communications in mathematical and in computer chemistry

ISSN 0340 - 6253

NOTE ON A CLASS OF MODIFIED WIENER INDICES

Damir Vukičević^a and Ivan Gutman^b

^a Department of Mathematics, University of Split, Croatia e-mail: vukicevi@pmfst.hr, and

^b Faculty of Science, University of Kragujevac, Yugoslavia, e-mail: gutman@knez.uis.kg.ac.yu

(Received October 10, 2002)

Abstract

The Wiener index of an n-vertex tree T can be computed by means of the expression $W = \sum\limits_e [n_1(e) \cdot n_2(e)]$, where $n_1(e)$ and $n_2(e) = n - n_1(e)$ are the number of vertices on the two sides of the edge e, and where the summation goes over all edges of T. The modified Wiener index is defined as ${}^m W = \sum\limits_e \left[n_1(e) \cdot n_2(e)\right]^{-1}$. Both W and ${}^m W$ are special cases of the quantity ${}^m W_\lambda = \sum\limits_e \left[n_1(e) \cdot n_2(e)\right]^\lambda$, recently put forward by Žerovnik and the present authors. We now establish a few general properties of ${}^m W_\lambda$, in particular conditions under which for two trees T_1 and T_2 the inequality ${}^m W_\lambda(T_1) > {}^m W_\lambda(T_2)$ holds for all negative or all positive values of the parameter λ .

INTRODUCTION

The topological index W, conceived by Wiener in 1947 [1], is defined as the sum of distances between all pairs of vertices of the molecular graph. It is the oldest and probably the most thoroughly examined molecular-graph-based structure-descriptor.

Motivated by the success of the Wiener index, but also attempting to overcome some of its weak points, numerous of its modifications and extensions were proposed in the chemical literature; an extensive bibliography on this matter can be found in the handbook [2], review [3] and the recent papers [4, 5].

In the seminal paper [1], in addition to the vertex-distance-based definition of the Wiener index, a peculiar formula for its calculation was communicated:

$$W(T) = \sum_{e} n_1(e|T) \cdot n_2(e|T) \tag{1}$$

where T stands for the molecular graph of an alkane, where $n_1(e|T)$ and $n_2(e|T)$ are the number of vertices of T lying on the two sides of the edge e, and where the summation embraces all edges of T. It can be immediately verified [6, p. 127] that formula (1) holds for all trees (= connected acyclic graphs).

One of the newly proposed modifications of the Wiener index [7] is based on formula (1) and reads

$${}^{m}W(T) = \sum_{e} [n_{1}(e|T) \cdot n_{2}(e|T)]^{-1}$$
 (2)

The quantity "W was named "modified Wiener index" [7]. Some of its mathematical properties were recently established [5], and found to be analogous (yet opposite) to the properties of the ordinary Wiener index. These findings motivated us to consider an entire class of Wiener-type indices, defined as [8]

$${}^{m}W_{\lambda}(T) = \sum_{\epsilon} \left[n_{1}(\epsilon|T) \cdot n_{2}(\epsilon|T) \right]^{\lambda} . \tag{3}$$

Evidently, for $\lambda = +1$ and $\lambda = -1$ the right-hand side of Eq. (3) reduces to the ordinary and the modified Wiener index, respectively, Eqs. (1) and (2).

It has been shown [8] that there are numerous (chemical) trees whose ordering with respect to ${}^{m}W_{\lambda}$ does not depend on the actual value of the parameter λ (except that this ordering is reversed when λ changes sign). This invariant behavior is based on the following elementary result [8]:

Lemma 1a. Let T_1 and T_2 be two trees with equal number of vertices (and hence with equal number of edges). If their edges can be labeled so that

$$n_1(e|T_1) \cdot n_2(e|T_1) \le n_1(e|T_2) \cdot n_2(e|T_2) \tag{4}$$

for all e, then ${}^m\!W_\lambda(T_1) \leq {}^m\!W_\lambda(T_2)$ for any $\lambda > 0$ and ${}^m\!W_\lambda(T_1) \geq {}^m\!W_\lambda(T_2)$ for any $\lambda < 0$. If at least one of the inequalities (4) is strict, then the inequalities between ${}^m\!W_\lambda(T_1)$ and ${}^m\!W_\lambda(T_2)$ are also strict.

