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Abstract

The mathematical models of some reaction design problems are considered in
detail; these models form the basis of the generation algorithm in ARGENT-1, the
first of our new software systems for search and evaluation of unprecedented organic
interconversions. The representation of graph symmetries by appropriate spatial
symmetry operations makes it possible to explain the three-stage labeling process
in ARGENT-1 in a clear and easily understandable manner; the nonequivalent
vertex- and edge-labeled graphs are associated with orbits of the well-defined power
group T or its two subgroups IV and T". The use of the power group formalism
for separate labeling stages resulted in presentation of mathematical models in a
unified and very compact form. The applicability of the suggested models to some
structural design problems is finally demonstrated.

1. INTRODUCTION

In the two papers presented in this issue, we demonstrate that the solution of typical
reaction design problems necessitates sequential construction of several graph represen-
tations of organic reactions. The actual sequence of generation stages in ARGENT-1,
the first version of our ARGENT system for design of new types of organic reactions, is
G = Grop = Gspq = Grrg, where, as was noted in the preceding paper,’
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e (7 is the unsigned topology identifying graph, which represents the relative disposi-
tion of bonds that change their multiplicity during a reaction;

Grop is the signed topology identifying graph, which, in addition to the topology
described by G, also provides information about signs (symbols of charge or free
electron) possibly borne by some atoms in the initial and/or final system of the
reaction;

Gsgq is the graph representing the symbolic equation, which, in addition to the
information contained in Grop, also provides information on the (initial and final)
multiplicities of all bonds that actually participate in the reaction;

GRreg is the graph representing the reaction equation, which, in addition to the
information of graph Gsgg, also provides information on the chemical nature of the
atoms (C, H, N, O, ...) whose bonds change their multiplicity in the course of the
reaction.

As a result, the three stages of the generation process in ARGENT-1 are (1) assign-
ment of “sign labels” to vertices of graph G, (2) assignment of “bond labels” to edges
of graph Grop, and (3) assignment of “atom labels” to vertices of graph Ggpo. How-
ever, although all these stages are essentially based on graph labeling, their mathematical
models are different. This difference stems from the fact that the resultant graphs at any
stage must be nonequivalent. and the equivalence relations depend not only on the sym-
metry of the starting graph but also on the interconvertibility of “paired” labels. which
are converted into their counterparts as the direction of the reaction is reversed. In fact,
as was shown in the preceding paper,

e generation of graphs G'rop from G is based on the nse of both paired and nnpaired
labels: the labels “+7, “=" " (which denote the sign appearing in the initial
system) and “(+)”. “(—)", “(-)” (corresponding to signs in the final system) are
paired, whereas the blank label (indicating that the corresponding atom is unsigned)
is unpaired;

generation of graphs Ggpg from Grop involves only the use of paired labels; for
each edge label a/b (with ¢ and b, @ # b, being the multiplicities of some edge in
the initial and final systems), the label b/a is the counterpart;

¢ generation of graphs G g from Gggg involves only the use of unpaired labels, each
of them uniquely representing the name of the atom — and also its actual valence,
if different valence states of the same chemical element are to be distinguished.

The necessity to make allowance for the interconvertibility of paired labels is respon-
sible for the main difference between the aforementioned problems of reaction design and
most typical structural design problems. The parallelism and differences between both
types of multistage labeling problems is briefly overviewed in the final section of this
paper.

In general, the term “labeling”** denotes some assignment of labels from a preselected
set to specified parts (referred to as sites) of an arbitrary ohject possessing a given sym-
metry. Two labelings are considered nonequivalent (that is, essentially distinet) if they

52,3
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are not interconvertible by any of the symmetry operations associated with the object in
question. Perhaps the first systematic treatment of various labeling problems (associated
with structural design) was described in 1974 in a paper entitled “Labeling of Objects
Having Symmetry”."* The suggested efficient algorithm was applicable, however, only to
unpaired labels; it formed the central part of the enhanced technique elaborated by the
Stanford research group®® for exhaustive generation of all isomeric organic structures with
a given molecular formula.

The general strategy for solving typical labeling problems can be described as follows:

e For a given unlabeled object (e.g., molecular graph or its given embedding in the
2D or 3D space), one should specify: (a) the set of sites — graph vertices (atoms),
edges (chemical bonds), or chains, rings, k-tuples of atoms, etc. —- to which labels
are to be assigned; (b) the set of unpaired and/or paired labels associated with
any characteristic that should be assigned to all sites; (c) the set of permutations
that represent the symmetry group of the given unlabeled object; and possibly also
(d) the set of additional requirements (constraints) that the resultant labeled objects
must satisfy — e.g., the minimal and maximal allowed contents of some labels in
the constructed labelings.

e The next thing to do is to construct the complete list of labelings (satisfying all the
constraints, if any) and partition it into equivalence classes; each class is defined as
consisting of labelings that are interconverted by at least one operation from the
symmetry group.

From each equivalence class, one should choose exactly one representative labeling;
the list of these labelings selected from all classes is the solution to the labeling
prablem.

In the case of reaction design, partition of labelings into equivalence classes is a more
complicated problem compared to typical problems of structural design. The complication
is due to the presence of paired labels, such as “~” and “(—)” at the first stage or 0/1
and 1/0 at the second stage of the generation process described above. So, to recognize
equivalent labelings (i.e., equivalent resultant graphs Grop, Gseg, and Grgg), one must
consider not only the symmetries of the starting graphs (G, Grop, and Ggpq, respectively)
but also interconversions of paired labels used at the first and second generation stages.
A detailed and rigorous description of the corresponding mathematical models can be
found in sections 5 and 6 of ref 5; however, this essentially formal description may seem
too involved for those who are not familiar with applications of the permutation group
theory to computational problems.

In the following two sections of this paper, we will consider the symmetry properties of
starting graphs at each stage of reaction generation and the equivalence relations between
resultant graphs in a simplified way, illustrating this analysis by examples corresponding
to all the three stages. A formulation of the exact mathematical models for all relevant
labeling problems and the easily understandable compact representations of these models
can be found in sections 4 and 5. The application of just the same models to solution of
some well-known structural design problems is demonstrated in section 6 of this paper.
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2. SYMMETRY OPERATIONS AND INTERCONVERTIBILITY OF LABELS

As is known, symmetries of spatial molecular models are traditionally described in terms of
symmetry operations, such as rotations about axes, reflections in planes, etc. In contrast to
them, symmetries of a graph are usually represented by those permutations of its vertices
that preserve all their connectivities. These permutations are traditionally referred to
as graph automorphisms.® In other words, any graph automorphism is associated with
such a renumbering of graph vertices that each pair of vertices with definite numbers is
connected by an (ordinary) edge in the renumbered graph if and only if it was connected by
an edge in the initial one. In the case of graphs containing unpaired vertex or edge labels,
automorphisms are regarded as permutations that additionally preserve these labels.

The complete set of automorphisms for a given “parent” graph G forms its (vertex)
automorphism group Aut(G).® In many cases, permutations from the graph automor-
phism gronp may be unequivocally represented by operations from an isomorphic point
symmetry group’ associated with some embedding of the graph in the 2D or 3D space.
In such a representation, one can easily visualize the symmetry properties of unlabeled
graphs as well as graphs containing unpaired labels. As is shown below, a similar repre-
sentation is also applicable to graphs with paired labels, and therefore it will be repeatedly
used in this paper.

For example, let us consider graph G in Fig. la: the four permutations from its
antomorphism group Aut(G) are in a one-to-one correspondence with four operations
from the group Cy, -~ identity E, two reflections o' and ¢” in vertical planes, and one
rotation U, about a twofold axis. (Obviously, these symmetry operations pertain only to
the proper - i.e., most symmetrical — embeddings of the graph.)

Any vertex automorphism group, just as the corresponding point symmetry group.
partitions graph vertices into equivalence classes, or orbits of this group: vertices z and
7 belong to the same class if and only if vertex i can be moved to j (and vice versa)
by at least one permutation from the group. Apparently, the vertex set of the graph in
Fig. la is partitioned into three subsets consisting of equivalent. vertices: {1,2}, {3,4}, and
{5,6}. Considering the cyclic structures® of the permutations corresponding to the three
nonidentity symmetry operations, one can see that, for any preselected pair of equivalent
vertices, there are exactly two permutations in which these vertices belong to the same
cycle.

