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Abstract A pseudo-point group D, has been applied to the design of
high-symmetry cyclohexane derivatives, which are assigned to the subgroups
of Dgy. The existence/nonexistence of these derivatives has been prediced by
comparing partial cycle indices with and without chirality fittingness (PCI-
CFs and PCls). The PCI-CFs and PCIs stem from the unit-subduced-cycle-
index (USCI) approach, where the subduction of coset representations (CRs)
are precalculated by using mark tables. These derivatives have been classified
into isoencrgetic and anisoenergetic derivatives. Energetical and symmetric
equivalency of ligands have been discussed by virtue of CRs, where the con-
cepts of chronality and sphericity have been used to classify the CRs.

1 Introduction

The flexible nature of a cyclohexane skeleton has brought out difficulties in discussing its
symmetry so that no reliable methodologies have been developed to design high-symmetry
cyclohexane derivatives. A representative way to avoid such difficulties is to use so-called
“averaged symmetry”, as Eliel-Wilen’s textbook on stereochemistry (Section 4-5 of Ref.
[1]) has claimed, “Cyclohexanc is known to exist in the chair form of symmetry Djy and
at —100°C the NMR spectrum of the compound is indeed appropriate for a molecule
of that symmetry. At room temperature, however, due to rapid inversion of the chair,
the 'H NMR spectrum shows a single signal due to the equivalent averaged hydrogen
atoms. This observation is what would be expected for planar cyclohexane Dy, and it is
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therefore reasonable to assume that the average symmetry of cyclohexane is indeed Dy,
even though the planar form is of very high energy and does not even correspond to the
transition state for chair inversion. A rigorous demonstration of this intuitive conclusion
has been given (Leonard, Hammond, and Simmons, 1975).” This conventional way based
on Dgy, obviously, has not discriminated between equatorial and axial positions, whereas
the discriminaion is one of essential key concepts for discussing the stereochemistry of
cyclohexane derivatives.

The cis-trans isomerism of flexible cyclohexane derivatives has provided an additional type
of difficulties, since the chirality/achirality under fixed conditions is not always equiva-
lent to the counterpart under flexible conditions, as found in 1,2- and 1,3-dimethyleyclo-
hexanes. This nonequivalency has been explained with a variety of expedient procedures
based on simple polygon (planar) formulas and/or on chair-form formulas. Representa-
tives of such expedient procedures have appeared in several textbooks [2-6]. The term
“stochastically achiral” proposed by Mislow [7] and the term “residual isomers” pro-
posed by Eliel [8] have been used in discussing flexible systems of conformers. Relevant
approaches have been adopted by Leonard et al. [9, 10] and Flurry [11, 12] in the enu-
meration of flexible cyclohexane isomers. For the enumeration under the fixed symmetry
Dy, see Ref. [13].

As a more general framework of a mathematical and logical basis, we have proposed the
concept of pscudo-point groups [14, 15]. Although the concept has been successfully ap-
plied to the enumeration and the stereochemical characterization of flexible cyclohexanes
[16] and relevant flexible compounds [17-20], the previous results of ours have been mainly
concerned with achiral ligands as substitutents of flexible compounds.

In order to comprehend the stereochemistry of such flexible compounds, more complicated
cases involving chiral ligands should be investigated as the next targets. This investiga-
tion, at the same time, aims at a systematic method to design high-symmetry cyclohexane
derivatives, where energetical equivalency /nonequivalency for equatorial and axial ligands
will be discussed in a more sophisticated fashion. The merit of this systematic method
stems from the fact that the concept of pseudo-point groups can be combined with the
unit-subduced-cyele-index (USCI) approach proposed by us [21], where a new qualitative
application of partial cycle indices with and without chirality fittingness (PCI-CFs and
PCIs) (22] will be discussed.

2 Pseudo-Point Group ﬁﬁh

Since we use the properties of the pseudo-point group Dey, and those of its subgroups
throughout the present paper, essential items related to these groups shall be revisited
briefly according to the previous paper [15].

2.1 Formulation of ﬁsn

To formulate axial-equatorial exchange in a cyclohexane skeleton, we consider a pazr of
chair-form conformers (1a and 1b), instead of manipulataing each conformer separately.
We then introduce a pseudo-dihedral rotation (Cj-operation), which is a combination of
a rotation (around a horizontal axis through the gravity center of each conformer) and
an exchange (A#B), where a flipping of the cyclohexane skeleton is replaced by the
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Figure 1: The Definition of the Operation ¢ (1a/1b — 3a/3b) [15]

Table 1: Classification of Operators [16]

Classification Operators

proper rotation: I,C3, C3, Chyy, Ciiay Ciy)
improper rotation (rotoreflection): Tu(1)s Ou(2)> Tula)s S6: 1, Sg
proper pseudo-rotation: @;(,), C‘;m, é{,(s)| &2, €5, Cs,

improper pseudo-rotation (pseudo-rotoreflection): Gy, Fu(1), Fu(2); Fh,r 53,53
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combined operation shown in Fig. 1 [15]. By considering the operation @ and the point
group Dy of the fixed cyclohexane, we can construct the set Dy,

Dg, =Dy + é‘,’?(l)DSd’ (1)
={I,C5,C}, 86,4, 58, Ch1), Coia)» Cogays Tuil): To(2y: Tuis)s
Ciy, Coiay Ciay Gy Go1)s Fugz)» Car CF, €, 3n, 53, 53}, (2)

where we place 6‘;’,(1) = C‘; for distinguishing from other operations of the same kind. The

resulting set Dy, is called a pseudo-point group, since the gravity center of the cyclohexanc
skeleton is fixed on the action of each element of the Dgy-group (eq. 2). Equation 1 can be
regarded as a coset decomposition of the ﬁgh-group by the Dy4-group. This formulation
has a merit that the transversal 6‘2 ={I, 6’{,(1)} is a subgroup of the Dy, so as to satisfy

56,, = 6; X Drg.