In this paper, when ambiguity is not possible, we write n_i instead of $n_i(e|T)$, i = 1, 2. Further, we shall always label n_1 and n_2 so that $n_1 \leq n_2$.

Denote by n the number of vertices of the tree T. Then, in view of the fact that $n_1(e|T) + n_2(e|T) = n$ holds for all edges e of T, and that

$$1 \cdot (n-1) < 2 \cdot (n-2) < \dots < \lfloor n/2 \rfloor \cdot \lceil n/2 \rceil \tag{5}$$

we may re-state Lemma la as follows:

Lemma 1b. Let T_1 and T_2 be two trees with equal number of vertices. If their edges can be labeled so that

$$n_1(e|T_1) \le n_1(e|T_2)$$
 (6)

for all e, then ${}^m\!W_\lambda(T_1) \leq {}^m\!W_\lambda(T_2)$ for any $\lambda > 0$ and ${}^m\!W_\lambda(T_1) \geq {}^m\!W_\lambda(T_2)$ for any $\lambda < 0$. If at least one of the inequalities (6) is strict, then the inequalities between ${}^m\!W_\lambda(T_1)$ and ${}^m\!W_\lambda(T_2)$ are also strict.

In what follows we deduce some additional conditions under which the ordering of trees (with respect to ${}^mW_{\lambda}$) is same for all negative or all positive values of λ . We start with another elementary finding.

Let \mathcal{T} denote the set of all trees.

Lemma 2. Let $T_1, T_2 \in \mathcal{T}$. If ${}^mW_{\lambda}(T_1) < {}^mW_{\lambda}(T_2)$ for all $\lambda < 0$, then T_1 and T_2 have equal number of vertices.

Before proving Lemma 2 we point out two properties of the Wiener-type index ${}^{m}W_{\lambda}$. Let T be a tree with n vertices, of which p vertices are of degree 1. Then

$$\lim_{\lambda \to 0} {}^{m}W_{\lambda}(T) = n - 1 \tag{7}$$

$$\lim_{\lambda \to -\infty} \frac{{}^{m}W_{\lambda}(T)}{p(n-1)^{\lambda}} = 1.$$
 (8)

The limit (7) holds because the right-hand side of Eq. (3) has n-1 summands. The limit (8) is a direct consequence of (5) and the fact that in T there are p edges whose contribution to the right-hand side summation in Eq. (3) is equal to $[1 \cdot (n-1)]^{\lambda} = (n-1)^{\lambda}$. Note that relation (8) holds for $n \geq 3$. For the (unique) 2-vertex tree, namely the 2-vertex path. p=2 and ${}^mW_{\lambda} \equiv 1$. Therefore, for n=2 the right-hand side of Eq. (8) is equal to 1/2.

Proof of Lemma 2. Applying the limit (7) we get

$$\lim_{\lambda \to 0^{-}} \left[{}^{m}W_{\lambda}(T_{1}) - {}^{m}W_{\lambda}(T_{2}) \right] = n(T_{1}) - n(T_{2}) .$$

It cannot be $n(T_1) > n(T_2)$, because then for near-zero (and negative) values of λ it would be ${}^m\!W_\lambda(T_1) > {}^m\!W_\lambda(T_2)$.

It cannot be $n(T_1) < n(T_2)$, because then from the limit (8) it would follow:

$$\lim_{\lambda \to -\infty} \frac{{}^mW_\lambda(T_2)}{{}^mW_\lambda(T_1)} = \frac{p(T_2)}{p(T_1)} \lim_{\lambda \to -\infty} \left(\frac{n(T_2)-1}{n(T_1)-1}\right)^\lambda = 0$$

implying ${}^m\!W_\lambda(T_2) < {}^m\!W_\lambda(T_1)$ for sufficiently large (and negative) λ .

Therefore, if ${}^mW_{\lambda}(T_1) < {}^mW_{\lambda}(T_2)$ holds for all negative values of the parameter λ , then it must be $n(T_1) = n(T_2)$.

There is no analog of Lemma 2 for $\lambda>0$. Namely, there exist pairs of trees T_1 and T_2 with unequal number of vertices, such that ${}^m\!W_\lambda(T_1)<{}^m\!W_\lambda(T_2)$ holds for all $\lambda>0$. Example: the 2-vertex path $({}^m\!W_\lambda=1)$ and the 3-vertex path ${}^m\!W_\lambda=2\cdot 2^\lambda$.