Since the multistage generation process in ARGENT includes labeling of edges as well
as of vertices, further analysis also requires explicit consideration of another permutation
group, i.e., the edge group® of a graph. Permutations from this group are induced® by
permutations from the vertex automorphism group but act on the set of graph edges
rather than vertices. For an example of an edge group, see the rightmost part of Fig. 1a;
examination of the four permutations clearly shows that the edge set {1, 11, 11, 1v, v,
vi} is partitioned into two equivalence classes — {1, 11, 111, v} and {v, vi}. Note that
the vertex and edge groups of the same graph are typically isomorphic,'® and hence the
same symmetry operations (i.e., £, o', ¢”, and C, in the example graph of Iig. 1a) may
be associated with permutations from these two groups.

On the basis of the above considerations, it is easy to construct all labelings and
select representative nonequivalent labelings in the case where only unpaired labels are
used; the antomorphism groups of resultant vertex-labeled or edge-labeled graphs may
also be found without difficulty. For example, if there are two possible vertex labels (say,
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Figure 1: Symmetry operations associated with an example graph G: (a) the cyclic
notations of permutations that form the vertex (on the left) and edge (on the right)
automorphism groups of @, (b) supplementary (overbarred) symmetry operations and
the expanded group Aut[G]. The vertices and edges of the graph are indexed with Arabic
and Roman numerals, respectively.

a) G

Aut(G)=1{E,5', 5", Cy}

E: (DBG)Y@G)E) | (D) @)av) (Vv
G’ (1)(2)(3 4 (5)(6) | (1T V) (V)(VI)
S”: (1 2)(3)(4)(56) | (1 1) (111 TV)(V VI)

Gy (12)(3 4)(5 6) | (1IV)}{I1 1V VI)

b E=k
s'=o' simultaneous conversion
=g [ of all paired labels
2=6 into their counterparts

Aut| G] = {E, o', 6", C,,E, 6", 0", C,}
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A and B), the graph of Fig. la with vertices 3 and 5 assigned label A (and all other
vertices assigned label B) is equivalent to three other graphs — i.e., those with vertices 4
and 5, 3 and 6, or 4 and 6 labeled with A. The automorphism group of any of these labeled
graphs is evidently the identity group. Similarly, if one considers edge labelings with two
labels as well (A" and B), the labeling where edges 1 and 11 are assigned label A’ (and all
other edges assigned label B’) is equivalent only to the labeling where edges 111 and 1v are
assigned label A’. The automorphism groups of the two possible edge-labeled graphs'!
consist of two permutations, i.e., those corresponding to the symmetry operations E and
a”.

This example with unpaired labels was simple. However, as was noted above, graphs
containing paired labels are also used in reaction design problems, since reversal of the
reaction direction results in simultaneous conversion of all such labels into their counter-
parts. Recalling that direct and inverse processes are regarded as the same interconversion
in the Formal- Logical Approach,’® one can expect that the presence of paired labels would
result in higher cardinalities of the sets consisting of equivalent labelings and a smaller
total number of these sets. The orders of the symmetry groups whose operations convert
each of graph labelings into themselves can also increase.

Let us examine some permutation representing the symmetry of a given unlabeled
graph G. If we consider the corresponding interconversions of the vertex- and/or edge-
labeled graphs to be generated (Grop, Gsgo, Greg), we may distinguish two possibilities:
either (a) vertices and edges of resultant graphs are just moved according to this permuta-
tion or (b) not only they are moved, but, in addition, all paired labels are simultancously
replaced by their counterparts, thus reflecting reversal of the reaction direction. If a (la-
beled or unlabeled) graph is converted into itself under a transformation of the first or
second type, the permutation in question is called a (+)- or (—)-automorphism of this
graph, respectively.

Actually, the above definition of a (+)-automorphism means just the same as the
common definition of an automorphism; however, the notion of a (- )-automorphism is
somewhat unusual and, in fact, rather artificial for graphs without paired labels. Indeed,
if a graph contains no paired labels, then the action of all its (—)-antomorphisms coin-
cides with the action of its (+)-automorphisms. For example, in the case of graph G in
Fig. 1a, its four (—)-automorphisms (corresponding to the symmetry operations marked
with overbars in Fig. 1b) are indentical to the relevant (+)-antomorphisms. However, as
soon as any vertex or edge of this graph is assigned a paired label, the (+)- and (-)-
autemorphisms of the resultant labeled graph are immediately distinguished from each
other.

It is important that, just as the set of all (+)-automorphisms forms a group, the whole
set of (4)- and (—)-automorphisms of any labeled or unlabeled graph also forms a group.
This latter group was called® the ezpanded automorphism group of this graph. According
to the above paragraph, the expanded automorphism group of any graph without paired
labels is actually an artificial construction, the so-called action'? of the group. Thus, the
expanded group Aut|G] (represented in Fig. 1b by four nonoverbarred and four overbarred
symmetry operations) moves vertices of graph G in just the same way as two copies of
the “normal” group Aut(G) do; the orbits (i.e., the equivalence classes of vertices) are
also identical for both groups.
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3. EQUIVALENCE RELATIONS BETWEEN LABELED GRAPHS

On the basis of the above considerations, we can directly draw three important conclusions
concerning equivalence relations between vertex- and/or edge-labeled graphs:

o For each resultant graph at any generation stage, all labeled graphs equivalent to it
should be recognized and then deleted from the complete list of resultant graphs. As
a result, the remainder of the complete list will consist only of pairwise nonequivalent
labeled graphs, which represent the solution to the labeling problem for this stage.

To recognize the equivalence classes of resultant graphs (Grop, Gszg, or Greg),
the expanded automorphism groups of the starting graphs (G, Grop, or Gsgg,
respectively) should be examined. These groups contain all information on the
symmetry of starting graphs and also on the interconvertibility of labels used at
previous generation stages.

Formally representing (+)- and (—)-automorphisms from the expanded groups of
starting graphs by operations from some symmetry groups (without and with over-
bars, see above), one can easily visualize interconversions of equivalent vertex- or
edge-labeled resultant graphs. In this section, we will treat these symmetry op-
erations as if they were actual (+)- and (—)-automorphisms. The purpose of this
oversimplification is to make explanations as clear as possible — however, one should
always remember that all graph automorphism groups are actually formed of per-
mutations but not of corresponding operations of any kind.

It is evident that the expanded automorphism groups can be successively constructed
for graphs Grop, then Gsgg, and finally Ggpg. For this purpose, one should select those
symmetry operations from the expanded group of the starting graph (Aut[G] at the first
stage, Aut[Grop] at the second, and Aut[Gggg] at the third) that convert the relevant
resultant labeled graph into itself. Hence, the expanded group of any resultant graph is
either a subgroup of the expanded automorphism group of the starting graph or identical
to it.

The “normal” automorphism groups Aut(Grop), Aut(Gsgg), and Aut(Gree) can be
similarly constructed starting from Aui(G); these groups consist of (+)-automorphisms
and are subgroups of corresponding expanded groups or coincide with them.

Let us consider some specific situations and details for separate generation stages.
Signed topology identifiers. The vertex-labeled graphs Grop constructed from a given
graph G must be nonequivalent with respect to operations from the expanded group
Aut[G]. The paired labels actually assigned to the two signed centers can be identical
(e.g., “+” and “47); opposite (e.g., “~” and “(—)"); or different — that is, neither
identical nor opposite (e.g., “+” and “~"). In addition, the vertices to which these labels
are assigned can belong either to the same equivalence class or to different classes.

