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Abstract

The numbers of possible tetramers of a selected subset of the nine known inositols have been
calculated by manual as well as computer assisted approaches using the MATHEMATICA
application program package ISOMERS. The evaluation of the number of possible achiral
(meso-) forms of these tetramers is included.

Introduction

A rather simple sounding question was the starting point for this work: How many "tetramers" of
four specific inositols, namely neo-, muco- D-chiro and L.-chiro are there ? Prof. Tomas Hudlicky
of the Univ. of Florida, engaged in the synthesis of such compounds' posed this question to one
of us (H.H.). The reason for this was the fact, that we had already published some sample
applicationsz, including some oligomers of inositols calculated with the help of the package
ISOMERS’. From another point of view, the answer to such questions of course is interesting in
connection with the increasing knowledge in the field of structural biology, where sugars and
pseudosugars gain status as information - bearing macromolecules’. Doing combinatorial
chemistry without the knowledge of just how many combinations are to be expected seems rather

impractical.
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Theoretically, there are nine inositols (1,2,3,4,5,6-hexahydroxy-cyclohexans), which are all

known. They are depicted in Figure 1, along with their symmetry elements.
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Figure : All nine inositols and their elements of symmetry
including numbering for ISOMERS - input
Oligomers of inositols are formed by an ether linkage of two hydroxy functions. For the sake
of simplification, we will use the terms "dimer”, "trimer”, "tetramer” and "oligomer™ also for
compounds formed by different inositols, although formally this is incorrect, since oligomers

should be formed from identical units. For tetramers, there are two general forms possible,

either by "linear" or by branched assembly resp. (Figure 2):

Figure 2: Examples for possible arrangements of tetramers
(OHs omitted, ether linkage = single bond)
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All possible substitutional patterns (1,2-; 1,3-; 1,4- as well as 1,5- and 1,6-, if applicable) at
the inositols will be allowed, while cyclic oligomers, because of factual and practical reasons,
will not be considered. Although cyclic analogs in principle are possible, e.g. the well known
cyclodextrins, the cyclic assembly of such structures needs more than four units: The smallest

cyclodextrin known, the ct-form, starts with 6 units®.

By using the package ISOMERS, one can determine the general substitutional possibilities at
the inositols mentioned above. We will limit this to three substituents, since this is the highest
substitution necessary in our context (for branched tetramers). So the figures below give the
numbers of isomers (including stereoisomers) in principle of the respective inositols with one,

two or three different substituents, ¢.g. A, B and C. The results are summarized in Table 1%

Substituents I 2 3

Inositol O q q AQ: M@: m@;
allo- 6 15 30 20 60 120
cis- 1 3 5 4 10 20
D-chiro- 3 9 15 10 30 60
epi- 6 15 30 20 60 120
L-chiro- 3 9 15 10 30 60
Mmuco- 3 9 15 10 30 60
myo- 6 15 30 20 60 120
nev- 3 9 15 10 30 60
seyllo- 1 4 5 4 10 20

Table I: Basic substitutional possibilities at inositols with up to three substituents

As can be easily seen, there is a clustering into three different substitutional patterns:

(i)  allo-, epi- and myo-inositols

(i)  eis- and sepffo-inositols

(i)  D- and L-chiro-, muco- and neo-inositols

This is due to their similar symmetry elements, although some of the inositols in a group
differ in their structure and/or their elements of symmetry. These differences are only
reflected in the number of stereoisomers, if one calculates the number of possible chiral and
achiral forms upon substitution, a feature also included within ISOMERS’. The respective

numbers then read as follows (Table 1I):
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Substituents 1 2 3