In order to become able to formulate and prove further results of the same kind we need to introduce a few more notions.

PREPARATIONS

Consider an *n*-vertex tree T. As before, $n_1(e|T) = n_1$ denotes the number of vertices of T that lie on one side of the edge e, assuming that not fewer vertices lie on

the other side of e. The minimal value of n_1 is 1, because any tree possesses vertices of degree 1. The maximal possible value of n_1 is $\lfloor n/2 \rfloor$.

Let $\nu(T,k)$ be the number of times the n_1 -values of the tree T are equal to k. Let $\nu(T)$ stand for the $(\lfloor n/2 \rfloor)$ -tuple

$$(\nu(T,1),\nu(T,2),\ldots,\nu(T,|n/2|))$$
.

Note that

$$\sum_{k=1}^{\lfloor n/2 \rfloor} \nu(T,k) = n(T) - 1 \tag{9}$$

and

$${}^{m}W_{\lambda}(T) = \sum_{k=1}^{\lfloor n/2 \rfloor} \nu(T, k) \left[k (n - k) \right]^{\lambda} . \tag{10}$$

The lexicographic order of n-tuples of real numbers, denoted by $<_{lex}$ is defined as usual:

$$\begin{split} &(a_1,a_2,\ldots,a_n)<_{lex}(b_1,b_2,\ldots,b_n)\Leftrightarrow\\ \Leftrightarrow &(\exists i)[(a_i< b_i)\wedge(\forall j)j< i\Longrightarrow a_j=b_j]\;. \end{split}$$

We say that $(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$ if $a_i = b_i$ for all $i = 1, 2, \ldots, n$. If $(a_1, a_2, \ldots, a_n) \neq (b_1, b_2, \ldots, b_n)$, then either $(a_1, a_2, \ldots, a_n) <_{lex} (b_1, b_2, \ldots, b_n)$ or $(b_1, b_2, \ldots, b_n) <_{lex} (a_1, a_2, \ldots, a_n)$.

The inverse lexicographic order < lex. is determined analogously:

$$(a_1, a_2, \dots, a_n) <_{lex^*} (b_1, b_2, \dots, b_n) \Leftrightarrow$$

$$\Leftrightarrow (\exists i)[(a_i < b_i) \land (\forall j)j > i \Longrightarrow a_j = b_j].$$

We introduce a further relation $<_{slex}$ as follows:

$$(a_1, a_2, \dots, a_n) <_{slex} (b_1, b_2, \dots, b_n) \Leftrightarrow$$

$$\Leftrightarrow (\forall j) \left(\sum_{i=1}^j a_i \le \sum_{i=1}^j b_i \right) \wedge \left[(a_1, a_2, \dots, a_n) \ne (b_1, b_2, \dots, b_n) \right].$$

For the elements of the set \mathcal{T} of all trees, three binary relations, \prec , \prec^* , and \prec_s can now be defined.

Let $T_1, T_2 \in \mathcal{T}$. Then

$$T_1 \prec T_2 \Leftrightarrow (n(T_1) = n(T_2)) \wedge [\nu(T_1) <_{lex} \nu(T_2)]$$

$$T_1 \prec^* T_2 \Leftrightarrow (n(T_1) = n(T_2)) \wedge [\nu(T_1) <_{lex^*} \nu(T_2)]$$

$$T_1 \prec_* T_2 \Leftrightarrow (n(T_1) = n(T_2)) \wedge [\nu(T_1) <_{slex} \nu(T_2)]$$

THE MAIN RESULTS

Theorem 3. Let T_1 and T_2 be any trees. If ${}^m\!W_\lambda(T_1) < {}^m\!W_\lambda(T_2)$ holds for all $\lambda < 0$ then $T_1 \prec T_2$.

Proof. From Lemma 2 follows that $n(T_1) = n(T_2)$. In order to simplify the below notation, denote $n(T_1) = n(T_2)$ by n.

Let the index i, $1 \le i \le \lfloor n/2 \rfloor$, be determined by the conditions $\nu(T_1, i) \ne \nu(T_2, i)$ and $\nu(T_1, j) = \nu(T_2, j)$ for all j < i. Because $\nu(T_1) \ne \nu(T_2)$, such i always exists.