As a result, 3 - 2 = 6 situations are possible at the first generation stage; they are
illustrated in Figs. 2a-f for some graphs Grop corresponding to the unsigned topology
identifying graph G of Fig. 1a. Interconversions of all labeled graphs belonging to the same
equivalence class (from which a single graph should be selected) are explicitly shown; the
symmetry operations from group Aut[G] that convert any resultant graph Grop into an
equivalent one are specified in Figs. 2a-f at the relevant two-sided arrows. The remaining
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operations (the same for all equivalent graphs) represent permutation from the “normal”
and expanded antomorphism groups of Grop. Evidently, in all the six possible cases,
Aut(Gror) C Aut|Grop|, Aut(Grop) C Aut(G), and Aut[Grop] C Aut[G]. It is also
evident that the expanded groups of graphs Grop and G are identical if and only if Grop
contains no signed vertices, that is, if Gyop = G.

The number of vertex labelings in each equivalence class can be obtained by dividing
the order of group Aut[G] (equal to 8 in our example, see Fig. 1b) by the order of the
corresponding group Aut[Grop]; see note 11 for explanation. In the above examples, this
number equals either 2 (Figs. 2a,c) or 4 (Figs. 2b,d-f).

Figure 2: The equivalence classes of six preselected graphs Grop and the corresponding
automorphism groups. The signed vertices belong to (a, b, ¢) the same orbit and (d, e,
f) different orbits of Aut(G); labels at these vertices are (a, d) identical, (b, e) different,
and (c. f) opposite.

a)

. O o
’Cz.IEc’

Au(Grop)= {E, o', 0", Cy)
Aut|Gropl = {E, o', 0", Gy}

AUNGyop) = AutiGropl = tE, o) AutiGrop) = £t
AullGpopl = {E, % 6", §y}

b ¥ .,"%.—<1>—
Eqc _'I Eo
C() o ()‘O

AutGrop) = AUG rppl ={E, o'} Aul(Grop) = AutlGropl = {E, ) Auf(Grop) = AullGropl = {E, )

Examination of Figs. 2a~f shows that Aut(Grop) = Aut[Grop| in most cases —
namely, if the two signed vertices belong to different orbits of Aut(G) or belong to the
same orbit but bear identical or different sign labels. In these cases, the expanded group
Aut[Grop) does not contain (—)-automorphisms associated with reversal of the reaction
direction (see above). Such graphs Grop cannot produce degenerate bond redistribu-
tions'? at subsequent stages of the generation process. On the contrary, one can easily see
that nonidentity of groups Aut(Grop) and Aut[Grop] can be observed if and only if the
two signed vertices belong to the same orbit of Aut(G) and are assigned opposite labels
(see Fig. 2¢). The total number of (—)-automorphisms is necessarily equal to the number
of (+)-automorphisms in this case.'

Symbolic equations. The resultant edge-labeled graphs Gsgq constructed from a given
graph Grop must be nonequivalent with respect to operations from the expanded group
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Aut[Grop). Since paired labels (such as 0/1 and 1/0, 0/2 and 2/0, etc.) are assigned
at this stage to all edges of the given topology identifying graph, unsigned or signed
(Grop = G or Grop # G, respectively), three situations are possible:

(a) Aut(Grop) C Aut[Grop| = Aut[G]
(unsigned topology identifier; there are (—)-automorphisms in its expanded group);

(b) Aut(Gror) = Aut{Gror) C Aut|G)
(signed topology identifier; there are no (—)-automorphisms in its expanded group);

(¢) Aut(Grop) C Aut[Grop] C Aut[G)
(signed topology identifier; there are (—)-automorphisms in its expanded group).

These situations are exemplified in Figs. 3a,c,e for arbitrary edge-labeled graphs Ggrq
corresponding to the topology identifiers of Figs. 1a, 2b, and 2c, respectively. For each
GsEpg, the corresponding symbolic equation is explicitly shown (Figs. 3b,d,f), as well as
all equivalent graphs obtained by action of relevant operations from Aut[Grop|. To solve
the second-stage labeling problem, one should again, just as at the first stage, select a
single representative graph G'sgq (e.g., the leftmost one in each of Figs. 3a,c.e) from each
equivalence class of edge-labeled graphs.

The syminetry operations from group Aut[Grop] that convert each edge-labeled graph
Gspq into itself represent its expanded automorphism group Aut(Gsgg), which reflects
the full symmetry associated with the corresponding symbolic equation. The “normal”
groups Aut(Ggpg) can be similarly obtained from groups Aut(Gpop). These “normal”
groups are represented by those operations from the expanded groups Aut[Ggpg] that
are not marked with overbars in our notation. Surely, Aut(Gspq) C Aut(Grop) and
Aut|Gspq) C Aut|Grop).

Groups Aut(Gspg) and Auf(Gspg) can be identical or nonidentical if Aut[Grop)
contains (—)-antomorphisms and are necessarily identical if Aut(Grop) = Aut|Grop].
Among the examples of Fig. 3, nonidentity of groups Aut(Gsgg) and Aut[Gggg) is ob-
served only for the graph in Fig. 3a; the corresponding symbolic equation of Fig. 3b
represents a degenerate bond redistribution. This fact is not accidental: the degeneracy
criteria® (actually applied to symbolic equations in the ARGENT-1 program) are really
based on comparing the two antomorphism groups of graph labelings in question.
Reaction equations. The vertex-labeled graphs G ggq constructed from a given edge-
labeled graph GGsgg must be nonequivalent with respect to operations from the expanded
group Aut|Ggpgl. Note that, although all labels (i.e., atom symbols) used at this genera-
tion stage are actually unpaired, the use of the “normal” automorphism group Aut(Gseq)
can lead to erroneous results, because paired labels have necessarily been used at previous
stages.

To illustrate the solution to this labeling problem, let us consider three vertex-labeled
graphs G rrg (Figs. 4a,c,e) that represent two orbits of group Aut[Gggg) for the graph in
Fig. 3a and one orbit of group Aut[Gggg) for the graph in Fig. 3e.

The symmetry operations associated with the “normal” and expanded groups of
graphs Greq are explicitly shown in Figs. 4a,c.e together with operations from the two
automorphism groups of each starting graph Gsgg. In general, the relationships between
the groups are similar to those observed at previous stages: Aut(Grpg) C Aut(Gsrg)
and Aut|Grpg| C Aut|Gspgl. Actually, gronps Aut[(rpq| and Aut[Gspg) are identical
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Figure 3: (a, ¢, ) The equivalence classes of three graphs Gspg and (b, d, ) the symbolic
equations corresponding to the leftmost graphs of these equivalence classes. The oper-

ations of group Aut[Grop| that convert an edge-labeled graph into itself and into other
equivalent graphs are explicitly shown.
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Figure 4: Selected vertex-labeled graphs Grpo presented together with (a, ¢, ) groups
Aut(Gsrg), AutlGgrgl, Aut(Greg), and Aut[Greg| and with the (b, d, f) corresponding
reaction equations, where R represents a carbon (C), hydrogen (H), or any other terminal
center of a migrating group. The oxygen atom in part (f) of the figure is not a reaction
center but a substituent shown to clarify the essence of the real process.
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in two of the three examples under consideration; the only exception is the expanded
group of the graph in Fig. 4a, nonidentical to that of the graph in Fig. 3a.

Also similarly to previous stages, the two antomorphism groups of any graph Ggreg
can be either identical (e.g., for the asymmetrically labeled graph in Fig. 4a) or non-
identical (e.g., for the symmetrically labeled graph in Fig. 4¢). In the latter case, the
presence of (—)-automorphisms in Aut[G grq| leads to degeneracy’ in the correspond-
ing reaction equation (compare the hypothetical'®* processes in Figs. 4b,d). On the
contrary, identity of gronps Aut(Gspq) and Aut[Ggrg] necessarily results in nondegen-
eracy of the corresponding interconversions: indeed, Aut{Gsgpg) = Aut|Gggg] implies
Aut(G o) = Aut|Gregl. A reaction equation corresponding to a nondegenerate process
actually investigated'®*” may be found in Fig. 4f.