Inositol U q q n@/ a@ EN@/
allo- 6 [0] 12 [3] 30[0] 20 [0] 60 [0] 120 [0]
cis- 0[1] 03] 4[1] 2[2] 8[2] 20 [0]
D-chiro- 3[0] 9 [0] 15[0] 10 [0] 30 [0] 60 [0]
epi- 412] 12 [3] 28[2] 16 [4] 56 [4] 120 [0]
L-chiro- 3 0] 9[0] 15(0] | 10[0] | 30[0] | 60[0]
muco- 2[1] 6 [3] 14[1] 8[2] 28 2] 60 [0]
myo- 412] 12 [3] 28[2] 16 [4] 56 [4] 120 [0]
neo- 201 63 | 14[1] | 8[2] | 28[2] | 60[0]
seyllo- 0[] 2121 a1 212 8[2] | 20[0]

Table II: Chiral [achiral] sterecisomers on substitution of inositols with up to three
substituents

Already at this stage it can easily be seen, that manual construction of all possibilities is
virtually impossible. Now allo- differs from epi- and myo [ in allo- goes through edges
(bonds), while in epi- and myo-, ¢ goes through corners (atoms) of the graph]. Similarly to the
"identity" with respect to symmetry of epi- and myo-inositol, muco- and neo-inositol show

still the same pattern (C; plus ©).
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Calculations

1. Tetramers made of the four different inositols D-chiro-, L-chiro-, muco- and neo-:

l.a. Linear tetramers:

There are 12 linear "tetramers" of the general form A-B-C-D (ref. 8, line 15). From table I it
can be easily depicted, that all four inositols show the same pattern for mono- and
disubstitution if all substituents are different: Three different positions for mono- and 15 for
disubstitution. The monosubstitution applies for the outer "monomers" (A and D), while for
the inner inositols (B and C), the disubstitutional pattern can be applied. Thus any pattern of a
linear tetramer made of these four inositols would have 3 * 15 * 15 * 3 = 2,025 isomers. So

there are 12 * 2,025 = 24,300 linear tetramers possible.

1.b. Branched tetramers:

There are 4 different "stars” possible made of four different inositols of the general form

A._.C

i

D

(ref. 9, line 2). Again from table 1 we learn, that for all four inositols under consideration,
there are 60 substitutional patterns possible with three different inositols located on a central
fourth one. All these "substituents” exhibit three possibilities for their attachment (table 1).

Thus there are: 4 * 60 * 3 * 3 * 3 = 6,480 branched tetramers of this particular kind of

tetramer.

So in summary, there are 24,300 + 6,480 = 30,780 tetramers in total made of the four specific

and different inositols D-chiro-, L-chiro-, muco- and neo.
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1.c. Stereochemical considerations

As can bee seen from Table II, naturally all possible substitutional patterns in the chiro-
inositols are chiral, while for the disubstitution of muco- and neo-inositols, there should be
just one meso-form. So there should be a single meso-dimer that can only be of the following

form:

Figure 3: The only achiral { = meso) form of the dimer muco (m) - neo (n)

One could argue though, that there should be three more forms of such dimers by different

orientations (up and down) at the ether linkage, as e.g. depicted in Figure 4:

Figure 4: Possible m-n-dimers which are all identical

For readers not so familiar with stereochemical views and rotations of molecules, the use of
molecular models (e.g. Drt:iclingTM or MinilTM) is recommended. Tmagine a kind of an axis
through the ether linkage, then m-n-2 is derived from m-n-1 by a simple 180° rotation
around this axis, while in m-n-3 only the right ring has been rotated. Structure m-n-4 again
is derived from m-n-3 by a rotation of the whole molecule. Also ring-flips, which are quite
common in cyclohexane derivatives, would do the job. Within the dimer shown in Figure 3,
there are four positions linked by the plane of symmetry: a, b, x and y together with their
prime- equivalents. Since the remaining inositols for the construction of the tetramers are of
the enantiomeric chiro-type, there exists the possibility to produce meso forms of the type

depicted in Figure S:
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Figure 5.
Example for meso-forms in L-chirc
branched tetramers

D-chiro

Within this general structure, there are 3 positions each in the respective chiro-inositols
leading to such branched meso compounds, thus there are 4 (positions a, b, x and y) * 3
(positional possibilities on chiro-inositols ) = 12 achiral meso forms to be expected.