The operators contained in the f‘é(])Dm are called pseudo-rotations, while the operators
of Dy, are simply called rotations or more distinctly usual rotations. They are discrim-
inated by symbols with and without a hat (circumflex). As an analogy of proper and
improper rotations for usual point groups, the pseudo-rotations are clas}s\ificd into proper
and improper ones. Thereby, the operators of the pseudo-point group Dy, are classified
into four classes, as shown in Table 1.

2.2 Subgroups of Dg,

In order to design cyclohexane derivatives of high-symmetry, we shall clarify the group-
subgroup relationship of Dg,. We have distinct, up to conjugacy, subgroups of Dgy, (a
non-redundnat set of subgroups), as summarized in the following list [15]:

¢ ={I},

C={1.G}, C,={1.0} C;={LC),

Ci={Low), Co={Law} C,=(La} Ci={Li}
C3={I,C3,C}}, Dy={I,C5,C), Chn}.

Cn={1.00000,8un} O ={L.8n:005n} T = LGy 80 8umph
Cun={1,8,0,1), Co=1{LCu)i0um}, Ca = {I,Chppi,0u)s
Cs={1,Cs,C;,Cs, C3,CEY,

Dy={I,C3,C}, 5&(1)7 Chiays 6;(3)}7 Dy = {1,C3,C}, Chyy, Chiays Gl b
Csy={1,C3,C}, 001y, Fu2) Ouiz) }» Cay = {I,Cs,C2, 8401y, Bu2y, By 5
Can={1,Cy,C3, 54,585, 85}, Cui=1{1,C4,C%, 5,4, 55},
Doy ={1,Cy, Cly, Chayr s, 901y, Buy }

Dy ={I,Cs,Cs,C2, 03, CL Oy, Caityr Gy Chiny: Oy Coim

Ciy= {10501, G 2., Tu1)s Fo(1)s Tu(2)» Tu(2)s Tu(3)> Ou(s) }+
Co={I,Cs,C5,Cy,C2,CE, 51, S5, 8,4, 85, S5,

Dy, = {I,C3, €3, Chay, Ciay Coeay Bns S, 55, 00011, 0uioy Gaii }
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ﬁ;b ={I,C5,C3, Ci1ys Coays Casy s 3, g.;’,aum, Ta(2)s Tu(3) }+
Dy ={1,03,C2, 65(1), @_(2): 65(3), Se,1, S8, Fu(1), oz Fuis 1,
Dy ={T,C, G5, Ciry, Clays Clrays S8 S5, 0ui), 0wz usy |
Do =1{1,C5,C35, 62, C2, E8, Ci130 Oty 6’5(2): Cozy, éﬂ(s)w Caays

Bhy G618, 8, 851 58, 0u1)s Bo1)s Fu2)s Bul2)s Tuls) Fu(3) } -

Among the subgroups of Dy, (order 24), three subgroups of order 12 should be mentioned,
since they are concerned with dichotomous properties that are chemically significant. The
Dygsubgronp (called the mazimal anisoenergetic subgroup) and its subgroups are related
to the fixation 01 a cyclohexane ring. The fixation is explained by the coset decomposition
of eq. 1. The Dy-subgroup (called the mazimal chiral subgroup) and its subgroups are
related to the chirality/achirality phenomena. This feature corresponds to the following
coset decomposition:

ﬁgn = Ea + 7:ﬁ6- (3)

=t . . s
The Dy,-subgroup (called the mazimal pseudo-reflective subgroup) and its subgroups are
related to the nature of internal racemization, which is explained by the following coset
decomposition:

Dg, = D), +iD}, (4)

It should be noted that the pseudo-point group 55,, is isomorphic to the point group Dy,
having the corresponding operations:

Dgy = {1, Cs, C3, Cs, CF, C., Copay, Gy Cagays Cpyr Cagsys Cogys

Th,y S5, S3, 4, S:?, S;?, Tu(1) s UL(;): Tu(2)s 0':,(2),01»(3)- ”.';(:;) h

so that each of the subgroups listed above for ﬁg}, corresponds to the counterpart subgroup
of Dgy, [23].

2.3 Chirality and Energeticity

In a similar way to the usual point group Dgy, [23], the subgroups of ﬁﬂh can be categorized
into chiral and achiral subgroups by virtue of proper or improper (pseudo)rotations listed
in Table 1.

In contrast to the counterparts of Dy, the operations of the pseudo-pomt group ﬁﬁ,ﬁ are
alternatively classified into pseudorotations and usual rotations (Table 1). This feature
introduces another category called energeticity for classifying the subgroups of ﬁs,, [15).
Thus, if a subgroup contains at least one pseudorotation, it is defined as an isoenergetic
subgroup; otherwise it is defined as being anisoenergetic. Such an isoenergetic subgroup
is designated by a symbol with a hat, while an anisoenergetic subgroup is designated by
a symbol without a hat.

