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Abstract

The Wiener index of an n-vertex tree T can be computed by means of the ex-
pression W = $[n;(e) - ny(e)], where ny(e) and ny(e) = n — n;(e) are the number of

vertices on the two sides of the edge e, and where the summation goes over all edges
of T. The modified Wiener indez is defined as "W = 5 [n,(e) - ny(e)]”' . Both W

and ™ are special cases of the quantity "W, = ¥ [n,(e) - n-z(e)]'\, recently put for-

ward by Zerovnik and the present authors. We now establish a few general properties
of "W\, in particular conditions under which for two trees 7} and 75 the inequality
"WA(Ty) > ™W \(T3) holds for all negative or all positive values of the parameter A .

INTRODUCTION

The topological index W | conceived by Wiener in 1947 [1], is defined as the sum
of distances between all pairs of vertices of the molecular graph. It is the oldest and

probably the inost thoroughly examined molecular-graph-based structure descriptor.
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Motivated by the success of the Wiener index, but also attempting to overcome some
of its weak points, numerous of its modifications and extensions were proposed in
the chemical literature; an extensive bibliography on this matter can be found in the
handbook (2], review (3] and the recent papers [4, 5].

In the seminal paper [1], in addition to the vertex-distance-based definition of

the Wiener index, a peculiar formula for its calculation was communicated:

W(T) =3 mi(elT) - na(e|T) (1)

where T stands for the molecular graph of an alkane, where n,(¢e|T") and ny(e|T) are
the number of vertices of T lying on the two sides of the edge e, and where the
summation embraces all edges of T'. It can be immediately verified [6, p. 127] that
formula (1) holds for all trees (= connected acyclic graphs).

One of the newly proposed modifications of the Wiener index [7] is based on

formula (1) and reads
"W(T) = 3 [m(elT) - na(elT)) ™ (2)

The quantity "W was named “modified Wiener indez” [7]. Some of its mathematical
properties were recently established [5], and found to be analogous (yet opposite) to
the properties of the ordinary Wiener index. These findings motivated us to consider

an entire class of Wiener-type indices, defined as [8]
"WA(T) = > [mile]T) - nale|T)) . (3)

Evidently, for A = +1 and A = —1 the right-hand side of Eq. (3) reduces to the
ordinary and the modified Wiener index, respectively, Eqs. (1) and (2).

It has been shown (8] that there are numerous (chemical) trees whose ordering
with respect to "W, does not depend on the actual value of the parameter A (except
that this ordering is reversed when A changes sign). This invariant behavior is based

on the following elementary result [8]:
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Lemma la. Let T} and T, be two trees with equal number of vertices (and hence wiih

equal number of edges). If their edges can be labeled so that
ny(e|Ty) - na(e|Ty) < ny(e|Ty) - na(e|T3) (4)

for all e . then "W (T\) < ™W\(T3) for any A > 0 and "W (1) > "W \(T3) for any

A < 0. If at least one of the inequalities (4) is strict, then the incqualities between
"W ) and ™W\(T3) are also strict.

In this paper, when ambiguity is not possible, we write n, instead of n,(e|T) , i =
1,2. Further, we shall always label n; and n, so that n; < n,.
Denote by n the number of vertices of the tree T'. Then. in view of the fact that

n,(e|T) + ny(e|T) = n holds for all edges e of T', and that

l-(n=1)<2-(n=2) < < |n/2]-[n/2] (:

()

we may re-state Lemma la as follows:

Lemma 1b. Let T\ and T, be two trees with equal number of vertices. If their edges
can be labeled so that

ny(e]Ty) < ny(elT?) (6)

for all e, then "W \(Ty) < "W \(T3) for any A > 0 and "W (1)) > "W \(Ty) for any
A < 0. If at least one of the inequalities (6) 1s strict, then the inequalities between
"W(T\) and "W (T3) are also strict.

In what follows we deduce some additional conditions under which the ordering
of trees (with respect to ™W ) is same for all negative or all positive values of A. We
start with another elementary finding.

Let 7 denote the set of all trees.

