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Abstract

Let G be a graph and vy,v,,...,v, be its vertices. Let d, be the degree of the
vertex v, . The Laplacian characteristic polynomial of G can be viewed as the ordinary
characteristic polynomial of a weighted graph G*, obtained by attaching to each
vertex v, of G a self-loop of weight —d, . Based on this observation a general relation
between the Laplacian and the ordinary characteristic polynomials can be deduced.
Several consequences of this relation are pointed out. An expreession for the Wiener
index W of trees is obtained, in which W is expressed in terms of numbers of selections

of independent edges of the graph G and of its subgraphs.

INTRODUCTION

Graph spectra and characteristic polynomials belong among the standard tools of

mathematical chemistry [1-3]. Laplacian spectra and the corresponding characteristic

'Part VIII of the series “Chemical Applications of the Laplacian Spectrum™; parts 1-VIl are the

references [7-13].
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polynomials are much less studied objects, but also for them a number of chemical
applications were recently communicated [4-13].
Let (7 be a graph on n vertices. Its (ordinary) characteristic polynomial is defined

in the usual manner as [1,2,14]
#(G) = $(G. ) = det[A I, — A(G)] (1)

where A(G) is the adjacency matrix of G and [, the unit matrix of order n .
Let vy, vq,..., v, be the verticesof G'. The degree d, of the vertex v, is the number
of the first neighbors of this vertex. The diagonal matrix of vertex degrees will be

denoted by D(('). Then L(G) = D(G) — A(G) is the Laplacian matrix of G and
Y(G) = ¥(G,A) = det[A ], — L(G)) (2)

is the Laplacian characteristic polynomial of (. (More details on Laplacian matrices
and their spectra are found in the book [14] and the reviews [15-18].)

Both ¢(G') and ¥(G) are monic polynomials of order n. In what follows we shall

write them in the coefficient form as

WG = D a(GIAT 5 B(GA) = T—1) (G A 3)

J J
Note that in this notation, ¢;(G) > 0 for all G and for all j [15-18], whereas a; may
assume both positive, negative and zero values [14]. Note, in addition, that
()" (G, =X) = 3 o) (G) A (4)
J

a relation that is an immediate consequence of (3).

In the following considerations we shall encounter subgraphs of the graph ',
obtained by deleting from it certain vertices. In order to simplify our notation, if
Uy Upys oo, Uy, are distinct vertices of G, then the subgraph obtained by deleting
these vertices from G is denoted by G, ,, _,, . This subgraph has n — k vertices. In
particular, G, stands for the (n — l)-vertex graph, obtained by deleting from (' the
vertex v, ; by G, , is denoted the (n — 2)-vertex graph, obtained by deleting from G

the vertices v, and vy .



AN AUXILIARY FORMULA

Let as before (7 be an arbitrary graph and v,, v, its two distinct vertices. Let G[h,]
be the graph obtained from G by attaching to the vertex v, a self-loop of weight h, .
Analogously, G[h,] is obtained from (i by attaching to v, a self-loop of weight h;.
Further, G[h,,hy] is obtained by attaching to both v, and v, self-loops of weight A,
and hy, respectively. Finally, Glhy, hy, ..., h,] is the graph obtained by attaching a
self-loop of weight h, to vertex v, , for each r =1,2,... n.

The properties of characteristic polynomials of weighted graphs were established
long time ago [19-22]. The recursion relation (5) is a well known and often used
result:

#(Glh,]) = 6(G) — h. $(G.) . (:

wt

By repeated application of (5) for G[h,, h,] one obtains:

¢(G[hrvhsl) = ¢(G[hr]) - h‘s ¢(G'J[hr])
{¢(G) = hy &(G))} = hy {$(Gy) = b, §(G )}

$(Glhe,hy)) = &(G) — he $(Gr) — hy $(Gy) + by by $(Gry) - (6)

Formula (6) is also previously known, see, for instance [23]. Its immediate generali-

zation is:

H(Glhivhay. . k) = S(G) =D ke &G+ > hey by ¢(Gryry)
=il

1<r1<rp<n

=Y by by 6(Gr) o

1<r <ra<rasn

Glhr,han. b)) = SG) =S ke $(Gy)

+ Z( ~1 )k Z h"l h”? e h"k d’(("fw’?.- »-"k)

k>2 1<r <ry<ry<n

which we shall write in a shorter manner as

H(Glhy, ha, ..., ha)) = o(G) + Z(—l)" S by chey (G )

k>1 ry <<y

-1
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THE MAIN RESULT

Using the definitions (1) and (2) of the two characteristic polynomials we readily

obtain:
(1) $(G,=A) = (=1)" det[-) I, — D(G) + A(G)]
= det[\ ], — A(G) + D(G))
= det[A ], — A(G)] = (G™, )
where A(G") = A(G) — D(G) can be viewed as the adjacency matrix of some

weighted graph G*. Now, A(G") and A(G) differ only in the diagonal elements:
whereas all diagonal elements in A(G) are equal to zero, those in A(G") are equal
to —dy, —dy, ..., —d,. Clearly, G* is obtained from G by attaching to its vertices
) Vs v, self-loops of weights —d;, —d,, ..., —d,, respectively.
Employing the notation specified in the preceding section, we have
G* = G|—dy, —dy, —dy, ..., —dy], and consequently,
&(Gl—dy, —dy, —dp, ..., —da],A) = (=1)" (G, =) . (8)
Combining Eqs. (7) and (8) we arrive at our main result:
()" (G, =A) = $(G, M) + D (=1 D0 dry o dry $Gry s A) - (9)
k21 "<k
Formula (9) shows that the Laplacian characteristic polynomial of a graph G
can be expressed in terms of the ordinary characteristic polynomials of G and of all
vertex-deleted subgraphs of (i Its derivation (as shown above) is elementary and is
based on a straightforward application of the familiar identity (5). A result analogous
to Eq. (9) was communicated some time ago'[24], but was obtained using a different,
much less transparent, approach.
Bearing in mind (3) the right-hand side of Eq. (9) can be transformed into
STHa(GY+ 3 > ey dy @Gy )| AT
; k31 ri<o<ry
which, in view of relation (4) gives