By taking the chirality/achirality and the isoenergeticity/anisoenegeticity into account,
we obtain four categorics of subgroups, as shown in Table 2: chiral-anisoenergetic sub-
groups (Type IV), achiral-anisoenergetic subgroups (Type III), chiral-isoencrgetic sub-
groups (Type 11}, and achiral-isoencrgetic subgroups. The achiral-isoenergetic subgroups
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can be further categorized into two cases (Type I and Type I'). If an achiral-isoenergetic
subgroup contains no proper pseudorotations, it is defined as a Type I' subgroup; oth-
erwise, it is defined as a Type I subgroup. Obviously, such a Type I’ subgroup contains
proper rotations and improper pseudo-rotations (Table 1).

Table 2: Isoenergetic and Anisoenergetic Subgroups of ﬁﬁh [16]

chiral achiral
anisoenergetic [ Type IV (Q ¥ Ror Q & R) | Type Il (A £ B)
C],C;,C;{,Ds, C,,C;,C, Cy,, Cyi, Dy, .
isoenergetic | TypeIL (Q 2 Qor Q& Q) | Type I (A 2 A)
0. Gy Do, Cs Dy, Do, | ConsClys G Cls Do
Cou, Cen, Doy, Dy, Dy
Type Qe 0Q)
C,,C,,C,, Cs, Cy, Dy,

2.4 Orbits and Coset Representations

The twelve positions (six axial and six equatorial positions) of a cyclohexane skeleton are
50 equivalent under flexible conditions as to construct an equivalence class called an orbit.
The orbit is assigned to a coset representation (CR) Dgp(/C'), which is characterized by
a row vector called a fixed-point vector (FPV),

FPV = (12,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (5)

where the elements are aligned in the order of the subgroups listed above. This is identical
with the Dy (/C)-row of the mark table precalculated (Table 1 of Ref. [15]).

3 Mathematical Foundations of Desymmetrization

3.1 Subductions of Coset Representations

The derivation of a high-symmetry cyclohexane derivative can be regarded as a desym-
metrization of a cyclohexane skeleton by ligand substitution. As a result, the Dg,-
symmetry of the cyclohexane skeleton is reduced into the corresponding subsymmetry
so that the Dgy(/C;)-orbit of the twelve positions is divided into several orbits. This
desymmetrization is controlled by the subduction of the CR BSA(/C,): as shown for
general cases [21].

For example, let us consider the qisign of a Cap-derivative. This design process obeys
the subduction of Dg(/C,) into Cs,, which can be carried out easily by means of the
procedure described in Section 9.2 of my previous book [21]. Thus, the collection of the
Ist (C)), 2nd (C,), 5th (Cy), 6th (C,), and 11th elements (C,,) in the FPV (eq. 5)
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gives an FPV of the subduction, i.e. (12,0,4,0,0). The resulting FPV is multiplied by
the inverse mark table of Cy, to give

P00 0 0
—% 0 0 0
(12,0,4,0,0) -5 o 3 0 0]=1(20,200), (6)
-1 0 0 o0
it X Sk 1 3
2 2 2 2

where the 5 x 5 matrix on the left-hand side is the inverse mark table of Eg,,. which
is equivalent to that of the usual point group Ca, [21]. The row vector on the right-
hand side shows the multiplicities of CRs in the order of C3,(/C), Cay(/C2), Cau(/C5).
C2(/C), and Cy,(/Cs). It follows that the row vector (2,0,2,0,0) corresponds to the
subduction represented by

D(/C,) L Cay = 2C5,(/C)) +2C3(/C). (7)

The subductions of the CR Dg,(/C,) into other subgroups can be also be precalculated,
as shown in Table 3. The data listed in Table 3 constructs the Deu(/C,)-row of the
subduction table of Dgy, [21, 15].

It should be noted that Polya’s theorem can be derived by multiplying the USCIs and the
coefficients listed in the “sum” column of Table 3 or equivalently, by the addition of the
PCIs for all subgroups.

3.2 Sphericity of an Orbit

In general, a G(/G:)-orbit is classified into a homospheric, enantiospheric, or hemispheric
case, as summarized in Table 4 [24]. The sphericity is designated more concisely by a
dummy variable: (e leX for a homospheric orbit, Tellen for an enantiospheric orbit,
and bg @y for a hemispheric orbit, where the subscript |G|/|G;| represents the size of
the G(/G;)-orbit. Thereby, a subduction result is assigned to a product of such dummy
variables, which is called a unit subduced cycle inder with chirality fittingness (USCI-
CF). For example, since Cq,(/C4) and Ca,(/C,) appearing in eq. 7 are respectively
enantiospheric and homospheric, the subduction result represented by eq. 7 is assigned
to a USCI-CF ajci, as shown in the USCI-CF column of Table 3 (row 18). When such
sphericity is not taken into consideration, the corresponding USCI (without chirality
fittingness) are obtained, e.g. s3s? for eq. 7. From the subduction results for the other
subgroups listed in Table 3, the corresponding USCI-CFs and USCIs can be obtained and
listed also in Table 3. All of the USCIs for the usnal point group Dgy, have been reported
as a table [23], which is also effective to the isomorphic pseudo-point group Bﬁn.