Lemma 2. Let T\, 75 € T . If "W (1)) < "W(Ty) for all A\ < 0. then Ty and

Ty have cqual number of vertices.

Before proving Lemma 2 we point out two properties of the Wiener-type index

"Wiy. Let T be a tree with n vertices, of which p vertices are of degree 1. Then

s |

l\lLr')]”‘H (T)=n~-1 (
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] "(7)_\ =1. (8)
The lmit (7) holds because the right-hand side of Eq. (3) has n — 1 summands.
The limit (8) is a direct consequence of (5) and the fact that in 7' there are p.
edges whose contribution to the right-hand side summation in Eq. (3) is equal to
[1-(n—=1))" = (n—1)". Note that relation (8) holds for n > 3. For the (unique)
2-vertex tree, namely the 2-vertex path. p = 2 and "W, = 1. Therefore, for n = 2

the right-hand side of Eq. (8) is equal to 1/2.
Proof of Lemma 2. Applying the limit (7) we get

lim ["W(T}) = ™W\(T2)] = n(T}) — n(Ty) .

A0~

It cannot be n(7T) > n(7%), because then for near-zero (and negative) values of A it
would be "W ,(T\) > ™W,(T3).

It cannot be n(T}) < n(7,), because then from the limit (8) it would follow:

"WAT) _ Ty (n(Tz)~1>":0

BB T p(T) i (T =1

implying "W \(T,) < "W .(T}) for sufficiently large (and negative) A .
Therefore, if "W (7)) < ™W (T3) holds for all negative values of the parameter
A, then it must be n(Ty) =n(73). o

There is no analog of Lemma 2 for A > 0. Namely, there exist pairs of trees T,
and T, with unequal number of vertices, such that ™W(7,) < ™W(T,) holds for all

A > 0. Example: the 2-vertex path (™W'y, = 1) and the 3-vertex path ™W | = 2-2°

In order to become able to formulate and prove further results of the same kind

we need to introduce a few more notions.

PREPARATIONS

Consider an n-vertex tree 7'. As before, n (e|1") = n; denotes the number of

vertices of T" that lie on one side of the edge ¢, assuming that not fewer vertices lie on
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the other side of €. The minimal value of n, is 1, because any tree possesses vertices
of degree 1. The maximal possible value of n, is [n/2].

Let (T, k) be the number of times the n,-values of the tree T" are equal to k. Let

v(T) stand for the (|n/2])-tuple

(W(T, 1), v(T.2),. .., v(T,|n/2])) .

Note that
ln/2)
3 wT.k)=n(T) -1 (9)
k=1
and
n/2]
"WAT) = S (T, k) [k(n—k)* . (10)
k=1

The lezicographic order of n-tuples of real numbers, denoted by <. is defined as

usual:
(alaa2>~ .. yan) <lex (blabZ')" . 7bn) 4

(=4 (3:)[((1. < b,) A (V])] e a; = bJ] 5

We say that (a;,az,...,an) = (b1, by,...,b,) ifa; = b; foralli =1,2,... . n. If
(ar,@2,...,a,) # (b1,ba,...,b,), then either (a1, aq,...,a,) <ier (b1,b2,...,b,) or
(bl)b27“'1b") <lex (alya2y---7an)~

The inverse lezicographic order <i.,- is determined analogously:

(a1,8a2,...,65) <teze (b1, b2,...,b) &

e (F)(ai <b)A(V])]>i=>a;=b)].
We introduce a further relation <., as follows:

(ﬂ],(lz, wied yan) <slexr (blsb'l- B vbn) bl
J J
e (V)X a <Y b Allaraz, ... a0) # (b1, ba, ..., ba)]
i=1 i=1
For the elements of the set T of all trees, three binary relations, <, <=, and <,

can now be defined.
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Lev Ty, Ty e T Then
Ty <Ty, & (n(Th)=n(T2) A(Th) <ter {T2)]
T <" Ty & (n(Th) =n(T2)) A [(Th) <texr v(T2)]

Ty < Ty & (n(Ty)=n(T)A W) <sger ¥(T2)] -

THE MAIN RESULTS

Theorem 3. Let Ty and T, be any trees. If ™W\(T\) < "W (T5) holds for all X <0
then Ty < T, .