Within the linear series of tetramers, due to the presence of the chiral ehiro-inositols and the

different nature of all four individual inositols, there are only chiral isomers.

2. Tetramers made of the four different inositols D-chire-, L-chiro-, muco- and neo-,
allowing all possible combinations:

In order to tackle this problem we will start with dimers and trimers to show the principle of
our approach. Substituting inositols by inositols means they function as central unit as well as
a ligand. With the information of Table I we know, that each inositol considered here has the
possibility to render three different monosubstituted products. Taken the other way round, this
means that each inositol provides three different ligands. Therefore we have to consider the
set of ligands (mucol, muco2, ... up to ... L-chiro3) which has n = 12 elements. The different

disubstitutional possibilities will be presented in chapter 2.b.

2.a, Dimers:
From ISOMERS we learn, that in general, there are n symmetrical A-A-dimers (ref. &, line 2),
that is (with n being 12) 12 symmetrical dimers. Similarly there are n * (n - 1) / 2

asymmetrical A-B-dimers (ref. 8, line 3) and the equation for n = 12 thus yields 66
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asymmetrical dimers. In summary there are n*(n + 1)/2 =78 dimers in total (ref. 8, line
4).

3 3
OH OH
2 HO, LOH 4 2 HO, OH 4
1 HO" OH 5 1 HO OH 5
G *
8 HO:O:OH 10 6 Hoj:'j,cm 10
7 HO” Y TOH 9§ 7 HO"Y oH 9
OH OH
8 8
symmetrical, C, unsymmetrical, C,
Figure 6: Examples for s ical and as, trical chiro-dimers

At such inositol dimers, there are the following general substitutional possibilities' (see

Table [T}

Substituents | X XX XY Sum for 2 substituents
Inositol Dimer
symmetrical 5n 25n 45n*(n-1)/2 S5n*©On+1)/2
asymmetrical 10n 45n 45n*(n-1) 450

Table IHI: Positional possibilities at Inositol - dimers on mono- and disubstitution

2.b. Trimers:
From ISOMERS (ref. 11, lines 1-3) we know, that the following disubstitutional possibilities

at our 4 inositols are given:

A-z-A : 9n therefrom 3n are C,- symmetrical (= 1/3), see Figure 7
A-z-B: 15n*(n-1)/2 all G
Sum : In*(Sn+1)/2
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Figure 7: Examples for symmetrical m-n-m-trimers

As the number of substituents (») we take the monosubstitutional possibilities of our four

inositols under consideration (3 for each inositol), that is 4 * 3 =12, and thus we get:

A-z-A: n=12, 4 different z; 9n = 108 ; * 4 = 432, 144 thereof Ca-symm
A-z-B : n=12;15n(n-1)/2=990; * 4 = 3,960,
Sum: n=12;3n*(5n+1)/2=1,098; * 4 = 4392

Thus there are 4,392 trimers possible for all combinations of the four inositols under

consideration.

Another approach would be:

Let us consider a trimer made of a central reo- and two muco- inositols , the latter having 3
monosubstitutional possibilities each: m1, m2 and m3. Then obviously for the AA-pattern,
which will each have 9 possibilities, there are three basic forms possible: m1-n-m1,
m2-n-m2 and m3-n-m3. Thus, there are 9 x 3 = 27 trimers of this type. For the AB-pattern,
which is present 15 times at n, there are likewise three basic forms possible: m1-n-m2,
m1-n-m3 and m2-n-m3. Thus there are 3 times 15 trimers of this type (= 45) and in
summary 72 neo(muco),- trimers. This number we also get by putting in n = 3 in the general
formula for a disubstituted neo-inositol with all combinations (ref. 11, line 3): 3n*(5n + 1) /2
is exactly 72 for n = 3.