4 Systematic Design of High-Symmetry Cyclohexane
Derivatives

4.1 Cyclohexane Derivatives of D3y

Let us first consider cyclohexane derivatives of Dgs-symmetry. The existence or nonex-
istence of the Dyg-derivatives can be predicted by examining the corresponding partial
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Table 3: Subductions of D, (/C,)

subduction USCI USCI-CF  sum no.
De(/Cs) L Cy = 12C,(/Cy) si? by? N (8)
Dan(/C5) L G2 = 6C,(/CY) 85 b§ o )]
Da(/C) LT, = 6C,(/C1) 5§ 0 (10)
Da(/C,) LC, = 6CY(/C)) 53 0 H (11)
Dg,(/C.) L C, 4C,(/C) +4C,(/C,)  stsi ajdd : (12)
Da(/C)1C, = 6C,(/Ch) 3 (13)
Dea(/C,) L C, = 6C.(/C)) 55 S = (14)
Da(/C) 1 Ci = 6Ci(/C)) 85 S N (15)
Dai(/C) 4 €y = 4C5(/Cy) 53 b3 i (16)
Da(/C) LD, = 3Dy(/Cy) 54 b} 0 (17)
Bsh(/cn)laiiu = 262v(/CL)+252u(/C3) S-:‘:Sﬁ (Ig(i 0 (18)
Da(/C) Ly, = 20,(/C1)+2C,,(/C) 353 o 0 (19)
Da(/C,) L C;, = 3C5,(/CY) o 4 0 (20)
Dan(/C) L Con = 3Ca(/CY) 53 & 0 (21)
Dal/C)) 1€y, = 3Tu(/C1) 5} 3 0 (22)
Dgu(/C) L C, 2C5,(/C1) +2C5,(/Cs) 5353 ajci 0 (23)
Du(/C,) L Cs = 2C5(/Cy) 5 B % (24)
De(/C) LDy = 2D4(/C) 54 b 0 (25)
Den(/C) L Dy = 2D4(/C)) 52 02 0 (26)
ﬁﬁh(/ca)icw = 4Cy(/Cy) 53 a 0 (27)
Dy (/C,) L Cs = 2C4,(/C)) s 2 0 (28)
Den(/C,) L Ca = 2C3,(/C) 52 2 L (29)
Day(/C.) L Oy = 2C4(/C)) 5 d % (30)
ﬁsh(/ca}lﬁih = ﬁﬂh(/cl)+ﬁ2h(/cs) 5458 4C8 0 (31)
?m(/cs)lﬁs = Dy(/C)) S12 bio 0 (32)
Der(/C) L Coy = 2C(/C,) s a2 0 (33)
ﬁﬁn(/cs)laah = Een(/cl) 812 €12 0 (34)
Den(/Cy) L Dsn = 2Ds(/C.) s a 0 (35)
Dal(/C,) L Dy, = D, (/Ch) 5. e 0 (36)
Du(/C,) L Doy = Bad(/’cl) 812 C12 0 (37)
Den(/C.) | D3y = 2D3,(/C,) 2 a2 0 (38)
ﬁﬁh(/cs)$ﬁﬁn = ﬁﬁh(/cs) S12 a1z 0 (39)
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Table 4: Sphericities of Orbits [24]

G G; sphericity of  chirality fittingness USCI-CF  USCI

G(/G)) (objects allowed)
achiral achiral homospheric achiral WGLG SGYG
achiral chiral  enantiospheric achiral,® chiral® GG S\GIG
chiral  chiral  hemispheric achiral,® chiral bGuG, SGUG.

¢ An achiral object is restriced to be chiral. The half and the other half of
the orbit are superimposable by a rotoreflection operator of G.

b The orbit accommodates the half number (}G|(/2|G;|) of chiral objects and
the half number of chiral objects of opposite chirality so as to accomplish
compensated chiral packing

¢ An achiral object is restriced to be chiral.

X o
= Dy, (Type III) X

4a X 4b X

Figure 2: Cyclohexane Derivative of D3,-Symmetry

cycle indices with and without chirality fittingness (PCI-CF and PCI) [21], where the
PCI takes account of achiral ligands only, while the PCI-CF takes account of achiral and
chiral ligands. They are calculated from the data of Table 3 and the Djg-column of the
inverse mark table of Dy,. Since the latter table is equivalent to that of the usual point
group Dgy, 23], we can obtain the corresponding PCI-CF and PCI as follows:

1
PCL-CF(D3,) = E(ag —an) (40)
iy
PC[(DM) = E(Sé e Slz) (41)

We use these equations qualitatively in the present paper, though more guantitative
results based on generating functions can be obtained by the introduction of appropriate
inventories into these equations [22]. Thus, the PCI-CF (eq. 40) predicts the existence of
Dyy-derivatives having achiral ligands only, since it contains terms for homospheric orbits
(as and a;2). This prediction is confirmed by the non-zero nature of the PCI (eq. 41).

Equation 38 in Table 3 shows the appearance of two D34(/C,)-orbits during the desym-
metrization into D, Since the Daq(/C)-orbits are homospheric, they accommodate
achiral ligands to give Dgg-derivatives. Since the size of each Dy4(/C;)-orbit is equal to
| D34l /|Cs| = 12/2 = 6, we can select an example having a formula CHgXs, as shown in
Fig. 2, where the symbol X represents an achiral ligand. Note that the Hg and the X are
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Figure 3: Cyclohexane Derivative of D,-Symmetry

accommodated distinctly by the six-membered Dy4(/C,)-orbits in accord with chirality
fittingness shown in Table 4.

