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The more popular type of physico-chemical applications of group theory is based on group-
representation theory and character tables'']. The strategy of this approach is to reduce a
linear representation of a point-group into a set of irreducible representations which form the
character table of the group.

This type of application uses symmetry adapted functions for molecular orbital theory and
ligand field theory to analyze molecular orbitals and molecular vibrations of a molecule.

Such a scheme assumes a superposition of a set of wavefunctions to realize a molecule and
thence implies only a secondary existence of the concepts of bonds and atoms. Most of the
existing textbooks on group-theoretical applications consider this type of model.

The other branch of applied group lheorym bears a direct relation to combinatorial
enumeration and stereochemistry which is the topic of this special issue of Maich, this
latter area of applications requires a three-dimensional structural formula, i.e. a model which
has a discrete nature and therefore a primary meaning of atoms and bonds.

Three main stages led to the development of a systematic study of (stereo) chemical isomer

enumeration, viz.,

* Dedicated to Professor Milan Randic on the occasion of his 72 birthday.



(1) The Pélya —Redfield Theory™ : (1935 and 1927 )

The contemporary mathematician George Pélya developed a theory named after him which
determines numbers of equivalence classes of chemical isomers, graphs and trees. Polya’s
methods were discovered independently by J. Howard Redfield”! and further developed by
Nicolas Govert de Bruijn'”. The Pélya—Redfield theorem uses a cycle index that is
composed of terms associated with conjugacy classes. This task does not require knowledge
of group—subgroup relationships but only the examination of the elements of symmetry of the
particular point—group. The “mathematical origins” of organic stereochemistry, (namely, the
tetrahedral geometry of the carbon atom) may be found in the Polya-Redfield theory. Indeed

van’t Hoff’s conclusion!®

that “if the four valencies of the carbon atom are arranged
tetrahedrally with the carbon atom at center, then all the cases of isomerism known are
accounted for” is in harmony with the generating function, GF (= pattern inventory =
library) of a substituted methane. Namely, in a two-dimensional space (where only rotations

are included in the regular tetrahedron - cycle index), the cycle index is given bym:

Z,( tetrahedron ) = 127" [ 8, +88,S5 + 35,7 |
And, the GF which corresponds to the lactic acids, for example, is given by :
GF=Z[S8! — @ +b+c'+d) ]
where : a = w(H); b = w(CH;); ¢ = w(COOH); d = w(OH), w(H) is the weight (number of)
hydrogen atoms in a particular isomer and so on. Then the number of enantiomers of lactic
acid is the coefficent of abed in the GF (Z;) which is calculated to be 2, a result which is
consistent with the experimental fact that there are indeed 2 lactic acids (now known as S- and
R- lactic acids). This is one of the earliest striking relations between mathematics and a

chemical observable! Indeed, if reflections are included as well, a 3-space cycle index results

which looks like:
7 (tetrahedron) = 247 [S,* + 8S,S; +38,” + 6S4 + 65,78, ]

This time, the coefficient of abed is 1 because a reflection plane “counts™ 2 enantiomers as
one. In other words: in the absence of reflections enantiomers are distinct and they become

equivalent if reflections are included:



This case of simple enumeration is one of the earliest and clearest connections between
(stereo) chemical enumeration and the Pélya—Redfield theory. But surprisingly indeed van’t
Hoff® reached his conclusion in 1874, some 60 years before the publication of the
Polya—Redfield enumeration scheme! (A reader might wish to take a look at I.L. Finar’s
book!®! where a simulation of van’t Hoff's isomer—count based on various assumed
geometries of the carbon atom is found.) At this stage of the introduction to the theory and
applications of mark tables, it is remarkable to observe the “educational” aspects of the
Pélya—Redfield formula in relation to organic chemistry®®): many undergraduate students live
under the impression that the tetrahedral nature of the carbon atom was discovered using
experimental tools, being quite unaware of the mathematical origins cited here or, in fact,
van’t Hoff’s work on isomer—count. (see : organic chemistry paradox, later). Another major
success of the Polya—Redfield enumeration scheme is understanding cyclohexane
stereochemistry!'"): Experimental chemists observed two distinct substitution patterns, viz.,

axial and equatorial substitution patterns:

P — ik



As an illustration we show below the most stable conformer of the cis — and the frans-1,3-

dimethyl-cyclohexanes["] and their boiling points, B.P.s; refractive indices, np; densities, d=:

3
(4
CH,
€
a CH,
CH; e
cis- trans-
( meso- ) ( chiral )
B.p. 120.1°C B.p. 124.5°C
np 1.4206 np 1.4284
ds® 0.7620 g/em’ ds?® 0.7806 g/em’®

I.e., the above and other such pairs of diastereomers enjoy a real existence and this is what the
symmetry told us: axial and equatorial bonds are distinct (not equivalent)!. Indeed a 3-space Z

which assumes a D34 point group of the chair conformation of cyclohexane looks like!"":

Z3 (chair) =127 [S, "3+ 48,%+ 28;*+ 286+ 38,%S, |

The above cycle index predicts 2 monochlorocyclohexanes (an axially substituted isomer and
an equatorially substituted one), 10 dichlorocy-clohexanes and 24 trichloro isomers. The
above count is consistent with only two types of bonds.

A beginning student of organic chemistry might have difficulties predicting the distinction
between a and e bonds in cyclohexane until his teacher convinces him of the “steric
differences” between the two situations. But symmetry is decisive here: the coefficient of xy'!
[x =w(Cl), y = w(H)] is 2 in the corresponding GF.

The above is a situation where an observable (a set of diastereomers) might be predicted from
a nonobservable (combinatorial theory of symmetry)! Many other situations may be found

elsewhere.



11

(2) The “Application Era”

As stated earlier, N.G. de Bruijn extensively developed the Polya-Redfield enumeration
scheme. In addition many distinguished scientists contributed several applications along these
lines. It is not our purpose here to count all contributions or even most of them. However, we

will mention the names of “chemically —oriented” distinguished pioneers who contributed to

[12 {13]
s

1, Balasubramanian
Cyvin“'", Fowler!"!, Hacssclbarth“m, Harary“”, Kerber[m, Kleinm], Lloydlzol, Read®" and
Yeh®!,

this area. In alphabetical order, these scientists include: Balalan

The previous is not a complete list and the references cited represent illustrative example of

authors’ works rather than complete lists of their publications.

(3) The “Era Of Fu‘iitanllzll

During the last 20 years of the twentieth century, Shinsaku Fujita an ingenious prolific
scientist of our times, revived interest in the (then neglected but already known) theory of
marks of coset representations of a point-group. These numbers are usually listed in so-called
Tables of Marks (or simply Mark Tables) of groups.

Fujita’s enumeration scheme penerates mark tables of a group by expressing its cosets as
permutations. Such a scheme requires information of all group-subgroup relations which may
not be frivial. Tables of marks were once discussed in Burnside’s textbook™ (1911) but
were neglected for several decades and, in fact, omitted even from voluminous texts!'! on
group theory except for a few™. Apparently Redfield® believed that he had invented the
table of marks, (He had access to the first edition of Burnside’s book which does not contain
the concept of a mark. Redfield, did not have access to the second edition which does contain
it).

In his development, Fujita integrated point-group and permutation group theories and used
coset representations of a group to obtain mark tables. A coset representation is the
mathematical term for what is considered in chemistry to be a set of equivalent ligands or

atoms. Each set is regarded as an equivalence class (i.e. an orbit). While the Pélya-Redfield



formula leads to a gross count of the number of isomers, the scheme of Fujita classifies
subsets of isomers according to their proper molecular symmetry group realized as a subgroup
of that of the parent skeleton.