The above description was essentially based on the simple idea to separately treat
overbarred and nonoverbarred symmetry operations. Since any pair of such operations
represents the same permutation from the group Aut(G), the corresponding (+)- and (-)-
automorphisms of vertex- and/or edge-labeled graphs must be somehow distinguished in
the rigorous mathematical models of all labeling procedures. Some important notions
required for this purpose are briefly considered in the next section; for their more detailed
discussion and mumerous examples, one can consult sections 5 and 6 of ref 5.

4. THE POWER GROUP FORMALISM

In the preceding section, we considered the symmetries of unlabeled and labeled graphs as
permutations from automorphism groups and illustrated them by spatial symmetry op-
erations. However, this description is not completely rigorous, although the reasons seem
rather subtle. The problem is that, strictly speaking, antomorphisms from the “normal”
vertex group (or edge group) of a graph actually permute graph vertices (or edges) but
not. graph labelings. In fact, a labeling is a function, or, in other words, a mapping from
the set of sites (vertices or edges) to the set of labels. That is why permutations from
the “normal” antomorphism group move sites but do not directly convert a function into
another function or into itself. To rigorously consider interconversions of labelings. one
should use the group induced” by the automorphism group but acting on the set of all
possible labeled graphs rather than on the set of sites. Such a group enables one to make
allowance not only for permutations of sites but also for interconversions of paired labels.

In general, a group acting on the set of functions is well-known to matheruaticians: it
is the power group'™ introduced hy Harary and Palmer!'™" in 1966.

In order to accurately apply the power gronp formalism, let us once more recall the
succession of labeling stages in generation of graphs G ggg from some preselected parent
graph G with the vertex set V' and edge set X. At the first and third generation stages,
the sites to be labeled are vertices of graphs G and Gggg, respectively; at the second
stage, these sites are edges of graph Grop.

Let us denote the set of sites to be labeled at some stage by W (W =V or W = X,
depending on the stage), and their number by p: W = {w\. ws, ..., wy}. Let us also
assume that M = {my, ms, ..., mg} is the set of ¢ labels that can be assigned to these
sites: sign labels, “double” bond labels, or atom labels in the case of graph G, Grap, or
Gsgq, respectively.

Then, the set F = MY (|F| = |M|"! = ¢”) of functions f = W — M represents all
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labelings possible for the given sets of sites and labels at each stage.® For example, if one
considers generation of graphs Grop from the unsigned topology identifying graph G in
Fig. 1a. then p = 6 (the number of sites, i.e., vertices), ¢ = 7 (the total number of sign
labels, including the blank one), and |F| = 7% = 117 649. Note that here we disregard
equivalence relations, as well as any possible built-in or user-specified selection criteria.

Let us also consider another example for the same topology identifier: in generation
of graphs Gggg from graph Grop = G, having p = 6 (the number of sites, i.e., edges)
and g = 12 (the total number of edge labels used in ARGENT-1, such as 0/1, 1/0, 1/2,
2/1, etc.), one obtains | F| = 125 = 2 985 984.

However, as has already been noted, many of these g7 labelings are equivalent, and the
numbers of nonequivalent labelings are much smaller. Therefore, one must define such an
induced group acting on set F that each orbit of this group would form a class of equivalent
labelings, and labelings belonging to different orbits (classes) would be nonequivalent,
Then, the labeling process at each stage would be reduced to the combinatorial problem
of finding a system of orbit representatives (a transversal) of this group on set F.

As was shown above, the equivalence of labelings depends on the symmetry group
acting on set W and on the interconvertibility of labels in set M. To consider the first
of these two aspects, let us assume that a permutation group H = {hy, hy, ..., hy} of
order n acts on set W and describes the symmetry of the starting graph for the current
generation stage. Different groups H appear at the first, second, and third generation
stages, but permutations in all these groups can be associated with some symmetries
of the parent graph G (see above). For definiteness, permutations from any group H
should be numbered in a unified way; in this paper and in the ARGENT-1 program, the
numbering system satisfies the following two rules: (1) the first permutation h; from any
group H is the identity one, and (2) if (—)-automorphisms are present, they form the
second “half” of the group; in this case, n is even, permutations hy, hy, ..., hyy are
(+)-automorphisms, and permutations hujoit, Bnpoga, oo, hy are (—)-automorphisms.

To make allowance for interconvertibility of labels, let us assume that the label
set M is ordered in such a way that it may be subdivided into three disjoint subsets:

M® = {my, mg, ..., mgar}, M~ = {mg-ri1, Mgoar42, ..., Mg}, and MY =
{Mg=rs1, Mg—ri2, --., Mg}, with M® consisting of ¢ — 2r unpaired labels, and M~
and M* (|M~| = |M*|) being the sets of r paired labels. Note that each label m;

(¢—2r < j <g—r)from M~ must uniquely correspond to its counterpart myg_gr—j11
from M™* and vice versa. In this situation, label interconversions can be formally de-
scribed by introducing the symmetrical group Sy = {s;, s2} acting on M: in this group,
sy is the identity permutation, and s, is the permutation that converts all labels from M~
into their counterparts from M* (and vice versa) and all labels from M? into themselves.
This notation will be preserved throughout this paper.

Note that M cannot be empty but any of its subsets can: |M°| = 0 at the second
stage (all edge labels are paired), and |[M~| = |M™*| = 0 at the third stage (all atom
symbols are unpaired labels).

After the two permutation groups (i.e., H and S;) and the sets on which they act (W
and M, respectively) are specified, the power group formalism'™ can be actually applied
to rigorous description of reaction design problems. For this purpose, let us construct the
induced permutation group I' = SI' whose elements -y convert any function f from the set
F = M"Y (and the corresponding graph labeling) into some function f’ also belonging to
F (into an equivalent labeling, respectively). The permutations <y from the power group
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I' can be written down as ordered pairs (hy, s;), where hy € H (k =1, 2, ..., n) and
s, € Sy (I = 1. 2). The action of any such pair on some function f means that all sites
of set W are initially moved by the permutation h, and their labels from set M are then
converted (into themselves or counterpart labels) by the permutation ;.

The power group I' of order 2n is evidently applicable to description of any one-stage
generation problem involving paired labels. However, in the case of multistage problems,
certain well-defined “smaller” groups (subgroups of the group ') must be used at some
generation stages. Two such subgroups, denoted as I and I'", are described in the next
section of this paper; each of them consists of n pairs (hg. s;) out of 2n possible pairs.

5. MATHEMATICAL MODELS OF GENERATION STAGES

In order to describe the exact mathematical models of reaction design problems, let us
recall some results of section 3. In that section, we demonstrated that equivalence rela-
tions between resultant vertex- and edge-labeled graphs actually depend on the presence
or absence of (a) specific symmetry operations representing (—)-automorphisms of the
starting graph in question and (b) paired labels at any generation stage. That is why the
use of the power group formalism must be separately considered for each generation stage
and for each possible situation.

The necessary comments to individual generation stages are given below. For refer-
ence, see Table |, which contains the representation of the overall results in a compact
unified form.

I. The first stage is generation of graphs Grop from G. Here, the site set is W, =V,
and the label set is M, = M{ UM U M;" with M{ = {blank label}, M| = {+, -, -},
and M = {(+), (=), (-)} (see column I in Table 1). The group defining the symmetry
of graph G is its “normal” vertex automorphism group: H, = Aut(G), |H,| = n,. As
is clear from the above discussion, two graphs Grop generated from the same graph G
are equivalent if one of them can be converted into the other by a permutation + that
is represented by a pair (h,s)) or (h,s), where & € H) and 5,85 € Sy. Indeed, any
permutation v = (h,s,) corresponds to some nonoverbarred symmetry operation (such
as o or C, in Figs. 2b—f) which, in turn, may be regarded as a (+)-automorphism of
G. Similarly, any pair (h, sz) uniquely corresponds to an overbarred symmetry operation
(e.g., E and & in Figs. 2a—f), or. in other words, to a (—)-automorphism of G. As
a result, equivalent labelings uniquely correspond to orbits of the induced permutation
group T' = Si" on the set F = MY, which consists of functions f = V — M,. The order
of the power gronp I' is evidently equal to |Ss| - |H;| = 2n,.