4.2 Cyclohexane Derivatives of Ds,

The PCI-CF and the PCI for the Day- -symmetry are calculated from the data of Table 3
and the Dyg-column of the inverse mark table of Dsh as follows:

PCI-CF(Dsg) = 5(1112 - ai2) (42)
PCI(De) = 5 (512 = s12) = 0 (43)

As found in eq. 43, the value of PCI vanishes. It follows that ﬁm-(ierivativcs does not
exist if only achiral ligands are taken into consideration. On the other hand, the PCI-CF
(eq. 42) indicates the existence of DM-derwo,tlves with chiral ligands.

Equation 37 in Table 3 shows the appearance of a twelve-membered DM(/C’ }-orbit
(|D3a|/|C1| = 12) during the desymmetrization into Diya. Since the D;;d(/C,) orbit is
enantiospheric, it accommodates chiral ligands to bring out a compensated chiral packing
in accord with chirality fittingness (Table 4). An example of such a packing is illustrated
in Fig. 3, where the symbols g and q represent chiral ligands enantiomeric to each other
in isolation.

It should be noted that, strictly speaking, the q and the g should be proligands defined
previously by us [25]. However, the use of ligands in place of proligands provides us with
no confusion within the scope of this paper.

4.3 Cpyclohexane Derivatives of ﬁ;h

The PCI-CF and the PCI for the ﬁ;k-symmetry are calculated from the data of Table 3
and the ﬁ;h-column of the inverse mark table of Dy, as follows:

PCL-CF(D),) = %(c.z i) (44)
PCI(DY) = %(3.2 ——— (45)

The vanished value of the PCI (eq. 45) indicates that f';.,;—derivativcs does not exist by
considering achiral ligands only. On the other hand, the PCI-CF (eq. 44) indicates the
existence of f);h-dcrivat.ives with chiral ligands.



According to eq. 36 of Table 3, the resulting ﬁ;h(/C1 )-orbit is enantiospheric. Hence the
twelve-membered orbit (i.e. |5;h| /|C1] = 12) accommodates chiral ligands to satisfy a.
compensated chiral packing in agreement with the chirality fittingness listed in Table 4.
An example of such a packing is illustrated in Fig. 4.

Figure 4: Cyclohexane Derivative of ﬁ;h—Symmetry

4.4 Cyclohexane Derivatives of Dj;,
The PCI-CF and the PCI for the Dgy-symmetry are caleulated as follows:
s d
PCI-CT(D3y,) = é(aé —ayg) (46)
-
PCI(Dg,)= 5(sg — s12) (47)
Thus, eqs. 46 and 47 predict the existence of ﬁJA-dﬁriV'aﬂves having achiral ligands only.
Equation 35 in Table 3 shows the appearance of two D3,(/C,)-orbits, both of which
are homospheric so as to accommodate achiral ligands (Table 4). Since the size of each
Dy (/Cy)-orbit is equal to |Dygy|/|Cs| = 12/2 = 6, we can select an example having a
formula CHgXs, as shown in Fig. 5.
4.5 Cyclohexane Derivatives of Cg,

The PCI-CF and the PCI for the B;hfsymmetry are calculated in a similar way:

X X — 5.8 X

¥ X Dy (Type 1)
Ta X b

Figure 5: Cyclohexane Derivative of ﬁahvSymmctry
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PC]—CF(EM) = %(612 — Glz) (48)
POI(Cin) = (512 = s12) = 0 (49)

The zero value of the PCI (eq. 49) indicates that 65h~dcrivabives does not exist. by consid-
ering achiral ligands only. On the other hand, the PCI-CF (eq. 48) indicates the existence
of C’G,.-derwatwes with chiral ligands.

The subduction shown by eq. 34 of Table 3 indicates that the resulting Cen (/C1)-orbit is
twelve-membered (lCM\/|C’1| = 12) and enantiospheric. Hence it accommodates twelve
chiral ligands (six q’s and six q’s) in a compensated chiral packing (Table 4). An example
of such a packing is illustrated in Fig. 6.

Figure 6: Cyclohexane Derivative of E’Gh-Symmetry

4.6 Cyclohexane Derivatives of éﬁu

The PCI-CF and PCI for Cﬁ,,-s'ymmetry are similarly calculated from the data of Table
3 and the Cg,-column of the inverse mark table of Dg,. Thus, we can obtain the PCI-CF
and PCI as follows:

PCI-CF(Cs,) = %(ng — ay3) (50)
PCI@a) = 5(5 ~ 1) (51

Equations 50 and 51 predict the existence of Ci,-derivatives having achiral ligands only.
According to eq. 33 in Table 3, two Cli (/C5)-orbits appear - during the desymmetrization
into Cﬁu, where the size of each orbit is ca.lculnted to be }C.;,,l/lC | = 12/2 = 6. Since
the Cg,,(/Cs) orbits are homospheric, they accommodate achiral ligands to give Cr,,r
derivatives. A aﬁ,-derivativv with a formula CHgXs is dcpictei{ in Fig. 7, where the Hg
and the Xg are accommodated distinctly by the six-membered C, (/C)-orbits in accord
with chirality fittingness shown in Table 4.

4.7 Cyclohexane Derivatives of Ds

The PCI-CF and the PCI for the Djg-symmetry are calculated from the data of Table 3
and the Dg-column of the inverse mark table of D), as follows:
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X X _—
Cs, (Type D)
9a 9b

Figure 7: Cyclohexane Derivative of asv-SymmoLry

q q
4 10a g q 10b ¢
Figure 8: Cyclohexane Derivative of Bs«Symmctry

PCLCF(Ds) = 5 (b — aiz) (52)
POI(Dy) = 5 (s1z — 512) =0 (53)

The PCI (eq. 43) vanishes, while the PCI-CF (eq. 42) remains non-zero. It follows that
ﬁﬁ—derivatives does not exist by considering achiral ligands only, but they exist by con-
sidering chiral ligands along with achiral ones. The twelve chiral ligands (q) in the re-
sulting derivative (10a/10b) are so equivalent as to construct an orbit governed by a CR
Dy(/C).