Thus there are the following 40 combinations possible for general trimers (ref. 8, line 9)
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Type possible inositol combinations for each type isomers
4 *AAA 72 [3*9(sym)+ 3 * 15 (asym)] 288
12 * AAB [*] 135 [3:*'15*3) 1,620
12 * ABA [*] 72 [3* 9 (sym) + 3 * 15 (asym)] 864
12* ABC 135 1,620
Sum of trimers 4,392

[*] The 24 types AAB (ref. 8, line 7: {2,1}) have to be split in 12 AAB and 12 ABA because
of different symmetry!

2.c. Branched tetramers:

This is straightforward: In inositol structures like
A\f,c
B

the sum of trisubstitution is given by ISOMERS (ref. 11, line 4) as follows: 10n’. Forn = 12
and 4 different central z this then amounts to 10%12°*4 = 4* 17,280 = 69,120 branched

tetramers.

2.d. Linear tetramers:

Now, we will consider all possible combinations of the four inositols under consideration, i.e.
also isomers of the form A-A-A-A, A-A-A-B etc. up to D-D-D-D. From ISOMERS we learn,
that there are (n4 +n) / 2 possible combinations (ref. 8, line 16), which results in 136 for n =
4. The considerations regarding the individual substitutional positions given in chapter |.a.
are still valid, but we have to use all patterns (AA, AB, BB) of table I, like 9 + 15 + 9 = 33.
The coefficient 15 we already used in chapter 1. Thus it would be appropriate to simply
calculate, that there are 136 * 3 * 33 * 33 * 3 = | 332,936 linear tetramers of the multiple
occurrence forms possible. But caution is warranted, since our different substituents are taken
from a sample of sometimes identical structures. So the provision of chapter 1, that all four
inositols forming the tetramer are different, is no longer valid. Thus, we use two different

approaches:
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From chapter 2.a. we know, that there are 12 symmetrical dimers (8) with 5

monosubstitutional positions (s1) as

monosubstitutional positions (s2).

well as 66 asymmetrical dimers (U) with

Simple combinatorics thus yields: isomers
S+S: S*sI*(S*sl+1)/2][§] 1,830
S¥U: §475] B *s2 39,600
U+l U*s2*¥(U*s2+1)/2]§] 218,130
Sum of linear tetramers 259,560

[§] half matrix including diagonal

2.d.2. From the general patterns of linear tetramers:

10

In analogy to the second approach in chapter 2.b. let us consider tetramers made from two

neo- (N or Ny and two muco-inositols (m or M), e.g. of the form: m-N-M-n. If they are

located at the outside (n or m), they will exhibit three monosubstitutional positions each. As

"inner" monomers (M or N) they will invariably exhibit 15 disubstitutional possibilities,

because there are no symmetrical disubstitutions possible at those: such N or M invariably

will have a monomer and a dimer as substituents. So simple combinatorics will give 3 * 15 *
15 * 3 = 2,025 tetramers for e.g. m(1-3)-N(1-15)-M(1-15)-n(1-3). But for symmetrical

tetramers of the form n-M-M-n or m-M-M-m, there obviously are some identical forms, e.g.

n2-M7-M7-n2. Thus for those, we use the already known approach of the dimers (chapter

2.d.1.): The 3 * 15 = 45 "halves" of these symmetrical tetramers can be combined like the S +

S dimers there: 45 * (45 + 1) / 2 = 1,035 (half matrix including diagonal).
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Thus, for general linear tetramers with 4 units we found (ref. 8, line 11-15)

Type possible combinations for each type isomers
4* AAAA 1,035 [45 * 46 / 2 = half matrix including diagonal] 4,140
24 * AAAB 2,025 [3*¥15*15*3] 48,600
12* AABB [§] 2,025[3 * [5*15*%3] 24,300
12* ABBA [§] 1,035 [as for AAAA] 12,420
72 * AABC 2,025 3¥15%15% 3] 145,800
12 * ABCD 2,025 3% 15*15*3] 24,300
Sum of linear tetramers 259.560

[§] The term of the 24 AABB [{2,2}] has to be split into 12 AABB and 12 ABBA because of
symmetry reasons in analogy to chapter 2.b.