Now, in view of relation (10), ${}^mW_{\lambda}(T_1) < {}^mW_{\lambda}(T_2)$ is tantamount to

$$\sum_{k=1}^{\lfloor n/2 \rfloor} \left[\nu(T_1, k) - \nu(T_2, k) \right] \left[k \left(n - k \right) \right]^{\lambda} < 0$$
 (11)

After cancellation in Eq. (11) we get

$$\sum_{k=1}^{\lfloor n/2 \rfloor} \left[\nu(T_1, k) - \nu(T_2, k) \right] \left[k (n-k) \right]^{\lambda} < 0$$

i. e.,

$$\frac{\sum\limits_{k=i}^{\lfloor n/2\rfloor}\nu(T_1,k)\left[k\left(n-k\right)\right]^{\lambda}}{\sum\limits_{k=i}^{\lfloor n/2\rfloor}\nu(T_2,k)\left[k\left(n-k\right)\right]^{\lambda}}<1$$

which holds for all $\lambda < 0$. On the other hand,

$$\lim_{\lambda \to -\infty} \frac{\sum_{k=i}^{\lfloor n/2 \rfloor} \nu(T_1, k) \left[k (n-k) \right]^{\lambda}}{\sum_{k=i}^{\lfloor n/2 \rfloor} \nu(T_2, k) \left[k (n-k) \right]^{\lambda}} = \frac{\nu(T_1, i)}{\nu(T_2, i)}$$

and therefore $\nu(T_1,i)/\nu(T_2,i) < 1$, implying $T_1 \prec T_2$. \Box

In a fully analogous manner we prove:

Theorem 4. Let T_1 and T_2 be trees with equal number of vertices. If ${}^m\!W_\lambda(T_1) < {}^m\!W_\lambda(T_2)$ holds for all $\lambda > 0$ then $T_1 \prec^* T_2$.

The converses of Theorems 3 and 4 are not true. Namely, there exist pairs of trees, such that $T_1 \prec T_2$, but ${}^m\!W_\lambda(T_1) > {}^m\!W_\lambda(T_2)$ for some $\lambda < 0$. Also, there exist pairs of trees, such that $T_1 \prec^{\bullet} T_2$, but ${}^m\!W_\lambda(T_1) > {}^m\!W_\lambda(T_2)$ for some $\lambda > 0$.

A counterexample to the converse of Theorem 3 are the (2a+1)-vertex trees $T_1(a)$ and $T_2(a)$ for sufficiently large value of the parameter a.

 $T_1(a)$ is obtained from a copies of 2-vertex paths, by joining a vertex of each copy to a new vertex. $T_2(a)$ is obtained from an (a + 1)-vertex path, by attaching to its terminal vertex a new vertices of degree 1.

We have

$$\nu(T_1(a)) = (a, a, 0, 0, 0, \dots, 0)$$

$$\nu(T_2(a)) = (a + 1, 1, 1, 1, 1, \dots, 1)$$

and, consequently, $T_1(a) \prec T_2(a)$.

Note that

$$\lim_{a \to \infty} \left((a+1) \cdot \frac{1}{2a} + \frac{1}{2(2a-1)} + (a-1) \cdot \frac{1}{3(2a-2)} \right) = \frac{2}{3}$$

and that

$$\lim_{a \to \infty} \left(a \cdot \frac{1}{2a} + a \cdot \frac{1}{2(2a-1)} \right) = \frac{3}{4} .$$

Therefore, for a sufficiently large value of a

$$a \cdot \frac{1}{2a} + a \cdot \frac{1}{2(2a-1)} > (a+1) \cdot \frac{1}{2a} + \frac{1}{2(2a-1)} + (a-1) \cdot \frac{1}{3(2a-2)}$$

Bearing this inequality in mind, we now have

$$W_{-1}(T_1(a)) = a \cdot \frac{1}{2a} + a \cdot \frac{1}{2(2a-1)}$$

$$> (a+1) \cdot \frac{1}{2a} + \frac{1}{2(2a-1)} + (a-1) \cdot \frac{1}{3(2a-2)}$$

$$\ge (a+1) \cdot \frac{1}{2a} + \frac{1}{2(2a-1)} + \sum_{k=3}^{a} \frac{1}{k(2a+1-k)}$$

$$= W_{-1}(T_2(a)).$$

Hence, in spite of $T_1(a) \prec T_2(a)$, for sufficiently large values of the parameter a, the modified Wiener index of $T_1(a)$ exceeds the modified Wiener index of $T_2(a)$.