4.8 Cyclohexane Derivatives of D,
The PCI-CF and the PCI for the Dy-symmetry are calculated as follows:

| 1 1 1
PCL-CF(Dy) = Zbé - ZbIZ = Zné . a—cu + Eau (54)
oo 03 L TR NG NS S (55)
B =8 T s T ST St g = 5

The PCI-CF (eq. 54) remains non-zero, while the PCI (eq. 55) vanishes. This means
that that Dj-derivatives exist by considering chiral ligands along with achiral ones. Ac-
cording to eq. 26 in Table 3, an example is illustrated in Fig. 9, where one hemispheric
D;(/C,)-orbit accommodates six chiral ligands (q) and the other hemispheric D3(/C))-
orbit accommodates six hydrogens. This packing obeys the chirality fittingness shown in
Table 4.
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Figure 9: Cyclohexane Derivative of D3-Symmetry
4.9 Cyclohexane Derivatives of Dj

The PCL-CF and the PCI for the Dy-symmetry are calculated from the data of Table 3
and the Daﬂcolumn of the inverse mark table of Dah as follows:

Y 1 1 1 1 i
PCI-CF(D3) = Zbé = me = Zaé Gt + 502 (56)

= 1 | 1 1 1
PCI(D3) = Zs% i Z.s'?s vt + Fhe = 0 (57)

The PCI-CF (eq. 56) remains non-zero, while the PCI (eq. 57} vanishes. Hence Di-
derivatives exist by considering chiral ligands along with achiral ones. According to eq.
25 in Table 3, an example is illustrated in Fig. 10. This derivation obeys the chirality
fittingness shown in Table 4, since one hemispheric Da(/’C )-orbit accommodates six
chiral ligands (q) and the other hemispheric Ds(/C} )-orbit accommodates six hydrogens.

q%‘*
s (Type II) £
12b

a 12a q

Figure 10: Cyclohexane Derivative of Ba-Symmetry

5 Energetic Equivalency

If a derivative has two energetically equivalent (i.e. homomeric or enantiomeric) conform-
ers, it is defined as an isoenergetic derivative; otherwise, it is defined as an anisoenergetic
derivative. In general, an isoenergetic derivative is assigned to an isoenergetic subgroup
that is designated by a symbol with a hat, while an anisoenergetic derivative is assigned
to an anisoenergetic subgroup that is designated by a symbol without a hat (Table 2).
The nature of being isoenergetic or anisoenergetic is called energeticity, as the nature of
being chiral or achiral is called chirality. Thus, the energeticity of a group described above
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is correlated to the energeticity of a (:()Hlpl)/lﬁj\ﬂd. It should be noted that the energeticity
stems from the dichotomous nature of the Dgp-symmetry, as represented by eq. 1.

5.1 Isoenergetic Derivatives

The inverted conformers of an isoenergetic derivative is energetically equal to each other.
In other words, they are homomeric or enantiomeric to each other. Such isoenergetic
derivatives are classified into Type I, I’ and II (Table 2).
The derivative 5a/5b of Dy,-symmetry (Fig. 3) is classified into a Type I case (Table
2). According to the general equation (A #2 A), the conformer 5a of Cy; point group is
converted into the homomeric conformer 5b of Cjy; point group. Note that the pseudo-
point group Dy is assigned to the 5a/5b pair and that the six g’s and the six §’s are so
equivalent as to construct an enantiospheric D3d(/ C))-orbit.
The derivative 7a/Tb of Dg,-symmetry (Fig. 5) is also classified into a Type I case (Table
2). The conformers (Ta and Ta) belonging to Cj, point group are ¢ interchanged in accord
with the general equation (A #2 A) to give the pair 7a/7h of Dy- -symmetry. The six
Xs belong to a homospheric Dm(/ C,)-orbit, while the six hydrogens belong to another
homospheric 13,“( /C,)i)rbir,.
The derivative 8a/8b Cg,-symmetry (Fig. 6) is classified into a Type [ case (Table 2).
According to the general equation (A ¥2 A), The symmetries of the conformers 8a and
8b are decided to be Cy;, while that of the 8a/8b pair is Cgy-symmetry. Note that
the six q’s and the six @'s are equivalent under flexible conditions so as to construct an
enantiospheric Csh(/C) orbit..
The derivative 9a/9b Cj,-symmetry (Fig. 7) is classified into a Type I case (Table 2).
While the pair 9a/9b belongs to Cg,-symmetry, the conformers (9a and 9b) belong to
C3, point group, where they are interchanged in accord with the general equation (A &2
A). The six Xs belong to a homospheric Ci,(/C.)-orbit, while the six hydrogens belong
to another homospheric Cj, (/C;)-orbit.
The B;h-symmtry for 6a/6b (Fig. 4) is classifed into a Type I' case, which is represented
by the general expression Q & @, where Q and Q represent a pair of enantiomeric
confomers (Table 2). =
The symmetry of the pair 10a/10b is determined to be Dg, which is categorized into a
Type 11 case (Table 2). According to the general equation (Q T Q or Q@ £ Q). the con-
formational transformation converts the conformer 10a into its homomeric conformer 10b
(Fig. 8). The conformer 10a is superimposable to 10b by appropriate proper rotations
of the supergroup Dy, or by isometric transformations. This stems from the isoenergetic
nature of Dg. On the other hand, the chiral nature of the Dg-symmetry permits the
appearance of the corresponding enantiomeric pair (10a/10b for Q &2 Q).
The derivative 12a/12b of D3 is also classified into a Type II case (Fig. 10). The
symmetrical nature can be explained in a similar way to the Dy-symmetry described
above.