The algorithm of Fujita and inter-relations among all the steps is graphed in Fig. 1. The
crucial step is the determination of the orbit which controls substitution, G(/G;), where G; is a
subgroup of the point-group G. The next step is to subduce this orbit by all subgroups of G
and obtain what Fujita called Unit Subduced Cycle Indices, USCI’s, for all subgroups. These
functions are then incorporated in a Pélya type substitution to obtain Fujita’s Fixed-Point
Matrix, FPM. The latter matrix is then multiplied by the inverse of the corresponding table of
markes to obtain the “long-promised” Isomer Count Matrix, ICM which lists the number of
isomers in each of the subgroups with appropriate weight-power of substituents. For example,
the ICM of all heterocycles derived from the molecular graph of bicyclobutadiene looks
like!®™:

(& C; C, C/ Cav

1 1
X 2
y 3
¥ : 4
X 5 6 7
Xy 89
X 10
Xy (112 . 13,14
Xy 15
x* 16
Xy | 17,18 .
Xy 19 20 21
x‘y . . 22
Oy 23 .
x! y! y 5 . : 24
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Subduction of Orbji,

The bicyclobutadiene molecular graph has two otbits (= two cosets), as shown below:
5
| m |
2 3
6
A= {1,234} ~ Co,(/Cy)
Ar={5,6} ~ C(/Cy)



The following weights are adopted:
w (C) =1 (for Ay and Ay)
w (N)=x (for Ay)
w (N) =y (for Az)

where N is the hetero-atom.

Now from the coefficient, x' y', and the subgroup it is an “amusing task” to put down the
structure E.g., two heterocycles labeled 17, 18 contain, each, 3 N atom € A; and 1 N atom €
A; and they both belong to C, subgroup. l.e., each of these isomers remains invariant only

under C,. The only two structures consistent with with this “easy puzzle” would be:

N—N—T T———N*——N
—(L—N N—é—J)
= 17 18

Other heterocycles can easily be drawn without too much effort and one obtains the full
library. It is also possible to have more than one type of heteroatom.

Because of the “pleasing™ appearance of the ICM designed at the “last stop™ of the (relatively
long) enumeration journey (of Fujita), it is tempting to call such a matrix: The Heaven of
Fujita. To facilitate the computations Fujita appended his excellent book with many tables of
marks, their inverses, group-subductions and USCI’s (with and without chirality fittingness).
Recently Fujita directed his efforts to nonrigid molecules and compounds with rotatable
ligands. Still a third aspect of Fujita’s research involves merging character and mark tables

together under the name markaracter tables'®.

An “Organic Chemistry Paradox”
A long-time organic chemistry teacher, myself, came across a copy of Fujita’s book. Reading
some parts of the book, and with his organic chemistry “culture” I soon realized the following
paradox:

a) Fujita’s work (in result form) is very interesting particularly to organic (stereo-)

chemists



b) Fujita’s work requires appreciation and understanding of abstract (formal) formalism
of coset algebra
¢) Organic chemists are least exposed to mathematics
(A physical or inorganic chemist may need various aspects of group theory or other
mathematics to understand his main field of study. This is usually not the case with organic
chemistry).

Here a) and c) generate a paradox!

Indeed in C. Alden Mead's' ™ comment on Fujitas book he said “Although the book is in

1 PO | ¢ d Eand

principle self-c > ining some intr y I

s on fund tals of

group theory, it is really aimed at readers who already are acquainted at least with the

basic concepts of group theory and who are willing to think mathematically”.

This means that the important work of Fujita will be read and understood by theoretical
chemists who may not be particularly interested in organic stereochemistry!
The formal concepts involved in Fujita’s theory are pictorially illustrated in a recent book,'”
viz.,

i) A coset-representation is represented as a set of colored graphs.

ii) Numbers indicating marks are replaced by subsets of colored graphs. Members of

each subset remain fixed under a particular subgroup of operations.
ili) ~ Cayley (color) graphs are used to graphically generate marks and unit subduced

cycle indices.

