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The Wiener index of a tree 7" obeys the relation W(T') = 3 n,(e) - ny(e) where n)(e) and
e

ny(e) are the numbers of vertices on the two sides of the edge e, and where the summa-
tion goes over all edges of 7. Recently, a class of modified Wiener indices "W ,(T) =

> lmle) nz(e)]A, was put forward and it has been shown that some of the main prop-
e

erties of W are, in fact, properties of ™V ,. Here we show that any nontrivial linear
combination of the indices ", gives rise to an index T’/ which is suitable for modeling
branching-dependent properties of organic compounds. We also demonstrate that if trees
are ordered with regard to 7T then, in the general case, this ordering is different from
any of orderings based on any "W ,.

* Author to whom correspondence should be addressed. Supported in part by the Ministry of
Education. Science and Sport of Slovenia.
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1 Introduction

The molecular-graph-based quantity W , nowadays known under the name Wiener index
or Wiener number, is one of the most thoroughly studied molecular-structure-descriptors
[2, 3] and it is still a topic of current research. For example, the fiftieth anniversary of
the appearence of the Wiener’s seminal paper [1] was celebrated by a special issues of
MATCH [4].

A large number of modifications and extensions of the Wiener index was considered in the
chemical literature; an extensive bibliography on this matter can be found in the reviews
5, 6]. Some recent modifications are based on the following formula for the calculation

of the Wiener number of acyclic (molecular) graphs:

V(T) =) ni(e)  nafe) (1)

where T' denotes a tree (= connected and acyclic graph) (2, 7], ni(e) and ny(e) are the
number of vertices of 7" lying on the two sides of the edge e, and where the summation goes
over all edges of 7. [Recall that formula (1) is not the definition of the Wiener index, but
a mathematical theorem(1]; the Wiener index is defined as the sum of distances between
all pairs of vertices] One of the newest such modifications was put forward by Nikoli¢,
Trinajsti¢ and Randi¢ [8]. They introduced the “modified Wiener indez” ™¥ | defined as
"W(T) = £, [ni(e) - na(e)] ™" in analogy to formula (1). More recently, Gutman et al.[9]

have defined “a class of modified Wiener indices” ™V, , defined as

TVAT) =Y [ni(e) - na(e)) (2)

where A is a parameter that may assume different values. Clearly, for A = +1 and
A = -1, the modified Wiener index ™, reduces to the ordinary Wiener index IV and
the Nikoli¢-Trinajsti¢ - Randi¢ index ™W | respectively.

Eq. (2) may be understood as a sum of increments, each associated with a particular
edge of the molecular graph. Clearly, the contribution of the edge e, denoted by "W, =
WV e(G), s equal to [n(e) - ny(e)]’ . The quantities ny(e) and ny(e) may be defined in a

somewhat more formal manner: Let G be an arbitrary graph and let its edge ¢ connect
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the vertices u and v. Then n,(e) is the number of vertices of G whose distance to u is
smaller than the distance to v. Similarly, ny(e) is the number of vertices of G whose
distance to u is greater than the distance to v. If so, then any of the modified Wiener
indices "Wy, Eq. (2), is a well-defined quantity for all graphs G . [Note that in the case
A = +1 (i.e. the original Wiener index) this definition on general graphs is known as the
Szeged index [10, 11], which is in general different from the sum of all distances.]

An important property of the Wiener index are the inequalities
W(P) > W(T,) > W(S.) (3)

where P, S, , and T, denote respectively the n-vertex path, the n-vertex star (cf. Figure
1), and any n-vertex tree different from P, and S,, and n is any integer greater than
4. Because of the relation (3), the Wiener index may be viewed as a “branching indez”,
namely a topological index capable of measuring the extent of branching of the carbon-
atom skeleton of molecules and capable of ordering isomers according to the extent of
branching. (Branching is an important structural concept which is difficult to define in
a rigorous way that would satisfactory reflect the intuition. For more references on the
problem of measuring branching see the paper [12].)