5.2 Anisoenergetic Derivatives

The inverted conformers of an anisoenergetic derivative is not energetically equal to each
other. Such isoenergetic derivatives are classified into Type III and IV (Table 2).
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Table 5: Chronality of G(/G;) [15]

G G, chronality of  chronality fittingness
G(/Gy) {objects allowed)

isoenergetic isoenergetic homochronal isoenergetic

isoenergetic anisoenergetic enantiochronal isoenergetic,”) anisoenergetic

anisoenergetic anisoenergetic hemichronal isoenergetic,®) anisoenergetic

% The isoenergetic object is desymmetrized into an anisoenergetic one.

The Dj4-symmetry of 4a/4b is anisoenergetic and achiral (Type III). According to the
general equation (A ¥ B), the conformer 4a of D3, is converted into the conformer 4b
of D34, where the two conformers are energetically different from each other (Fig. 2).
Note that the point group Dj, assigned to each of the conformers is identical with the
pseudo-point group assigned to the pair of the conformers.

The symmetry of the derivative 11a/11b is assigned to I3, which is categorized into
a Type IV case. The behavior shown in Fig. 9 stems from the anisoenergetic nature
of the Dy-symmetry. Thus, the two conformers are energetically different so that one
conformer 11a has equatorial q's and the other one 11b has axial q's. Note that each
of the conformers belongs to a usual point group of the same kind (C%y-symmetry). On
the other hand, the chiral nature of the C’-symmetry appears in the difference between
two pairs of conformers, where one pair (11a/11b, in general Q ¥ R; Q and R: chiral)
is enantiomeric to the other pair (11a/11b, in general Q # R; Q/R: enantiomeric to Q
and R).

5.3 Chronality and Pro-anisoenergeticity

The introduction of the isoenergetic/anisoenergetic concept provides us with the chronal-
ity concept, which is another criterion for characterizing G(/G;)-orbits of pseudo-point
groups (Table 5) [15]. By comparing the isoenergetic/anisoenergetic nature of the local
symmetry G, with that of the global symmetry G, we can determine the chronality of the
G(/G;)-orbit, as collected in Table 5. It is easy to determine chronality, since isoenergetic
and anisoenergetic groups are differentiated in the present paper by using symbols with
and without a hat. N

For example, the Dg,(/C,)-orbit is enantiochronal, since the glabal symmetry Dy, is
isoenergetic while the local symmetry C, is anisoenergetic. The enantiochronality of
the Dgn(/C,)-orbit means that the 12 ligand positions of cyclohexane are equivalent
under flexible conditions, but split into six equatorial and six axial positions under fixed
conditions. This desymmetrization process is controlled by the subduction of the CR
represented by

De,(/C,) | Dsg = 2D34(/C,), (58)

where the symbol D3, represents a point group. In each resulting conformer of the point
group Dsi, (under fixed conditions), the six equatorial ligands construct an orbit governed
by D34(/C,), while the six axial ligands construct another D34(/C,)-orbit.
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_ _t
The six carbons of cyclohexane construct an orbit governs by Dy, (/C,,). which is ho-
mochronal by virtue of the criterion shown in Table 5. The fixation of the cyclohexane
ring is represented by the following subduction:

Deu(/Ch,) L Dsa = Dsa(/C). (59)

It follows that the six carbons are equivalent even under the fixed condition because they
are accommodated in the six-membered Day(/C,)-orbit.

As an analogy to prochirality [26], we can consider pro-anisoenergeticity, since the order
of the maximal anisoenergetic subgroup D3, in eq. 1 is equal to the half of the order of
Dy, A pro-anisoencrgetic compound is defined as an isoenergetic one having at least one
enantiochronal orbit. A set of ligands in such a enantiochronal orbit are equivalent under
flexible conditions, but are divided into two halves of ligands under fixed conditions.
The Dgx(/C)-orbit assigned to the twelve ligand positions of ¢yclohexane is enantiochro-
nal. Hence, cyclohexane itself is isoenergetic and pro-anisoenergetic so that the orbit is
desymmetrized under fixed conditions according to the subduction represented by eq.
58. The resulting two orbits are governed by Dy4(/C5), where |Dyy|/|Cy| = 12/2 = 6.
This means that one Ds4(/Cy) corresponds to a set of equatorial ligands and the other
D14(/C,) corresponds to a set of axial ligands.

In general, an isoenergetic derivative has one or more orbits derived from the ﬁM(/CS)»
orbit of cyclohexane itself. The global symmetry of the derivative is isoencrgetic because
it is an isvenergetic subgroup of the Dg;,. On the other hand, the local symmetry (€ or
C;) is anisoenergetic because it is a subgroup of the anisocnergetic C. It follows that
each relevant orbit of the isoenergetic derivative is concluded to be enantiochronal. This
conclusion is confirmed by the inspection of the subduction data in Table 3. Hence the
isoenergetic derivative is pro-anisoenergetic.