A counterexample to the converse of Theorem 4 are the (6b+4)-vertex trees $T_1(b)$ and $T_2(b)$ for sufficiently large value of the parameter b.

 $T_1(b)$ is obtained from a (4b+3)-vertex path, by attaching to its central vertex the terminal vertex of a (2b+1)-vertex path. $T_2(b)$ is obtained from the 2-vertex path, by attaching to each of its vertices 3b+1 new vertices of degree 1.

We have

$$\nu(T_1(b)) = (3, 3, \dots, 3, 0, 0, \dots, 0)$$

 $\nu(T_2(b)) = (6b + 2, 0, 0, \dots, 0, 1)$

and, consequently, $T_1(b) \prec^* T_2(b)$.

Direct calculation yields

$${}^{m}W_{\lambda}(T_{1}(b)) = \sum_{k=1}^{2b+1} 3 \left[k(6b+4-k) \right]^{\lambda}$$

 ${}^{m}W_{\lambda}(T_{2}(b)) = (6b+2) (6b+3)^{\lambda} + (3b+2)^{2\lambda}$

which for $\lambda = +1$ results in

$$W(T_1(b)) = (b+1)(2b+1)(14b+9)$$

$$W(T_2(b)) = 45b^2 + 42b + 10.$$

Thus, for $\lambda = +1$ and sufficiently large b, ${}^mW_{\lambda}(T_1(b))$ exceeds ${}^mW_{\lambda}(T_2(b))$.

On the other hand, in the limit case $\lambda \to +\infty$,

$${}^{m}W_{\lambda}(T_{1}(b)) \sim 3(8b^{2} + 10b + 3)^{\lambda}$$

 ${}^{m}W_{\lambda}(T_{2}(b)) \sim (9b^{2} + 12b + 4)^{\lambda}$

and therefore, for sufficiently large values of b and λ , ${}^m\!W_\lambda(T_1(b)) < {}^m\!W_\lambda(T_2(b))$.

Hence, in spite of $T_1(b) \prec^* T_2(b)$, if b is sufficiently large, then the value of ${}^m\!W_\lambda(T_1(b))$ is sometimes smaller and sometimes greater than ${}^m\!W_\lambda(T_2(b))$, depending on the actual value of the parameter $\lambda>0$.

In what follows we need an auxiliary result:

Lemma 5. Let a_1, a_2, \ldots, a_m be numbers, not all of which being equal to zero, such that

$$\sum_{k=1}^{J} a_k \ge 0 \tag{12}$$

holds for all $j=1,2,\ldots,m$. Let b_1,b_2,\ldots,b_m be numbers, such that $b_1>b_2>\cdots>b_m>0$. Then

$$\sum_{k=1}^{m} a_k b_k > 0. (13)$$

Proof. For j = 1, 2, ..., m - 1, multiply the inequality (12) by $b_j - b_{j+1} > 0$. For j = m, multiply (12) by $b_m > 0$. This yields

$$a_{1}(b_{1} - b_{2}) \geq 0$$

$$a_{1}(b_{2} - b_{3}) + a_{2}(b_{2} - b_{3}) \geq 0$$

$$a_{1}(b_{3} - b_{4}) + a_{2}(b_{3} - b_{4}) + a_{3}(b_{3} - b_{4}) \geq 0$$

$$\cdots$$

$$a_{1}(b_{m-1} - b_{m}) + a_{2}(b_{m-1} - b_{m}) + a_{3}(b_{m-1} - b_{m}) + \cdots + a_{m-1}(b_{m-1} - b_{m}) \geq 0$$

$$a_{1}b_{m} + a_{2}b_{m} + a_{3}b_{m} + \cdots + a_{m-1}b_{m} + a_{m}b_{m} \geq 0$$

Because not all a_k 's are equal to zero, at least one of the above inequalities is strict. By summing them we arrive at (13).

Theorem 6. Let $T_1, T_2 \in \mathcal{T}$. If $T_1 \prec_s T_2$, then ${}^m\!W_\lambda(T_1) < {}^m\!W_\lambda(T_2)$ for all values of $\lambda < 0$.

Proof. $T_1 \prec_s T_2$ implies that T_1 and T_2 have equal number of vertices, which (as before) we denote by n. Further, $T_1 \prec_s T_2$ means that the inequalities

$$\sum_{k=1}^{J} \left[\nu(T_2, k) - \nu(T_1, k) \right] \ge 0$$

are obeyed for all $j = 1, 2, \dots, \lfloor n/2 \rfloor$.