It is known [12, 9] that the Wiener index and its modifications, i.e. the class of modified
Wiener indices ™ (as defined in [9]) have the following two properties, which are clearly
needed for any descriptor which may be used for measuring branching.

First, in order that a topological index T'T be acceptable as a measure of branching it

must satisfy the inequalities
TI(P,) <TIT,) <TI(S,) , n=5,6,... (4)

where P, and S, are the n-vertex path graph and star, respectively (see Figure 1), and
where T, is any n-vertex tree, different from P, and S, . Indeed, among n-vertex trees
P, is the least branched and S,, the most branched species.

Second, if T and T* are graphs whose structure is depicted in Figure 1, then one requires

that the inequality

TI(T*) < TI(T) (5)
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holds irrespective of the actual form of the fragment R. This is because the vertex vy
in T* is more branched (has greater degree) than the vertex vy in T whereas the other

structural details in 7" and T are the same.

- ---0—9----0—90
L Y Vo Uy Uy,
T*

Figure 1: T* is less branched than 7'

Clearly, if instead of (4) and (5), the reversed inequalitites (6) and (7) are obeyed, T/

also satisfies minimal requirements for being suitable for measuring branching.
TPy > Tl >TIHS:) 5 1=15;6iu (6)

THTY) s T (7)



123

We shall analyze the set of topological indices, linear combinations of two different gen-

eralized modified Wiener indices "W, given by the following formula:
LVMJ?-"I.OZ (G) = ~"‘WA, (G) + g - "‘I/‘V,\, (G) , o, >0, A\ € (“1,0) . (8)

In the next section we first prove that any linear combination of modified Wiener indices
has the above two properties (Theorem 1).

In Section 3 we also show (Theorem 4) that any nontrivial linear combination of modified
Wiener indices gives rise to a quantity which is essentially different {rom any ™. In
other words, we prove that if trees are ordered with regard to T then, in the general
case, this ordering is different from any of orderings based on any ™W,.

In Section 4 we discuss a couple of open questions.

2 Theorem 1 and its proof

Theorem 1 Let ay,a; > 0, A, Ay € (—1,0). Then
WM.»\z.Ol,aa(Pﬂ) < WM,/\z.m,m(Tﬂ) < W»\x.»\z,m,m(sn) , n=35,6,... (9)

WAlv/\2v(‘l.02(T.) < W/\l./\Z;al,(’2(T) ) (10)

where P, and S, are the n-verter path graph and star, and T and T" are graphs whose

structure 1s depicted in Figure 1.

In other words, Wy, x,.0,,a, Satisfies (4) and (5), and can be called a “branching index”.

Proof. Recall that
Wiidnenee (G) = a1 - ™Wy (G) + ay - "W, (G) (11)
and let us prove that (4) holds for Wy, 1, a,.a,, 1-€.
Wi azaner (Pn) < Wi anarae (Th) < Wi sgares (Sn), n=15,6, ... (12)
We have, by Theorem 1 of 9],

"y (P) < "Wy, (Ta) < ™Wa, (Sa), n=5,6, ... (13)

"W, (Pn) < "W, (Th) < ™Wa, (Sh), n=

ot

D
=

a



124

Multiplying (13) with @, and (14) with @, and summarizing the resulting inequalities,

the claim follows.

Along the same lines it can be proved

VV/\l,M,ﬂl.ﬂ'z (T.) < VV)\lv\z,ﬂl,ﬂz (T) . (15)
In order to obtain ™W,, (T™*) < ™W,, (T) and ™V, (T*) < ™W,, (T) we can use:

Theorem 2 (Theorem 2 of (9]) Let T" wnd T" be trees the structure of which is shown
mn Figure 2. Then the transformation T — T" increases ™W, if A > 0 and decreases

"W, if A< 0.