Certainly it is much simpler for an experimental chemist to do simple graph operations (such
as graph-reflection, graph-rotation or pruning some edges out of a graph) and that is all that is
required to reach the main ideas presented in Fujita’s book.

As an illustration, a graphical form of the mark table of Csy is shown in Fig. 2°% where now
the numbers that show up in columns of subgroups are replaced by (colored) graphs. Look,
for example, at both the colored graphs under the C; subgroup which corresponds to Cs, (/C3).

It is not difficult to see now that either of these tweo graphs remains invariant under the

" Incidentally, I was a student of some courses of quantum chemistry taught, then, by Professor C.A. Mead, at

Univ. of Minnesota some 30 year ago!



symmetry operations of C3 = {I, C3, C3"} That is why the number 2 appears in the
corresponding place in the usual forms of mark tables.

Tables 1 and 2P clarify the bijective (= one-to-one, onto) relation between coset algebra
(tablel) and (what might be called) “graph algebra”, both generate the second row in the mark
table, viz., (3 1 0 0). My book!”! contains many mark tables in their graphical forms.

In Fig. 3 a Cayley graph of coset-representation is illustrated for two cases of the Dy
group.[“] A loop shows the subgroups which stabilize a given coset (= colored graph) while
directed lines indicate how cosets (colored graphs) are transformed to one-another. Now the
subduction operation is easy: simply prune out all edges except those which carry elements of
symmetry of the subducing group. The resulting (pruned-out) graphs are to be identified as
cosets. In El-Basil’s book there is a collection of Cayley graphs representing cosets. It seems,
then, that theory and applications of Tables of Marks are still open for chemical enumeration
research. This special issue of MatCh is to explore and encourage the development of this

promising tool.

Acknowledgements: Comments of Professors A.Kerber, K. Lloyd and D.J.Klein are greatly

appreciated.
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o - {C,.C;} {C,.Co {C,C;}

{00 ’ ;
wwuag,” +(S‘$‘} 1S, (8,52 18,5
5.5 {o,a} (5,5} (5054 (5,57

{c,.C,} D,,(/C,) {c.¢} {c,c) 25,(/C,) {c,.C,}

D,,(/C,) } 8,=28,(/C,)

{c,.cl C.Ca {Ci.Cii {C..cd

c,(C,) c.ic.)

{0,}

€l pgcy ey cue) (G

D,,(/C,) } €, = 2C (/C,) + C(/C,)

Fig 3 Graphical Subduction of Two CR’s of D,



Table 1
Permutations generated by the coset representation Cs.(/Cs).(The coset - partitions of Cs, are
labeled as 1,2 and 3)

C3(/Cs) =C+ CCi + CGC;
{I»‘;’v} {Cy,0,"} {C;, G’}
Symmetry Element Permutation
I 1 2 3 (H(2)3)
Cy 2 3 1 (123)
o) 3 1 2 (132)
o, 1 3 2 (1)(23)
[ 8 2 I (2)(13)
a,”’ 2 1 3 (3)(12)
Table 2

Permutations generated from the set of colored graphs (homomers) which represent Cs,(/Cs).
(The homomers are labeled as 1,2 and 3)

Hcswe) thi  hy hs}

Element of symmetry | 2 3 Permutation
I 1 2 3 (M2X3)
Gy’ 2 3 1 (123)
C; 3 1 2 (132)
Oy 1 3 2, (1)(23)
[N 3 2 1 (2)(13)
Gy’ 2 1 3 (3)(12)

Either tables 1 or 2 leads to the following row of marks:

I = (HE2O) v L v v
o (123) v v
- (132) v v
o - (1)(23) v v
o’ = (2)(13) ¥
o= (3)(12) ¥

C, C C; GCsy
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