11. The second stage is generation of graphs Gspg from Grop. The site set is W, = X
(the edge set of a given graph Grop); the label set is My = M, U M, with M, being
the set of “double” edge labels a/b (@ < b) and M, being the set of their counterparts
b/a (see columns [I(a)-1l{c) in Table 1). Evidently, the symmetry of graph G'rop at this
stage is characterized by its edge group H, induced by the relevant vertex automorphism
group. However, since the topology identifying graphs Gyop can be unsigned or signed
and the symmetry of signed topology identifiers can be characterized by two kinds of
automorphism groups (see section 3), three cases must be considered separately.
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Table 1: Mathematical models of reaction design problems. See text for explanation
Stage 1 CEEECHED m
Site set W=V Wy =X Wy=V
Permut. H, = Aut(G) Hy induced |Hj induced| Hy and Hp Hy =
group by by induced by | Aut[Gsrq)
Aut(G) | Aut(Grop)| Aut(Grop) &
(= Aut(Gror)) Aut(Gror],
respectively
Label set|M; = MY U M UM} My = My UM, My =M=
MY = {blank label}, My ={0/1,1/2,2/3,0/2,1/3,0/3}  |{H,0,N,C,
M; ={+—-,} My ={1/0,2/1,3/2,2/0,3/1,3/0} P, 8,3}
M ={(+).(=), ()}
Permut. Sy = {81,82} So={s1,82} | E={s1} | Sa={s1,8} | E={s1}
group
Set of Fi=MY B =My B =My
functions
Elements pairs pairs pairs pairs pairs
ofthe | (k) (hosa)i | (hs), (hysedi | (hys) [(hys) ke Ha (b)),
induced he H heH, h € Hy and (k, s2), h € Hy
group he Hy\ Hy
Group D=5z T=5" |I'=Eh r |
type




1I(a)

TI(b)

II(c)
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Let us assume Grop = G, that is, no signed vertices are present, see the graph
in Fig. 1a. Then, the edge group Hs (|Hs| = ng) is induced by the automorphism
group Aut(Grop) = Aui(G) — see column 1l(a) in Table 1. As is apparent from
Fig. 3a, the leftmost edge-labeled graph Gsgg can be converted into any other
equivalent edge-labeled graph either by a pair (h,s;) corresponding to a nonover-
barred symmetry operation or by a pair (#,s) corresponding to an overbarred
operation. Here, h € H,, and s,, s, are the identity and nonidentity permutations
from group S, acting on M,. As a result, equivalent labelings uniquely correspond
to orbits of the power group I' = S5 (|T'| = 2n,) on the set of functions Fy = M5

Let us assume there are two signed vertices in graph Grop and Aut(Grop) =
Aut[Grop); that is, the sign labels at the two vertices are not opposite or these ver-
tices belong to different orbits of the group Aui(G) (see section 3 and Figs. 2a,b,d-
f). Then, evidently, no overbarred symmetry operations exist and no permutations
(h, $2) convert resultant graphs Gsgg into equivalent ones. Therefore, all permuta-
tions interconverting equivalent labelings of graph Grop are represented by pairs
(h,51), h € Hy, with H, being the edge group indnced by Aut(Grop); an example
of a symmetry operation corresponding to a (h, s;) pair is ' in Fig. 3c. As a result,
equivalent labelings form orbits of another power group, IV = E#2_ acting on the
set of functions Fy = M,*. This group is constructed from group Hy acting on X
and the identity group E = {5} acting on the label set M, - see column II(b) of
Table 1. Obviously, I is a subgroup of I' = S.f’; its order is equal to ny = |Hy|.

Let us assume that Aut(Grop) C Aut|Gropl; that is, graph Gy contains two
vertices bearing opposite sign labels and belonging to the same orbit of group
Aut(G) (see Fig. 2¢). Then there are two different types of permutations that can
convert an edge-labeled graph into an equivalent one. First, let us consider an
edge permutation A induced by some permutation h* € Aut(Grop). Since the (+)-
antomorphism h* leaves sign labels unchanged (cf. the nonoverbarred operation o'
in Fig. 3e), h will form a pair only with s;. the permutation that also preserves hond
labels. At the same time, any (—)-antomorphism h* € Aut|Grop] \ Aut(Grop)
converts all sign labels into opposite ones; therefore, the permutation A induced
by h* can produce an equivalent edge-labeled graph only when paired with s, (see
operations " and Cy in Fig. 3¢). As a result, any conversion of graph G sk@ nto
an equivalent one ensures that sign and bond labels are either all preserved or all
simultaneously converted into their counterparts.

For the sake of uniformity, let us now consider two edge groups of graph Grop:
group Hy is induced by Aut[q{-()p] (|H2| = |Aut[Grop]| = na), and its subgroup H,
is induced by Aut(Grop) (|Ha| = |Aut(Grop)| = n2/2). In this case, the group'®
[ defining the equivalence classes on set ¥, = M;* can be represented as a union
of two disjoint subsets: one consists of ng/2 pairﬁm('h, s1) with h € H,, whereas the
other consists of ny/2 pairs (h, so) with h € Hy\ Hy - see column 1I(c) of Table 1.
Just as I, the T group is also a subgroup of I of the order n,, but, in contrast to
I, is not a power group.

III. The third stage is generation of graphs Grpo from Gsgg: examples of non-
equivalent graphs G e and the corresponding reaction equations can be found in Fig. 4.
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At this stage, W = V, and My = {H, O, N, C, P, S, J, ...}." All atom labels are
unpaired: M; = M," = @. The group H; acting on the vertex set is always the expanded
antomorphism gronp Aut(Gspg) (with the order |[Aut[Ggig]| = ns). Indeed, two vertex-
and edge-labeled graphs G gpy constructed from the same graph Ggpq are equivalent if
and only if some permutation h € Hj paired with the identity permutation s, converts
one of the graphs into the other. In other words, equivalent labelings, corresponding to
functions of the set F3 = M;’, are converted into each other by pairs (h, s1) with h € Hj,
see column I1I in Table 1. The power group consisting of these permutations is TV = Es;
its order is || = ny.

Analysis of Table 1 shows that mathematical models of all the generation problems
under discussion have much in common: the induced permutation group I', as well as
its subgroups I and I'”, partitions the set F' of appropriate functions into equivalence
classes, each of these classes representing a definite vertex- and/or edge-labeling of the
parent graph G. The difference between the mathematical models associated with the
three group types (I, I, and I'") is due to the natures of sites and labels used at different
generation stages — see the second and fourth rows of Table 1.

Yet another conclusion from Table 1 is that the group H; acting on set W; at any gen-
eration stage (i = 1,2, 3) coincides with or is induced by some automorphism group of the
graph corresponding to the preceding stage. Recalling that any expanded automorphism
group can include only permutations from the expanded group of the graph generated at
the preceding stage, one can conclude that

Aut[G] D Aut[GT()p] ) AUt[ngQ] 2 Aut[GREQ];

that is, the full symmetry of any resultant graph (Grop, Gsgq, or Greg) cannot exceed
the full symmetry of the corresponding starting graph (G, Grop, or Gsgg, respectively).
The similar relationship between “normal” automorphism groups

Aut(G) 2 Aut(Grop) 2 Aut(Gspo) 2 Aut(Greq)

also holds; note that Aut[G] actually consists of two copies of group Aut(G), see section 2.

Finally, we can also refer to another terminology: graphs G, Grop, Gsrg, and Greg
may be regarded as “reaction objects” of the zeroth, first, second, and third levels, re-
spectively. In this representation, the whole mathematical construction used here to
describe the three-stage generation of all possible vertex- and edge-labeled graphs Greg
starting from a given unlabeled graph G' may be viewed as the Ladder of Reaction Ob-
jects. A very similar construction, i.e., the Ladder of Molecular Objects, was used?®
to describe successive generation of all molecular formulas, constitutional formulas, and
stereochemical formulas starting from a given number of atoms involved; this approach
also resulted in mathematical formalization of the three fundamental characteristics of
organic molecules — their composition, connectivity, and configuration.'®

6. ON SOME SIMILARITY BETWEEN REACTION AND STRUCTURAL DESIGN
PROBLEMS

In the last section of this paper, we want to demonstrate a parallelism between the above-
considered reaction design problems and several structural design problems whose solution
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is based on just the same mathematical models. To put it more precisely, we will briefly
outline the applicability of the multistage labeling procedures (and of the induced groups
I, I, and I'") to deseription of the generation problems for various “structurally similar”
derivatives corresponding to the given “parent” compound.