Theorem 2 for A < 0 clearly implies "W (T*) < "W, (T).
Summing up "Wy, (T*) < "Wy, (T) multiplied by a; and "W, (T*) < "W, (T') multi-
plied by a3 gives (15).

Figure 2: T" is less branched than 7".
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3 Theorem 4 and its proof
Before proving the main results we recall the following lemma that is proved in [9):

Lemma 3 Let A\, Ay € (—00,0)\ {=1}, A\| # Xp. There is a rational number g € (1,20)
such that

x,+\l/q+1+2*l 4 oayfat 12 (16)

q+2 q+2
Now, we shall prove that the indices (8) are really a generalization of the modified Wiener
indices, i.e. we shall prove that for each @), a; > 0 and each A;, Ay € (—1,0) such that

AL # A, there is no A3 < 0 such that
Wi dzsieias = "W (17)
where = is the equivalence relation, defined formally as
(Th =Th) & [(VT., Ty € T)(TH(T.) < TL(Ty)) (T1(T,) < TH(T))].

In words: for two topological indices T'I, and TI,, TI, = T, if and only if they define

exactly the same order among the set of all trees T.
Theorem 4 Let A\, \y € (—1,0),A; <0, ay,ap > 0 and Ay # Ay, Then
Wiianerar 2™, (18)
Before proving the theorem let us define a family of graphs G (z,y), see Figure 3.
For later reference note that
"W (Gs(a,0)) = (a+b) (a+ 2b)* + b[2 (a + 2b — 1)) (19)
and
"Wa(Sh) = (= 1)(n - 1)} = (n - DM (20)
Proof. We have to find two graphs G' and H such that

H//\hAg,o],n-z (G) < LVA.,X).QA,QQ ([1)

"Wy (H) > ™, (G)
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Figure 3: The graphs G; (z,y).

or graphs G and H such that

M/’\l‘/\lyﬂlvﬂz (G) 2 W>\l./\2|alv°‘l (H)
Wi (H) < ™V, (G).
We will distinguish three cases:
l) A3 < —1.

Consider the path P, and the star S,.

Wi, (P) = 1

(
W/\l,)\zml.og(P2) = a +a
(

Wi (S4) = 3-3% <1

Wiidnarar (S1) = ay ™y (S4) + a2 - ™Wy, (Sq) > oy + oy

2) /\3 =-1.

Let a be the smallest natural number such that
2\ %2
PR P I (P (14— w) S > ap + .
a
Such a certainly exists, because Ay + 1 > 0. Let b = 3a. We have

"W (P) = 1

(21)
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", (Ga(a,b) = (a+b)(at2b) " +b[2(at2-1))" < % + % <1
Wiidsara: (P2) = ap- "Wy (P) +ay- "Wy, (P)=a, 1l+a 1 =a; +a
Wiidsenae (G3(a,0)) > ay-"™W,, (G;(a, b))
= {(a+b)(@+2w)* +b2(a+20-1)"} a

2\ %2
= ght! {4~7“+3~<14——) :|‘a'z>(‘11+02,
a

SO

"W, (P2) > ™W,, (G (a,b))

Wiidzana (P2) < Wi x a0, (Ga(a, b))
3) A3 > —1.
Without loss of generality, we may assume that A\; < A,. Furthermore, we will assume
ag = 1. This follows from observation that, for any constant C > 0, C - ™V, gives the
same order as ™V, (See Lemma 5) and transitivity of the relation =.
We will consider two subcases:
3.1) A # As.
From Lemma 3, it follows that there is a rational number g € (1, 00) such that

x2+|q+1+2*?¢ i@ H14+2%
q+2 q+2

(22)
Distinguish two subsubcases:

3.1.1) . et g2 agpafgtl42h
et q+2 q+2

Analogously as in the paper [9], after a tedious computation, we get that there are natural

numbers a, b and ¢ such that

(a+b) (a+20)™ +b(2% (a+2b))

om < 1
(a+b)(a+20)" +b (2" (a+20)")
> 1.
¢t

[t follows that

( Q- [(ma + mb) (ma + 2mb)™ + mb (2*’ (rma + 2mb - l)'\')} )