Thus there are 69,120 (branched) and 259,560 (linear) = 328.680 tetramers in total made of

the four inositols mentioned above.

2.e. Stereochemical considerations

In the context of all possible combinations of the four inositols under consideration, the
estimation of all chiral/achiral isomers is much more tedious than given under chapter I. The
first principle valid in this respect is; Whenever one chiro-inositol is involved, the final
combination will be chiral. But there exists the possibility to build meso-structures from two
(or powers of two) enantiomeric chiral molecules, as already mentioned in chapter 1.c. So
achiral combinations to be considered will be made of neo and/or muco-inositol alone or in
combination with the two enantiomeric chiro-inositols as a D/L-pair (some special cases have

been discussed already in chapter 1.c.) or from two D/L- pairs of chiro-inositols.

2.e.1. muco- and neo-inositols exclusively:
2.e.1.1. Linear tetramers from m and n:

The achiral positions at these inositols are aligned along the plane of symmetry 6. As "chiral
positions" we define all those at achiral molecules (like seven of the nine inositols), which are
rendered chiral upon substitution. Likewise, "achiral positions” are those, which do not yield
chiral products upon substitution (with achiral substituents). But, as can be seen from Table

{1, for muco and neo-inositols there exist three (and not just only one) achiral symmetrical
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disubstituted products. Thus, e.g. for neo-inositol, there exist not only the achiral disubstituted
product at positions 2 and 5 (Figure T) but also at positions | and 3 as well as at 2 and 4. The

latter positions (1/3 and 2/4) we will call enantiotopic.

my-m,

Nyetly NNy (= Ng-ng)
Figure 8: Achiral Dimers m-m, m-n and n-n Including Substitutional Sites for Achiral
Connections of Identical or Enantiomeric Substituents to form Linear Tetramers
In Figure 8, the subscripts (e.g. ms or Nz) denominate the respective numbering of positions
at the inositols from Figure 1. As can be seen from Figure 8 there exist the following achiral
dimers from muco- and neo-inositols: Two m-m, two n-n and one m-n. For achiral linear
tetramers, ©; is important, while o> will play the prominent role in the case of achiral
branched tetramers (chapter 2.e.1.2.). Through the connecting oxygen, perpendicular to the
plane of this paper, there goes a C» for all symmetrical dimers (m-m and n-n ), thus reducing
the possible number of three forms to just two. Figure 8 exemplifies the following facts:
There are three positions (a, b and ¢) in the number symmetrical dimers ms-m3 and nz-nz and
five positions in the number - asymmetrical dimers m4-ms and n4-n3 which - together with

their prime equivalents - can yield achiral linear tetramers on disubstitution. For tetramers
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made solely from the two inositols m and n, with three monosubstitutional possibilities each

(one achiral, two enantiotopic) this gives the following numbers of tetramers:

m-my-ms-m: 15 m-mz-mz-m: 8 m-ms-ms-n: 1
m-mz-nz-m: 1 m-ms-nz-n: 1 m-nq-ng-m: 15
m-nz-nz-m: 8 m-nz-nz-n: 1 n-my-ms-n: 15
n-m3-ms-n: 8 n-ms-nz-m: 1 n-ms-nz-n: 1
n-n4-n3-n: 15 n-nz-nz-n: 8

Thus in total, there are 98 achiral linear tetramers made from muco- and/or neo-inositols

solely.

