermore, we can
easily prove the following theorem.
Theorem 3.8 We have

3 n+l __
lim log #R?(m, 2 2)

(m,n)—+(00,00) mn

= log 2.

Proof By theorem 3.7, we have

log #R (1, 2"*! — 2)

(m,n)—(00,00) mn

[m(n+1) - 2n —1]log2 + log[ £ %]
0€S.,

= lim
(m,n)-+(00,00) mn

logl = %2
= log2 + lim L2

(m,n)—(c0,00) mn

Let Omin = inf{Sn}, and Omax = sup{S,}. Noting that we have

_ | 4-0 1-0,;
og {n(t5teml} 8L, W) _ log {27[£58 }
mn - mn - mn '

by routine calculation, we can prove that

1-0,;
g {ritgel)
= lim —_— =0
(m,n)—(o0,0c) mmn (m,n)—(00,00) mn

log {2“[“—;,",‘““ }

7
iax

Hence we have

. log #R7 (m, 2"+! — 2)
lim

(m,n)—(o0,00) mmn

= log 2.

The theorem thus follows.
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