. + (ma + mb) (ma + 2mb)™ + mb (2*2 (ma + 2mb — l)A")
im
L— 00

" % |
ay-me - (me)™ + me- (me)
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(ma + mb) (ma + 2mb)™ + mb (2’\3 (ma + 2mb — l)h)
A3

lim
m=300 me - (mc)

So, there is sufficiently large integer m, such that
(ma + mb) (ma + 2mb)™ +
G pmb (2“ (ma + 2mb — I)A’)
+ (ma + mb) (ma + 2mb)™ +
+mb (2’\’ (ma + 2mb — 1)'\’)
(ma + mb) (1na + 2mb)™® + mb (2*3 (ma + 2mb — 1)’\3) > me- (me)™.

From here, we get

"V»\l,)\z,ol,az (GJ (ma, mb)) < VV/\],/\;,O],CI) (Smc-H)

"W (Gs (ma,mb)) > "W, (Smes1) -

Apt1f g1+t Ag+1f g+1+243
3.1.2) M/ i < e

As in the previous case (just reversing the inequality signs) we get

”,/\1)\2,01,02 (GS (ma: mb)) > LV/\I‘)\Z‘,OMQZ (Smc+l)

mﬂ/,\J (G3 (ma, mb)) < mW)‘J (Smc+l) .

32) /\2 = /\3.
We shall use the following claim, which will be proved later:

Claim A. Let A\, A\, € (—1,0), A} < A\, and B > 0. There are graphs G’ and H' such

that
™V, (G') =W, (H')
"W, (H') = "W, (G)
Assume G’ and H' are the graphs from the Claim A and let 8 = aX. Again we distinguish

> B. (23)

two subsubcases:
3.2.1) "Wy, (H') > ™Wy, (G').
We have

"W (G) =W, () a
m”/)‘2 (HI) _ mw//\z (Gr) o,

ay - (MW (G =W (HYD) > ag - (MW, (H') = MWy, (GY))

va\lyr\x,m.ﬂz (GI) > ”'M./\z,m,oz (hﬂ) )
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hence "Wy, = ™V, and W}, 1,.0,.0, order the graphs G’ and H' in different order.

3.2.2) "W, (H') < ™W,, (G").

< olving W@ -"Wy ury myy " ’
As in the case 3.2.1, multiplying ﬁrv;‘;m > 2 by ay - (MWy, (H') - ™V, (G"))
we get

W)\x,»\z,m,az (GI) < WM.Az,al,az (HI) ’

as needed.
All the cases are exhausted and the theorem is proved. m]

Proof of Claim A. From Lemma 3, it follows that there is a rational number q € (1,00)

such that

Al+\:/q+1+2*1 e g+ 1+2%

q+2 q+2 24)

We distinguish two cases:

1) AL+l gH142M > dat g+1+2*2
q+2 q+2

By arguments completely analogous to considerations in the paper [9], it can be proved

that there are natural numbers a, b and ¢ such that

(@+b)(@a+20)" +5(2 (a+2-1)") —c- M < 0

(@+0)(a+20)" +b(2(a+20-1)") —c- ™ > 0.
Let us introduce an auxiliary quantity

t=c-cM— [(a+b)(a+2b)x' +b(2"‘ (a+2b—l)A')] >0.