First of all, many structural design problems require successive construction of more
complicated molecular graphs or graph-like objects from less complicated ones; this pro-
cess is typically terminated when complete sets of the relevant constitutional (structural)
formulas are obtained. For example, the generation algorithm suggested in the fundamen-
tal paper®® on labeling problems starts from so-called vertex-graphs and involves succes-
sive production of “cyclic skeletons”, then “ciliated skeletons”, then “superatoms”, and
finally “chemical graphs” representing all possible constitutional formulas corresponding
to a given molecular (gross) formula.*

Balaban?'® created his “adamantaneworld” in a similar manner. In his study, all
four-vertex general cubic graphs (i.e., regular graphs of degree 3 that can contain multiple
edges and/or loaps) were constructed at the first stage, and the resulting adamantane iso-
mers were obtained at the second stage by assignment of appropriate edge labels (CHy)y,
k=1,2,...,6, to all or some edges of these general graphs. Note that heteroanalogs
and/or substituted derivatives of the resultant structures can easily be produced at sub-
sequent labeling stage(s) if supplementary vertex labels representing heteroatoms and/or
preselected substituents are additionally used.

An even more specialized literature example®'” is associated with multistage construc-
tion of complex acyclic fragments starting from a set of given “elementary fragments”.
Afterwards, at the final stage, the resulting substituents saturate the free valences of
some “central fragment”. thus producing complete sets of acyclic derivatives of the par-
ent, typically cyclic, skeleton. Note that the strnctures thus obtained are not necessarily
isomeric.

For a more detailed discussion, let ns consider an extremely simple and somewhat
artificial example of a structure generation problem involving the use of “sign labels”,
“bond multiplicity labels”, and “atom labels” at the first, second, and third labeling
stages, respectively. The labels actually chosen are (1) signs “4+7, “—", and the blank
label; (2) double and ordinary bonds; and (3) divalent O, trivalent N, and tetravalent C
atoms. Note that these labels are very similar to those used at the three stages of the
above-discussed reaction design problems, except that sign and bond labels are unpaired
now. Some nonequivalent signed graphs corresponding to dipolar structures, multigraphs
containing one or two nonadjacent, double edges, and vertex-labeled graphs representing
O,N-heteroanalogs of the 1,3-dimethyleyclobutane skeleton can be found in Figs. 5a—c; all
these graphs are constructed from the parent graph G of Fig. la.

The three-stage labeling procedure is illustrated by graph labelings of Figs. ba.d,e;
for the second and third generation stages, only the labelings ohtained from selected
graphs Gy and (7, are explicitly shown. The final results of Fig. 5e evidently represent
hydrogen-depleted constitutional formulas of those unsaturated 1.4-dipolar species with
the molecular formula C;HsNO which can be regarded as heteroderivatives of the parent
1.3-dimethylcyclobutane structure. (Note that valences of the charged O, N, and C atoms
in all multiply labeled graphs of Fig. 5e are equal to 1, 2, and 3, respectively.)

The nonequivalent labeled graphs of Figs. Sa.d,e can evidently be associated with
orbits of some induced groups that act on sets F; (¢ = 1,2, 3 is the number of the generation
stage) consisting of functions from one finite set W} into another set M;. Here, W} is the
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Figure 5: Some labeled graphs generated from the parent graph G of Fig. la: (a) signed
graphs corresponding to 1,3- 1,4-, and 1,5-dipolar structures, (b) multigraphs containing
no adjacent double edges, and (c) vertex-labeled graphs that are consistent with the
prescribed valences of O, N, C and contain exactly one oxygen, one nitrogen, and four
carbons. The signed multigraphs constructed from the selected signed graph G, and the
constitutional formulas constructed from the selected signed multigraph G, are depicted
in Fig. 5d and Fig. 5e, respectively.
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set of vertices, edges, and again vertices of the parent graph ( for the first, second, and
third stage, respectively, and M; consists of sign labels, bond multiplicity labels, and
atom labels for the same stages. The induced groups are, in turn, constructed from
“normal” vertex or edge antomorphism groups H; of the appropriate starting graphs.
Note that Aut(G) D Aut(G;) O Aut(Ga) in this example, and this is the main reason
why the numbers of results in Figs. 5d and e are different from those in Figs. 5b and be,
respectively.

However, as was mentioned above, all labels of sets M; at the three labeling stages
are unpaired, and this is the main difference between the above reaction design problems
and the majority of typical structural design problems (surely, the additional constraints
can also be different). As a result, all groups acting on sets M;, i = 1,2, 3, are identity
groups consisting of a single permutation s,, and all induced groups whose permutations
convert the labeled graphs of Fig. ba-e into equivalent graphs are power groups of the
type [' = E'; cf. similar groups represented in columns II(b) and III of Table 1.

On the other hand, we can still demonstrate the applicability of groups T’ and I
to some structural design problems. For this purpose, let us consider one-stage? la-
beling procedures aimed at generation of substituted derivatives of planar pyrazine and
nonplanar diazaprismane (1,4-diazatetracyclo[2.2.0.0[%%.0%% hexane) structures; both are
represented in Fig. 6a. In contrast to all the above examples, let us make explicit allowance
for the stereochemistry®®?* of the parent as well as resultant structures. Consideration
of stereochemistry means that the labeling problem in question is associated with some
embedding of the parent pyrazine or diazaprismane graph in the 3D space rather then
with the graph itself. In this situation, some symmetry group of the “spatial” (embedded)
graph is responsible for equivalence relations between resultant labelings.

As is well known since Lunn & Senior®® and Pélya," application of the rotation
group produces all stereoisomeric derivatives of the starting spatial graph, whereas ap-
plication of the rotation-reflection group results in generation of all achiral derivatives
plus representatives of all pairs of chiral derivatives; different enantiomers are not dis-
tinguished in this case. At the same time, as was mentioned above, the automorphism
groups of graphs themselves (in the mathematical sense) yield labelings that represent
constitutionally isomeric derivatives of the parent organic structure. For more recent
investigations on the interrelationship between the above three groups, see ref 25c.

Here we do not distinguish between different enantiomers of substituted derivatives,
and hence, we consider the rotation-reflection groups whose operations permute the four
numbered free valences of the planar pyrazine and nonplanar diazaprismane skeletons.
As is apparent from Fig. 6a, these groups consist of eight and four symmetry operations,
respectively. On the other hand, the permutation group?® associated with the graphs
under discussion is the same in these two examples; all the four permutations from this
group are also shown in Fig. 6a.

Let us consider the simplest labeling problem consisting in assignment of only two
different labels (substituents) to the four sites (free valences).?” Moreover, let us assume
that the labels are either both unpaired (e.g., H and D) or both paired; in the latter case,
the symbols ) and O denote the two enantiomeric forms of some chiral substituent. An
example of such a substituent (-CH(OH)CHj, the a-hydroxyethyl group) is represented
in Fig. 6b; it is evident that the two enantiomeric forms of the a-hydroxyethyl group
cannot be superimposed in the 3D space but are interconvertible under reflection in a
mirror plane.



Figure 6: The one-stage generation problem for substituted derivatives of planar
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The complete lists of deuterium-substituted pyrazines and diazaprismanes are pre-
sented in Figs. 6¢,d; their examination reveals the existence of a one-to-one correspon-
dence between the derivatives of these two parent structures. The corresponding complete
lists of Q,0-derivatives are shown in Figs. 6e,f, and, apparently, they represent just an-
other situation: the total numbers of diastereomers (non-enantiomeric sterecisomers) are
different, and the two extra substitution products of Fig. 6f — i.e., the third and seventh
ones — have no analogs among the Q),O-substituted pyrazine structures.