¢ (G) = a,(G) + Z Z dp, - dpy ay i (G y) - (10)

k>1 r <<
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Needless to say that (10) is just another form of the identity (9) and is fully equivalent

to it.

SIMPLE AND LESS SIMPLE APPLICATIONS

Denote by m the number of edges of the graph ', and recall that ag((G) = 1

a,(G) =0, ay(G) = —m, and that the sum of the vertex degrees of G is equal to

2m. For j = 0,1, and 2, Eq. (10) yields:
Co((;) = ao(C;)ii 1
a(G) = al(G)—l—Zd,ao(G,.):O-l-Zdr =2m

e2(G)

Il

ax(G) + Z d.a,(G,) + Z d dsao(G, )= —m+0+ Z d, d,

r<s r<s

= % (z }jd d, — Z(dr)i) -m= %(2m)2 - % Z(d,V -m
= 2m?—m-— % 2:(cl,)2 .
These are known results [15-18].
All graphs possess a zero Laplacian eigenvalue [6,7,15-18] and therefore it is always
cn(G) = 0. Therefrom we arrive at the curious and generally valid identity:
a(G)+) Y dydryani(Gry ) =0 (11)
k>1 ri<o<rg
Another relation of the same kind is obtained from the equality [15-18] ¢,_,(G) =
nt{(G), where t(G) is the number of spanning trees of the graph G':
a1 (G)+ ) D diydry @naka(Gryy ) = 0 l(G) (12)
k>1 ri<o<ry
Note that (11) and (12) are identities in which only the coefficients of the ordinary
characteristic polynomials (of i and of its subgraphs) occur. Hence, these are gen-
erally valid formulas from (ordinary) graph spectral theory [14]. Tt seems that these

have not been reported previously.
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SPECIAL CASES AND A CHEMICAL CONNECTION
If the graph G is bipartite, then its characteristic polynomial assumes the form:
$(G,N) = 3 (=1) b;(G) Am¥
)
and b;(G) > 0 for all G and for all j. Then Eq. (10) results in two different

identities, one for even and another for odd coefficients of the Laplacian characteristic

polynomial:

CYJ(G) = (—1)] [b](cv) + Z(_I)k Z drl "'d"u b]‘k(Gl'l.---y"u)] (13)

k>1 r1<-<rak

C2J+I(G) = (_l)j {Z(_l)k Z drl .'.d’7k+lb]—k(Grl---~-"7k+l)] 2 (14)

k>0 < <2k

R T

Consider now trees (= connected acyclic graphs). Because trees are bipartite
graphs, the above relations hold also for them. However, if T'is a tree, then b;(T) is
equal to m(T, ), the number of selections of j mutually independent edges [2,14].

For an n-vertex tree T' the identities (11) and (12) are additionally simplified. If
n is even (n = 2p), then

m(T P) + Z(—l)k Z dr: T (Iru m(TFx.----Mk?p - k)

k>1 <<k

Il
=]

YD Y dey g, (T s — k= 1) = (=1

k>0 r1<<rak 41

If nis odd (n = 2p + 1), then

11
o

Z(Al)k Z drl "'d"zkﬂm(Trl.-»‘.HHl’p_k)

k>0 1< <rakg

m(T,p) + Z(*l)k Z doy - dyem(Ty s p— k) = (=1)Pn.

k>1 ry <o Krg
lere we used the fact that for trees, {((T) = 1.

* Ok kK kK ok
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Any tree T has the noteworthy property that its Laplacian coefficient cn2(T) is
equal to the Wiener topological index W (T') [5-7,25]. (Recall that W(T) is equal to
the sum of distances between all pairs of vertices of 7' [2] and thus, at the first glance,
has nothing in common with graph spectra and characteristic polynomials.) Bearing
in mind the property W(T) = c,_,(T), we obtain, as special cases of the formulas
(13) and (14), the following expression for the Wiener index.

For a tree T with an even number of vertices (n = 2p)

]

W(T) = (-1

m(T,p~1)+Z(-l)k Z drl”'drzkrn(Trl ,,,,, r“,pkal)
k>1 ri<--<rak

(15)

whereas if the number of vertices is odd (n = 2p + 1),

W(T) = (=1)P*! [2(4)" > by dy, m(T, m“,p-k—l)} . (16)
k>0 1<k

Formulas (15) and (16), although inappropriate for actual calculation of the

Wiener index, reveal some novel concealed algebraic properties of this structure-

descriptor: By means of (15) and (16), the distance-based topological index W is

expressed in terms of numbers of selections of independent edges of the tree 7' and

its subgraphs. Thus we encounter another unexpected algebraic connection (26,27]

between the Wiener index and other - formally unrelated - topological indices, in

particular between Wiener index and Hosoya-index-type structure -descriptors.
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