Proof. From Lemma 2 follows that n(7)) = n(7,). In order to simplify the below
notation, denote n(7y) = n(7,) by n.

Let theindexi, 1 < i < |n/2], be determined by the conditions v(Ty,1) # v(T3,1)
and v(Ty,7) = v(Ty,7) for all j < ¢. Because v(T}) # v(T3), such ¢ always exists.

Now, in view of relation (10), "W (7)) < ™W(T3) is tantamount to
[n/2) 5
> W(Tik) = v(To, k)] [k (n = k)] < 0 (11)
k=1

After cancellation in Eq. (11) we get

n/2) i
S w(Tv k) = Ty, k)] [k (n = k)] <0
e

(/2] g
Ty k) [k (n = k)}

k=i
2 o
v(To k) [k(n = K)]
k=i
which holds for all A < 0. On the other hand.
/2 \
; v(Ty k) [k (n = k) (T, i)
Jim D)

U(Ty k) [k(n = k)

k=1

and therefore v(Ty,1)/v(To,1) < 1, implying T\ <12, o
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In a fully analogous manner we prove:

Theorem 4. Let T) and T, be trees with equal number of vertices. If ™W\(T,) <
"W(T3) holds for all A > 0 then T, <* T, .

The converses of Theorems 3 and 4 are not true. Namely, there exist pairs of
trees, such that T} < Ty, but ™W (1)) > "WA(T,) for some A < 0. Also, there exist
pairs of trees, such that T} <~ T, , but ™W,(T}) > "W \(Ty) for some A > 0.

A counterexample to the converse of Theorem 3 are the (2a + 1)-vertex trees T)(a)
and Ty(a) for sufficiently large value of the parameter a .

Ti(a) is obtained from a copies of 2-vertex paths. by Joining a vertex of each copy
to a new vertex. Ty(a) is obtained from an (a + 1)-vertex path, by attaching to its
terminal vertex a new vertices of degree 1.

We have
v(Ty(a)) = (a,q,0,0,0,...,0)
v(Ta(a)) = (8 4151, 1 B e 1)

and, consequently, T\(a) < Ty(a).
Note that

. 1 1 1 2
Jﬂ(”“"%*m““‘”'m):g

and that

. 1 1 3
lIm (e —4+a —— | == .
a0 2a 2(2a - 1) 4

Therefore, for a sufficiently large value of a

2:+(t~2(7a1_—1)>(a+l)4i+mh+(a-l)~m.
Bearing this inequality in mind, we now have
W_(Ti(a)) = a- L +a- L
2a 2(2a - 1)
> (a+l)-%+_).] +(a—-1) —
20 2(2a - 1) 2a - 2)

1 - 1

A%

(a+l)-jl—+

= W_ (Ta(a) .
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Hence, in spite of Ty(a) < Ty(a), for sufficiently large values of the parameter « , the

modified Wiener index of T)(a) exceeds the modified Wiener index of Ty(a).

A counterexample to the converse of Theorem 4 are the (6b+ 4)-vertex trees 1 (b)
and 73(b) for sufficiently large value of the parameter b.

Ti(b) is obtained from a (4b+ 3)-vertex path, by attaching to its central vertex the
terminal vertex of a (2b + 1)-vertex path. T,(b) is obtained from the 2-vertex path,
by attaching to each of its vertices 3b + | new vertices of degree 1.

We have
v(Ty(b)) = (3,3,...,3,0,0,...,0)
v(Ty(b)) = (6b+2,0,0,...,0,1)

and, consequently, T'(b) <~ Ty(b).

Direct calculation yields
2641
TWATi(b)) = > 3[k(6b+4— k)]
k=1
"WA(Ta(b)) = (6b+2)(6b+3)" + (36 +2)*

which for A = +1 results in

W(Ti(b)) = (b+1)(2b+1)(14b+9)

W(T,(b)) 4567 +42b + 10 .