2.e.1.2. Branched tetramers from m and n:

3 mQm o 3

Figure 9: Achiral Dimers mm, mn and nn Including Substitutional Sites for Achiral
Connections of ldentical or Enantiomeric Substituents to form Branched Tetramers

As can be seen from Figure 9, there are two positional pairs for connecting identical
substituents in an achiral manner to n-n-dimers as well as to m-m-dimers (positions 1 and 2
together with their prime equivalents) to build branched tetramers. Positions 3 yield linear
tetramers (chapter 2.e.1.1.). Similarly, for m-n-dimers, there are 4 pairs (positions 1 to 4
together with their prime equivalents), positions 5 already included in chapter 2.e.1.1. (linear
case). Thus there are 2 possibilities x 3 monosubstitutional sites at n or m to be attached at
n-n and m-m-dimers:

2x3mM-n+2mn);, 2x3(n-n+2m); 2x3(m-m+2n); 2x3(m-m+2m)=24

tetramers.

For m-n-dimers there are 4 possibilities x 3 monosubstitutional sites and thus:
4x3 (m-n+2n) and 4 x 3 (M-n + 2m) = 24 tetramers. Thus, in summary there are 24 + 24

= 48 achiral tetramers of the branched type made from m and/or n inositols solely.
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The situation is a little more complex for these combinations. Besides the twelve branched
achiral forms already mentioned in chapter l.c. (Figure 5) from m-n + D & L, the
combinations n-n + D & L as well as m-m + D & L have to be considered. From Figure &
and Figure 9 as well as from the discussion in the preceding chapter, we know that there are
two pairs of related positions for branched and one pair for linear tetramers of this sort in m-
m as well as in n-n - achiral dimers. Due to the three different substitutional sites in D and L,
there are 8 times three linear possibilities each of the structures D-n-n-L and D-m-m-L (48
linear isomers). And in the branched series there are 12 x m-n(D)-L (from chapter 1.c.) + 6 x
m-m(D)-L + 6 x n-n{D)-L isomers. Thus there are 24 branched and 48 linear achiral isomers
in this group.

In addition, there is the possibility of having a central D & L - pair (see Figure 10) as in
chapter 2.c.3. to which there can be attached either 2 n or 2 m (at five possible positions).
Thus there are 3 (meso- D & L - pairs) x 5 (positions at those) x 3 (monosubstitutional sites at

both n or m) x 2 (n or m) isomers. This yields 90 achiral tetramers of this sort, which are all

linear.

2.e.3. D- and L-chiro - inositols exclusively:

As stated above, there are three meso-forms possible for a dimer made of a D & L - pair
(Figure 10):

¢
Figure 10: One of three possible 2 9

meso-dimers made from D- and Big ot N0
L-chiro - inositol .-
[ " o

o o

L D
As can be seen from Figure 10, at such dimers there are 5 positions related by a plane of
symmetry, which can lead to achiral meso forms on appropriate substitution (by D and L). But
there are two meso possibilities of attaching these inositols to the central dimer: D-L-D-L and
L-L-D-D. Thus there are 3 (forms of meso-dimers: Ly-D4, L2-D2 and L3-D3) x 5 ("meso-

positions") x 3 (monosubstitutional positions at D and L, counted only once because of
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symmetry-relation) x 2 (possible meso-arrangements) = 90 achiral meso-tetramers made from

two D- & L- pairs of chiro- inositols, which are all linear.

Summary and conclusions:

The results from chapters 1. and 2. are summarized in Table ['V:

Tetramers Linear Branched Sum
m+n+D+L; (all four different) 24,300 6,480 30,780
[Achiral isomers thereof] 0 12 12
m,n,D,L; (all combinations) 259,560 69,120 328,680
[Achiral isomers thereof] 326 72 398

Table IV: Number of Tetramers made from D- & L-chiro, muco- and neo-Inositols

- As can be seen from this compilation, the number of possible tetramers in our selected
sample of inositols increases dramatically (approximately tenfold), if combinations of all sorts
with multiple occurrences of a specific inositol within the tetramer are allowed.

- The second observation is the fact, that - although there are still some quite close
examinations necessary - the use of the results obtained from the program package ISOMERS
can help considerably in such enumerations.