We may now identify $\lfloor n/2 \rfloor$ and $\nu(T_2,k) - \nu(T_1,k)$ with m and a_k in Lemma 5, and choose $b_k = \lfloor k(n-k) \rfloor^{\lambda}$. Because $\nu(T_1) \neq \nu(T_2)$ and because for $\lambda < 0$,

$$[1(n-1)]^{\lambda} > [2(n-2)]^{\lambda} > \cdots > [\lfloor n/2 \rfloor) \cdot [n/2]^{\lambda}$$

all the conditions of Lemma 5 are fulfilled, and therefore

$$\sum_{k=1}^{\lfloor n/2 \rfloor} \left[\nu(T_2, k) - \nu(T_1, k) \right] \left[k(n-k) \right]^{\lambda} > 0$$

i. e.,

$$\sum_{k=1}^{\lfloor n/2\rfloor} \nu(T_1, k) \left[k(n-k) \right]^{\lambda} < \sum_{k=1}^{\lfloor n/2\rfloor} \nu(T_2, k) \left[k(n-k) \right]^{\lambda}$$

and, in view of (10),

$${}^mW_{\lambda}(T_1) < {}^mW_{\lambda}(T_2)$$
.

Lemma 7. Let a_1, a_2, \ldots, a_m be numbers, not all of which being equal to zero, such that

$$\sum_{k=1}^{J} a_k \geq 0 \tag{14}$$

holds for all $j = 1, 2, \dots, m-1$, and

$$\sum_{k=1}^{m} a_k = 0. (15)$$

Let b_1, b_2, \ldots, b_m be numbers, such that $0 < b_1 < b_2 < \cdots < b_m$,. Then

$$\sum_{k=1}^m a_k b_k < 0.$$

Proof. For $j=1,2,\ldots,m-1$, multiply (14) by $b_j-b_{j+1}<0$, and multiply (15) by $b_m>0$. Then proceed in an analogous manner as in the proof of Lemma 5.

Theorem 8. Let $T_1, T_2 \in \mathcal{T}$. If $T_1 \prec_s T_2$, then ${}^m\!W_\lambda(T_1) > {}^m\!W_\lambda(T_2)$ for all values of $\lambda > 0$.

Proof is analogous as of Theorem 6. We have again

$$\sum_{k=1}^{j} \left[\nu(T_2, k) - \nu(T_1, k) \right] \ge 0$$

for $j=1,2,\ldots, \lfloor n/2 \rfloor -1$, whereas for $j=\lfloor n/2 \rfloor$,

$$\sum_{k=1}^{j} \left[\nu(T_2, k) - \nu(T_1, k) \right] = 0$$

because of (9).

Identifying $\lfloor n/2 \rfloor$ and $\nu(T_2,k) - \nu(T_1,k)$ with m and a_k in Lemma 7, choosing $b_k = [k(n-k)]^{\lambda}$, and bearing in mind that for $\lambda > 0$,

$$[1(n-1)]^{\lambda} < [2(n-2)]^{\lambda} < \dots < [\lfloor n/2 \rfloor) \cdot [n/2]]^{\lambda}$$

we see that all the conditions of Lemma 7 are fulfilled. Therefore, for $\lambda > 0$

$$\sum_{k=1}^{\lfloor n/2 \rfloor} \left[\nu(T_2, k) - \nu(T_1, k) \right] \left[k(n-k) \right]^{\lambda} < 0$$

resulting in ${}^mW_{\lambda}(T_1) > {}^mW_{\lambda}(T_2)$.

References

- [1] H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.
- [2] R. Todeschini and V. Consonni, *Handbook of Molecular Descriptors*, Wiley-VCH, Weinheim, 2000.
- [3] M. V. Diudea and I. Gutman, Croat. Chem. Acta 71 (1998) 21-51.
- [4] O. Ivanciuc and D. J. Klein, J. Chem. Inf. Comput. Sci. 42 (2002) 8-22.
- [5] I. Gutman and J. Žerovnik, Croat. Chem. Acta 75 (2002) 603-612.
- [6] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
- [7] S. Nikolić, N. Trinajstić and M. Randić, Chem. Phys. Lett. 333 (2001) 319-321.
- [8] I. Gutman, D. Vukićević and J. Žerovnik, Croat. Chem. Acta. submitted.