Thus, for A = 4+1 and sufficiently large b, "W \(T1(b)) exceeds ™W \(T5(b)).
On the other hand, in the limit case A — +o0,
™Y ATy (b)) ~ 3(8b*+10b+ 3)°
Y (Ty(b)) ~ (9b% + 1264 4)*
and therefore, for sufficiently large values of b and A |, ™W (T\(b)) < "W \(T,(b)).
Hence, in spite of T\(b) <™ Ty(b), if b is sufficiently large, then the value of
" (T, (b)) is sometimes smaller and sometimes greater than "W (15(b)) . depending

on the actual value of the parameter A > 0.

In what follows we need an aunxiliary result:



115

Lemma 5. Lel ay,a;,...,a, be numbers. not all of which being equal to zevo. such

that
J
Z”‘k‘ > 0 (12)
k=1
holds for all j =1,2,..., m. Let by, by, ..., by be numbers, such that by > by > - >
by > 0. Then
Z(Lk [)k > 0. (1})
k=1

Proof. For j = 1,2,...,m — 1, multiply the inequality (12) by b, — b,4, > 0. For
7 =m, multiply (12) by b,, > 9. This yields

ay(by —by) 20

a, (bg — bg) + az(bz - b3) j/' 0

ay (by = by) + ay (by — by) + as(by —by) >0

ar (bm-1 = bm) + a2 (bmoy = bin) + a3 (bm-y = b)) + - 4 @y (buoy = by) 20

ay by + a3 by +azb, + - 4 a1 b + A by >0

Because not all ai’s are equal to zero, at least one of the above inequalities is strict.

By summing them we arrive at (13). g

Theorem 6. Let Ty, T, € T . If T\ <, Ty, then "W(Ty) < "W \(T}) for all values
of A <0.

Proof. T\ <, T, implies that 7} and T, have equal number of vertices, which (as

before) we denote by n. Further. T\ <, T, means that the inequalities
)
Zﬁu('/'z./\ (T, k)] >0

are obeyed for all j = 1.2,... |n/2].
We may now identify [n/2] and (7T, k) = v(T\,k) with m and a; in Lemma 3,

and choose by = [k(n — k)]*. Because (1)) # v(Ty) and because for A < 0,

(L= > 20 =21 > > (|n/2]) [2/2))}
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all the conditions of Lemma 5 are fulfilled, and therefore

[n/2)
S (T k) — (T, k)] [k(n — k)] > 0
k=1
i e.,
n/2) n/2)
Y v(T k) [k(n = k) < 57 u(Ta, k) [k(n — k)"
k=1 k=1
and, in view of (10),
"WAT)) < ™W\(Ty) . «a
Lemma 7. Let ay.ay,. .., an be numbers, not all of which being equal to zero, such
that
J
Sar >0 (14)
k=1
holds for all j =1,2,...,m—1, and
Stap = 0. (15)
k=1

Let by by, ... by be numbers, such that 0 < by < by <--- < b,,,. Then

Zakbk < 0.
k=1

Proof. or j = 1,2,...,m — 1, multiply (14) by b; — b,4; < 0, and multiply (15) by

bn > 0. Then proceed in an analogous manner as in the proof of Lemma 5. g

Theorem 8. Let Ty, T, € T . If T\ <, Ty, then "W (Ty) > ™W\(T3) for all values
of A>0.

Proof is analogous as of Theorem 6. We have again
J
> [WA(To k) = v(Ti k)] 2 0
k=1

for y=1,2,....|n/2] — 1, whereas for j = |n/2],
J
2 (T k) = w(Ty, k)] = 0
k=1

because of (9).
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Identifying [n/2] and v(T1y, k) — v(T\,k) with m and ax in Lemma 7. choosing

by = [k(n — k)]*, and bearing in mind that for A > 0,
(Ln -] <2 =2 < < [[n/2)) - [n/2])"

we see that all the conditions of Lemma 7 are fulfilled. Therefore, for A > 0

(n/2)
ST W(Ta k) = v(Th, k)] [k(n = K)]* < 0

k=1

resulting in "W\(T\) > "W\(T,). «
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