- The third observation touches the fact, that the estimation of achiral forms in such molecules
with highly populated "chiral positions" entails further pottering about. A concise,
straightforward computational method for the estimation of such isomers seems highly
desirable, but within now lies well beyond our computational possibilities. Substitution with
chiral structures at "chiral positions" renders the whole problem again more complicated.
With this paper we would like to make a contribution in this direction to spur on potential
theoreticians for better (simpler) solutions'.

- These facts still impede our efforts towards a compilation of all possible combinations
including all nine known inositols. We will try to tackle this problem in the future, provided a
general algorithm for such problems can be found'>. Up to our knowledge, even the very

useful package MOLGEN'"! does not allow for stereochemical and/or symmetrical input.
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Sigma-Aldrich Catalogue 2000/2001, page 538

The ISOMERS - input for all inositols would read as follows:
DefineParentCompound|{Allo, {R4[4,3.2,1,6,5]}]

DefineParentCompound[Cis, {R([2,3,4,5,6,1],R5[4,3,2,1,6,5]}]
DefineParentCompound[DChiro, {R[2,1,6,5,4,3],R6[2,1,6,5,4,3]}]
DefineParentCompound[Epi, {R4[5,4,3,2,1,6]}]

DefineParentCompound[LChiro, {R[6,5,4,3,2,1],R.4[6,5,4,3,2,11}]
DefineParentCompound[Muco, {R[4,5.6,1,2,3],Rs[2,1,6,5,4,3]}]

Since ISOMERS tolerates also "over-determination”, the input could contain more than
the generating functions, e.g. the second plane of symmetry as given in Figure 1:
DefineParentCompound[Muco, {R[4,5,6,1,2,3],Rq4[2,1,6,5,4,3],Rs[5,4,3.2,1,6]}]
DefineParentCompound[Myo, {Rq[3,2,1,6,5,4]}]

DefineParentCompound[Neo, {R[6,5,4,3,2,1],R0[3,2.1,6,5,4]}]
DefineParentCompound[Scyllo, {R}5,6,1,2,3,4],R[4,3,2,1,6,5].Rs[5,4,3,2,1,6]}]

and the results depicted in table [ would e.g. be obtained by the commands:
NumberOffsomers[Muco, {1}] {=3}

NumberOfisomers|Muco, {2}] {=9}

NumberOflsomers[Muco, {1,1}] {=15}
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NumberOffsomers[Muco, {3}] {=10}
NumberOflsomers[Muco, {2,1}] {=30}
NumberOflsomers[Muco, {1,1,1}] {=60}
[7]1 NumberOfAchirallsomers[Muco, {I}] =1}
NumberOfAchirallsomers[Muco, {2}] {=3}
NumberOfAchirallsomers[Muco, {1,1}] {=1}
NumberOfAchirallsomers[Muco, {3}] {=2}
NumberOfAchirallsomers[Muco, {2,1}] {=2}

NumberOfAchirallsomers[Muco, {1,1,1}] {=0}
[8] (1) DefineParentCompound[Dimer, {R[2,1],Rs[2,1]}]

(2) NumberOflsomers[Dimer, {2},n] {=n; forn=12:12}
(3) NumberOflsomers[Dimer, {1,1},n] {=n*(n-1)/2; forn=12:66}
(4) NumberOfisomers[Dimer, 2, n] {=n*(n+1)/2; forn=12:78)
(5) DefineParentCompound[Trimer, {R[3,2,1],R[3,2,1]}]

(6) NumberOflsomers[Trimer, {3},4] {=4}

(7) NumberOflsomers|[Trimer, {2,1},4] {=24}

(8) NumberOflsomers|[Trimer, {1,1,1},4] {=12)