To explain these results, let us explicitly construct the mathematical models of the
above labeling problems. Evidently, |W| = 4 and |M| = 2 in all cases under consideration.
Hence, the set ¥ = M"Y consists of 2! = 16 functions f = W — M that uniquely
correspond to all possible labelings. In the case of the unpaired labels H and D), the
group acting on M is the identity group £ = {s,}. and therefore the induced group
interconverting labelings (i.e.. functions f) of Figs. 6¢,d is the power group IV = E/f with
H being the group of four permutations shown in Fig. 6a. Note that, in the pyrazine
case, two symmetry operations corresponding to the same permutation h € H (such as
the identity operation E and 6™, C§ and ¢, etc.) can be associated with two identical
pairs (h, s1): surely, only one of these pairs is taken into account.

In the case of paired labels Q and O, the group acting on the set M = {Q,0} is
Sy = {si,5,}, where the nonidentity permutation s interconverts Q and (. In this
sitnation, the four proper symmetry operations associated with the pyrazine skeleton
graph (E, C§. C§. and C3, see the left-hand part of Fig. 6a) correspond to pairs (h, s,),
and the four improper symmetry operations (o™, 0%, ¢¥%*, and 7) correspond to pairs
(h,s2). Thus, cach permutation i € H forms two nonidentical permutations v, and the
resultant induced group is the power group I' = Si.

Finally, in the case of diazaprismane derivatives, two out of four permutations b (those
corresponding to the proper symmetry operations E and C3) are paired with s;: these
permutations form a subgroup Hof group H. The other two permutations, i.e., those of
the set H\ H, evidently correspond to reflections in the 0** and o¥* planes and hence form
pairs (h, s2). Accordingly, the seven nonequivalent labelings of Fig. 6f represent orhits of
the subgroup I' on set F.

Summarizing the above discussion, we can state that the generation problem for
substituted derivatives of a given organic structure can be formalized by means of an
induced group belonging to any of the above three types. The [ group appears if the label
set consists only of unpaired labels, and the I' and I'" groups are nsed if paired labels are
also present;® these two groups correspond to planar and nonplanar spatial embeddings
of the starting graph, respectively. Surely, mathematical models of some other structural
design problems (although also redncible to labeling problems, see note 29) are different
as to their essence. Consideration of these problems lies outside the scope of this paper.

Returning to the reaction design and ARGENT-1 program, we can state that the
above mathematical models form the basis for solving two further problems: those of
analytical and constructive enumeration.

o Analytical enumeration, or counting, consists in calculating the numbers of orbits
that represent permissible labeled graphs Grop, Gsgg, and Greg, with allowance
for all the built-in selection criteria as formulated in section 5 of the preceding pa-
per.t The corresponding techniques®® are actually incorporated into the ARGENT—
1 software; they enable one to estimate the maximal numbers of possible resnltant
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graphs prior to their generation by the program.

e Constructive enumeration, or generation, consists in recognizing orbits of the rele-
vant group (I', I, or ') on the set of labelings and selecting a single representative
from each orbit. An extremely efficient combinatorial algorithm was elaborated for
solving this problem at any generation stage for both reaction and structural design
problems.30b

A detailed consideration of the analytical and constructive enumeration techniques
applicable to the above-formulated design problems is the subject of two forthcoming
papers in this series.3°*® A thorough discussion of user-specified selection criteria and
their implementation in the ARGENT-1 program are to be published afterwards.*¢
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In Algorithmic Investigations in Combinatorics; Nauka Press: Moscow, 1978; pp 3—
11. (¢) Tratch, S.S. In MATH/CHEM/COMP’96, Book of Abstracts; Inter-University
Centre: Dubrovnik, 1996,

4. (a) Masinter, L.M.; Sridharan, N.S.; et al. J. Am. Chem. Soc. 1974, 96, T714-7723.
(b) Masinter, L.M.; Sridharan, N.S.; et al. /bid.; pp 7702-7714.

5. Tratch, S.S.; Zefirov, N.S. J. Chem. Inf. Comput. Sei. 1998, 38, 331-348.

6. (a) Harary, F. Graph Theory; Addison-Wesley: Reading, MA, 1969. (b) Harary, F;
Palmer, E.M. Graphical Enumeration; Academic Press: New York, 1973.

7. In the general case, there is no one-to-one correspondence between graph automor-
phisms and spatial symmetry operations. In some instances, graph automorphism
groups are supergroups of all point groups corresponding to embeddings of a graph
in the 2D or 3D space. (For example, the group of the ethane graph, with all hydro-
gens considered, consists of 2 - 62 = 72 permutations, whereas the point groups Ds,
and Dy, of the most symmetrical ethane conformations consist of 12 operations.) On
the other hand, for a planar but nonlinear molecule, any graph automorphism may
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be put into correspondence with two symmetry operations in the 3D space. That is
why automorphisms of the graph in Fig. 1a are associated here with operations from
gronp Cy, rather than with those from its supergroup Dap; the latter point symmetry
group consists of all 8 operations in the 3D space that convert the planar embedding
of the graph into itself.

Permutations from the automorphism group or other groups are commonly repre-
sented in the cyclic notation (e.g., see Fig. la). Cycles are disjoint subsets of the
set of permuted elements; their union is the whole set. In any particular cycle of
some permutation, each element but the last one moves to the next element of this
cycle, and the last element moves to the first one. For example, the permutation
(1)(2)(3,4)(5)(6) of the vertex set means that vertex 3 moves to vertex 4 and vice
versa; these two vertices form a cycle of length 2. A cycle of length 1 indicates that
the corresponding vertex (1, 2, 5, or 6 in this example) remains unmoved. Cycles of
length 1 are often omitted from the notation for the sake of brevity.

(a) The induced group is constructed from one or several other groups and acts
on the set that is, in turn, constructed from the sets on which the original groups
act. Various induced groups are used by mathematicians in formulation of many
discrete structures; a high-level monograph®® on the theory and applications of such
structures was recently published. (b) Kerber, A. Algebraic Combinatorics Via Finite
Group Actions. BI-Wiss.-Verl.: Mannheim, 1991.

For any connected graph with three or more vertices, the vertex and edge automor-
phism groups are isomorphic. For other graphs, the necessary and sufficient condi-
tions of isomorphism are defined by Theorem 14.1 in Harary’s handbook.5*

It is well known® that the length of orbit Y for any permutation group A — in other
words, the number of elements in the corresponding equivalence class - - is equal to
the index of the subgroup A(y) that stabilizes (moves to itself) some element y € Y:
Y] = |A|/|A(y)|. That is why the number of labeled graphs in each equivalence class
considered here is equal to the order of the “large” group (which corresponds to some
starting graph) divided by the order of the “small” automaorphism group (i.e., the
group of the resultant vertex- or edge-labeled graph).

(a) Some algebraists (e.g., see ref 12b) distinguish between usual permutation groups
and actions of abstract groups on appropriate sets; the latter notion is applied in
situations where two or more copies of the same group permute elements of the same
set. (b) Kaluzhnin, L.A.; Sushtchanski, V.I.; Ustimenko, V.A. Kibernetika 1982,
83-94.

(a) In our latest investigations,'® we found that three main types of degeneracy
are theoretically possible: (1) the degeneracy that appears due to the presence of
(—)-automorphisms in the expanded groups of edge-labeled graphs (regular degener-
acy); (2) the degeneracy that is caused by some symmetries of graph G but cannot
be associated with any (—)-automorphism (semiregular degeneracy); and (3) the de-
generacy that is completely independent of the symmetry properties of the topology
identifying graph G (irregular degeneracy). All results discussed in this paper, as
well as all degenerate chemical interconversions (isomerizations and intermolecular
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processes) actually investigated by organic chemists, refer only to regular degen-
eracy; that is why the adjective “regular” is not explicitly used in the text. The
present version of the ARGENT-1 program makes it possible to perform specialized
search for chemically feasible examples of two other, still unprecedented types of
degenerate interconversions. Further, we are planning to publish a separate series of
papers on the theoretical investigation of degeneracy and the actual results obtained.
(b) Trateh, S.S.; Molchanova, M.S.; Zefirov, N.S. In Molecular Modeling (Proc. 2nd
All-Russian Conf.); Moscow, 2001; p 18.