Note that
AM A A Ay
" me - (me)™ — [(ma +mb) (1ma + 2mb)™* + mb (2 Y (ma + 2mb - 1) )]
m =1
™Mm—00 mrtl ot 2

so, for any sufficiently large m, we have

me - (me)™ — [(ma +mb) (ma + 2mb)™ + mb (2’\‘ (ma + 2mb — 1)'\')] > - omMt g

B o—

Let us denote

Con = [((ma +mb) (ma + 2mb)™ + mb (2’\2 (ma + 2mb — 1)’\’)) mﬂ -1 (25)
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([z] stands for the minimal integer > x.) Then
el
me< ey <m- [(a +b) (a+20)™ +b (2*’ (a+2b— 1)'\’)] AaFE

([z] stands for the maximal integer < z) so

1
et [(ma + mb) (na + 2mb)* + mb (2*‘ (ma + 2mb — 1)’\‘)] > gl mMrt(26)

From (25) and (26) we obtain

cht! - [(ma + mb) (ma + 2mb)* + mb (2*‘ (ma + 2mb — 1)’\’)]
((ma + mb) (ma + 2mb)™* + mb (2"2 (ma + 2mb — 1)'\’)) — !

1, o+l
2°m t

B 27
(m + 1) = g1 -

Note that the function (z + 1)**" — z**! is decreasing, therefore the last expression is

at least
Lomhitl g N _%E_ . mh+1 -
(em + 1),\:+1 _ (cm))\2+1 = A+l (m+ 1)A;+1 "
Let us prove
lim TA:I = o0. (29)
Mmoo (m 4 1)7?T — mietl

It is sufficient to show that, for sufficiently large m, we have

A2+1 AL
(m+ 1M et o o

1\ A2+ 5
(1+—> < 14m7?h
m

Aat!

[<1+l) ] "< 14mih
m

™ ‘In (1 + mizl"\’)

m

Note that lefthandside tends to 1 as m tends to infinity, so it is enough to prove that

A
In(1+ nﬁ""’)

lim —
m-—o0 Axtl
m

> 1
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Let us calculate the limit on the lefthandside using L'Hospital’s rule

% 1 A A -1
In 1+771—2L"\7) —,—*-(;7,\2)1712 :
Lem

lim ————+% = lim
Xt A48 1
e = " Go+1)-(—72)
pgp. . S
= 2 . lim . < lim m® M = o
/\2 +1 m-ooo SF-xy mooo

1+m

Hence (29) is proved. From (27), (28), and (29) it follows that

chitl [(ma + mb) (ma + 2mb)™ + mb (2’\’ (ma + 2mb — I)A')]
lim =
R ((ma +mb) (ma + 2mb)* + mb (2*2 (ma + 2mb — 1)“)) — chat!

)

hence for sufficiently large m and any g

chtt [(ma +mb) (ma + 2mb)* + mb (2*‘ (ma + 2mb — 1)*‘)]
((ma + mb) (ma + 2mb)™ + mb (2*2 (ma + 2mb — 1)’\?)) — ¢l

> B,

"W (Sent1) = ™Wy, (G3 (ma, mb))
"Wy, (G5 (ma, mb)) — "Wy, (S, +1)
and the claim is proved in this case.
2) x,+\/q+;:§h < A2+\1/q+;:;*2.

The arguments in this case are similar to case 1). Details are omimited for brevity of

> 8,

presentation.

This concludes the proof of Claim A. m]

4 Final remark
The following result is obvious:

Lemma 5 Let ay, g, ), o, > 0 be such that & = 2. Then
1 2

H/M,f\'.’,m,n? = M/M.Az.n‘l Jal
Hence all different indices are obtained by considering only Wy, \,.a, e, With o) + o = 1,

ie. the convex combinations of two indices. Equivalently, one can restrict attention to

indices with fixed a; = 1 as we already did in previous section.



132

It is natural to ask whether all pairs of indices in this family yield different orders, or are
there some more pairs (subfamilies) of indices which give the same order among the set
of all trees.

Another question of some interest is the following. In this paper and in [9] it was shown
that a large class of indices based on the modified Wiener index are pairwise nonequivalent
in the sense that they order the set of all trees in different manner. However, the examples
used in the proofs were graphs of different size, i.e. they differed in the number of vertices.
It would be interesting to find (not too complicated) proof of Theorem 4 (and Theorem
3 of [9]) based on construction of examples of pairs of graphs on the same number of

vertices.
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