(9) NumberOflsomers[Trimer, 3,n] {= nl‘(n +1)/2; forn=4:40}

(10) DefineParentCompound[LinTetramer, {R[4,3,2,1],R4[4.,3,2,1]}]
(11) NumberOflsomers[LinTetramer, {4}] {=4}
(12) NumberOfisomers|LinTetramer, {3,1}] {=24}
(13) NumberOflsomers[LinTetramer, {2,2}]  {=24}
(14) NumberOfisomers[LinTetramer, {2,1,1}] {=72}
(15) NumberOfisomers[LinTetramer, {1,1,1,1}] {= 12}
(16) NumberOfisomers[LinTetramer, 4, n] {=m*+n’)/2; forn=4:136;
a7 forn=2:10}
[9] (1) DefineParentCompound|BranchTetramer, {R[1,4,2,3],Rs[1,2,4,3], Ro[1,3,2,4]}]
(2) NumberOflsomers[BranchTetramer, {1,1,1,1}] {=4}
[10] Numbering as in Figure 6:
DefineParentCompound|[SymInosDimer, {R[6,7.8,9,10,1,2,3,4,5]}]

NumberOflsomers[SymInosDimer, 1,n] {=5n}
NumberOQflsomers[SymlnosDimer, {2},n] {=25n}
NumberOflsomers[SymlInosDimer, {1,1},n] {=45n*(n-1)/2}
NumberOfisomers[SymInosDimer, 2,n} {=5n*On+1)/2}
DefineParentCompound[AsymInosDimer, {R[1,2,3,4,5,6,7,8,9,10]}]
NumberOflsomers[AsymInosDimer, 1,n} {=10n}

NumberOflsomers[AsymInosDimer, {2},n] {=45n}
NumberOflsomers[AsymInosDimer, {1,1},n] {=45n*(n- 1)}
NumberOflsomers[AsymInosDimer, 2,n] {=45n%}

[11} (1) NumberOfIsomers[Muco, {2}, n] {=9n}
(2) NumberOflsomers[Muco, {1,1},n] {=15n*(n-1)/2}
(3) NumberOfIsomers[Muco, 2, n] {=3n*(5n+1)/2}
(4) NumberOflsomers[Muco, 3, n| {=10n}
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[12] Within our knowledge, there are no general approaches to this problem. There are
several chemical structure packages on the market or the web resp., but neither contains
any useful information in this direction. See e.g.:
http://www.daylight.com/dayhtml/doc/theory/theory toc.htmI#Table of Contents or :
http://library.wolfram.com/conferences/deveont99/nachbar/Links/index_Ink_6.html or
http://www.biocheminfo.org/klotho/

One of the referees pointed out, that there are some theoretical approaches to the
problem of substitution by chiral substituents, see e.g. the nice review on double-cosets:
Ruch, E. ; Klein, D. J. Double Cosets in Chemistry and Physics. Theor. Chimica Acta
1983, 63, 447-472. Of course, there are other approaches too, like part of the work of S.
Fujita on the unit-subduced cycle index approach: See e.g. Fujita, S. Benzene
Derivatives with Achiral and Chiral Substituents and Relevant Derivatives Derived
from Dy, Skeletons. Symmetry-Itemized Enumeration and Symmetry Characterization
by the Unit-subduced Cycle Index Approach. J. Chem. Inf. Comput. Sci. 1999, 39, 151-
163. But both approached are rather mathematically oriented und do not spare the
ordinary chemist the tedious work of close examination of the symmetries of the
individual molecules involved.

[13] Inareview article on carbohydrates [Lindhorst, T. K. Chem. i.u. Zeit 2000, 34, 38-52]
there is a table relating to the difference between oligomer counts in peptides and in
carbohydrates, which shows the number of 34,560 isomers for a tetrasaccharide,
provided combinations of four different monosaccharides are considered. This number
thus is in almost the same order of magnitude with our results, although there is quite
some structural difference between monosaccharides and inositols. There is also one
other paper on the enumeration of (acyclic) deoxyalditols, but this method cannot be
applied to our problem: Nemba, R. M. ; Fah, M. On the Application of Sieve Formula to
the Enumeration of Stable Stereo and Position Isomers of Deoxyaldytols. Tetrahedron
1995, 57, 3831-3840.

[14] http://www.mathe2.uni-bayreuth.de/molgen/mg31.html