This intuitively clear fact may be briefly explained as follows: (+)-antomorphisms
of any labeled graph are its isomorphisms onto itself, and (—)-automorphisms are its
isomorphisms onto its unique antipode (in other words, onto a labeled graph with all
paired labels substituted by opposite ones). Thus, the number of (—)-automorphisms
is either zero (if the antipode labeling is non-isomorphic to the original one) or
coincides with the number of (+)-automorphisms (in the other case).

(a) The degeneracy/nondegeneracy criteria for reactions are quite similar to achiral-
ity/chirality criteria for chemical structures.®® This conclusion stems from the fact
that (—)-automorphisms (responsible for the regular degeneracy) may be consid-
ered as analogs of improper symmetry operations. The corresponding combinatorial
chirality criteria and their applications to classification of chiral molecules are dis-
cussed in refs 15¢,d. (b) Tratch, 8.S.; Zefirov, N.S. In Molecular Modeling (Proc. 1st
All-Russian Conf.); Moscow, 1998; p U2. (¢) Tratch, S.5. Zh. Org. Khimii 1995,
#1, 1320-13561. (d) Trateh, S.S.; Zefirov, N.S. J. Chem. Inf. Comput. Sci. 1996, 36,
448 -464.

(a) The intermolecular ylide-imine and imine-imine interconversions of Figs. 4b.d
seem to be unprecedented. The a-chlorovinylsulfinylamine formation process of
Fig. 4f has really been observed.'%® The representation of this process depends on the
choice of the resonance structure for the cyanomethide anion: the reaction equation
of Fig. 4f and that of Chart 11f in ref 16¢ can both be used for describing this inter-
esting process. (b) Zefirov, N.S.; Chapovskaya, N.K.; et al. Zh. Org. Khimii 1975, 11,
1981. (c) Tratch, S.S.; Zefirov, N.S. J. Chem. Inf. Comput. Sci. 1998, 38, 349-366.

(2) In the general case, the notion of a power group can be described as follows. Let
A and B be two finite permutation groups acting on the finite sets X and Y (each
consisting of two or more elements), respectively. Then the power group I' = B4
consists of all possible ordered pairs v = («, 8), @ € 4, 3 € B, and acts on the set
F =YX of all functions (or mappings) f = X — Y from set X into set Y. (b)
Harary, F.; Palmer, E. J. Combin. Theory 1966, 1, 157-173.

To prove that T is actually a group, one can multiply any two permutations y, =
(hay sa) and 7, = (hy, sp); the product, ie., the permutation (h,hy, 5055), is a (+)-
automorphism if s, = sy (5.5, = 51) and a (—)-automorphism if sﬂf sy (Sasp = $2).
This conclusion directly follows from the fact that h.hs belongs to Hy if both A, and
hy, simultaneously belong either to the group H- or to the set Hy \ Hj.
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These seven labels are regarded as the “main” atom labels in ARGENT-1 because
they cover the whole range of maximal valences from one to seven; surely, the user
may extend this set if needed.

(a) Tratch, S.S.; Zefirov, N.S. In Principles of Symmetry and Systemology in Chem-
stry; Moscow University Press: Moscow, 1987; pp 54-86. (b) Tratch, S.5. Doctoral
Dissertation; Moscow, 1993; Vol. 2, pp 56-144.

(a) Balaban, A.T. Rev. Roum. Chim. 1986, 21, 795-810. (b) Tratch, S.S.; Lo-
mova, O.A; et al. J. Chem. Inf. Comput. Sei. 1992, 32, 130-139.

One-stage labeling problems are considered here only for the sake of brevity; surely,
both starting graphs in Fig. 6a can themselves be produced via a two-stage proce-
dure (skeleton graphs corresponding to benzene isomers and their diazaanalogs can
be constructed at the first and second labeling stages, respectively). Note that the
extremely strained and probably very unstable diazaprismane structure was chosen
here only for convenience, so that the symmetry of both graphs in Fig. 6a would be
characterized by the same permutation group.

Description of some general stereochemical problems associated with configuration of
organic molecules'®4 2" j5 also based on the nse of induced groups I' and their sub-
groups. More specific formal models were suggested to enumerate geometrically iso-
meric unbranched polyenes (or ternary 2D chain configurations®™?1#} and stereoiso-
meric unbranched triangulanes (or binary 31 chain configurations?®2!*): some other
applications are briefly mentioned in refs 24¢.d.

(a) Tratch, S.S.; Devdariani, R.Q.; Zefirov, N.S. Zh. Org. Khimii 1990, 26, 921-932.
(b) Zefirov, N.S.; Kozhushkov, S.I; et al. J. Am. Chem. Soc. 1990, 112, 7T702-7707.
(c) Tratch, S.5. In MATH/CHEM/COMP’96, Book of Abstracts; Inter-University
Centre: Dubrovnik, 1996. (d) Zefirov, N.S.; Tratch, 5.5. J. Chem. Inf. Comput. Sci.
1997, 37, 900-912,

(a) Lunn, A.C.; Senior, J.K. J. Phys. Chem. 1929, 53, 1027-1079. (b) Pélya, G. Aeta
Math. 1937, 68, 145-254. (c) Tiev, V.V. MATCH 1999, §0, 153186

Although the permutations presented in Fig. 6a actually permute free valences rather
then vertices of both skeleton graphs, they uniquely correspond to vertex antomor-
phisms of the graphs under consideration. For the correspondence between graph
symmetries and spatial symmetry operations pertaining to planar embeddings of the
graphs in the 3D space, see note 7.

More complicated labeling problems (e.g., involving one or more unpaired and an
even number of paired labels) are based on similar mathematical models; the ex-
amples are to be explicitly considered in one of the forthcoming publications in this
series. It is important that “saturation” of free valences by appropriate substitnents
means just the same as replacement of H in the pyrazine or diazaprismane structure
by some unpaired or paired label. Note that H itself, if present, must be considered
as one of unpaired labels.
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(a) There are several papers on labeling problems with paired labels also represented
by enantiomeric forms of chiral substituents. However, most authors prefer to discuss
these problems in terms of double casets®° or coset representations;”®%¢ consider-
ation of both theories lies outside the scope of this paper. (b) Hisselbarth, W;
Ruch, E. Isr. J. Chem. 1976/77, 15, 112-115. (c) Ruch, E; Klein, D.J. Theor.
Chim. Acla 1983, 63, 447-472. (d) Fujita, S. J. Math. Chem. 1990, 5, 121-156.
(e) Fujita, S. Symmetry and Combinatorial Enumeration in Chemistry. Springer-
Verl.: Berlin, 1991.

(a) For example, generation of all nonisomorphic multigraphs®®® corresponding to

the skeleton of any hydrocarbon structure is reduced to construction of arbit rep-
resentatives for the group ES!PJ; in this case, the labels 0, 1, 2, and 3 are assigned
to p(p — 1)/2 vertex pairs, and S,EZ} is the pair group induced by the automorphism
group S, of the empty graph with p vertices. Another nontrivial structural design
problem?% is associated with specific edge-substituted derivatives of a given organic
structure; as far as we know, situations with some or all edge labels represented by
asymmetrical achiral (such as -CH,0-) or chiral (such as ~CH(CH;)O-) homological
modules have not yet been analyzed in literature. (b) Kerber, A. MATCH 1975, 1,
5-10. (c) Tratch, S.S. Unpublished results.

(a) Tratch, 5.S.; Molchanova, M.S.; Zefirov, N.S. Contribution 3 of this series. To be
submitted. (b) Tratch, S.S.; Molchanova, M.S_; Zefirov, N.S. Contribution 4 of this
series. To be submitted. (c) Molchanova, M.S_; Tratch, S.S.; Zefirov, N.S. Contribu-
tions 5 and 6. In preparation.