For example, the Type 1 derivative 5a/5b (ﬁu-symuml.ry in Fig. 3) has a twelve-
membered Djq4(/C\)-orbit of six ¢'s and the six @'s, which are equivalent under flexible
conditions. Since the Ds4(/C))-orbit is enantiochronal, the derivative 5a/5b is pro-
anisoenergetic. The fixation of 5a/5b is expressed by the equation 53,; N Dy = Cy;,
where the Dy is the maximal anisoenergetic subgroup for specifying fixed conditions.
As the Dyg-symmetry is fixed into Cy,, the Dyy(/C))-orbit is subduced according to the
following subduction:

ﬁ:sd(/cl) 1 Cy =2031'(/Cl)- (60)

This subduction can be regarded as the successive desymmetrization of eq. 37 and cq.
30 (Table 3). Each of the two Cjy;(/C))-orbits on the right-hand side of eq. 60 is
enantiospheric and accommodates six chiral ligands according to a compensated chiral
packing. Thus one Cy;(/C))-orbit in cach confomer accommodates the set of equatorial
ligands (three q’s and three g's), while the other Cy;(/C)-orbit accommodates the set
of axial ligands (three g’s and three @’s). The two Cy(/C)-orbits are mixed up into the
enantiochronal Dy4(/C)-orbit under flexible conditions.
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6 Symmetric Equivalency

6.1 Type I Meso-Derivatives

As implied in the previous discussion, Type I derivatives can be classified into two cases.
One case is that each conformer contains achiral ligands only (e.g. 7a/7b and 9a/9b),
while the other case is that each conformer contains chiral ligands (e.g. 5a/5b and
8a/8b; sometimes along with achiral ligands). The latter case should be mentioned from
a symmetrical point of view, since it is concerned with a kind of meso-compounds.

The twelve-membered Dy, (/C))-orbit of the Type [ derivative 5a/5b (Fig. 3) accommo-
dates six q’s and the six @’s, which are equivalent under flexible conditions. The orbit is
desymmetrized according to eq. 60 under fixed conditions. One of the resulting Cy,(/C))-
orbit in a fixed confomer is enantiospheric, where it accommodates the set of equatorial
ligands (three q’s and three @’s). The other Cj,;(/C))-orbit, which accommodates the set
of axial ligands (three q's and three @’s), is also enantiospheric. As a result, each con-
former under fixed conditions (eq. 60) is decided to be a so-called meso-molecule. Since
the Dy4(/C,)-orbit is also enantiospheric, the derivative 5a/5b is concluded to be a new
kind of meso-compound under flexible conditions.

In a similar way, the Type I derivative 8a/8b (Esh-symmetry in Fig. 6) is fixed according
to the following subduction:

Con(/C1) L Cx = 2C5(/C). (61)

Note that 56h N D3y = Cs;. This subduction can be regarded as the successive desym-
metrization of eq. 34 and eq. 30 {Table 3). The right-hand side of eq. 61 predicts the
appearance of an enantiospheric C3;(/C)-orbit of equatorial ligands (three ¢’s and three
q’s) and another enantiospheric Cs;(/C' )-orbit of axial ligands (three ¢’s and three @’s).
It follows that each conformer due to eq. 61 is also determined to be a so-called meso-
molecule and that the derivative 8a/8b is another example of meso-compound under
flexible conditions.

Each of eqs. 60 and 61 can be regarded as the conversion of an enantiochronal orbit into
hemichronal orbits from an energetical point of view. As a result, the derivatives 5a/5b
and 8a/8b are concluded to be pro-anisoenergetic.

6.2 Meso-Character of Type I' Derivatives

According to the general expression Q #2 Q, Type I' derivatives can always be regarded
as meso-compounds because of the interchange between enantiomeric conformers (Q and
Q) under flexible conditions.

For example, the Type I' derivative 6a/6b (Fig. 4) is fixed according to the following

subduction:
Dy, (/C1) L Dy = 2D5(/C1). (62)

Note that ﬁ;b M D3q = Dy. This subduction can be regarded as the successive desym-
metrization of eq. 36 and eq. 26 (Table 3). Equation 62 indicates that the enantiospheric
th(/Cl)-orbit is fixed into two hemispheric Dy(/C)-orbits. The conformer 6a contains
a Dy(/C\)-orbit having six equatorial chiral ligands of the same chirality (g) as well as
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another Dy(/C))-orbit having six axial chiral ligands of the opposite chirality (). On the
other hand the conformer 6b contains two Dy(/C )-orbits having interchanged equatorial
and axial ligands. Hence the conformational change brings out the internal compensation
of optical activity.

6.3 Dg, Beyond Dy,

It should be emphasized that the use of the usual point group Dg, should be discontinued
even in expedient procedures for explaining the stereochemisty of cyclohexane derivatives.
The point group Dg;, is unsuccessful in characterizing the stereochemieal properties of
isoencrgetic derivatives (i.c. Type I, I', and II) without any exceptions, although it is
isomorphic to the present pseudo-point group Dg,. Morcover, the point group Dy, fails
also in characterizing the energetic properties of anisoenergetic derivatives (i.e. Type IIT
and IV) without any exceptions.

As for isoenergetic derivatives, the point group Dy, is incapable of explaining fixation
into equatorial and axial ligands. As a typical example, we should refer to eis-1,2-
dimethylcyclohexane based on a simple polygon (planar) formula, which belongs to C|
that is a subgroup of Dg,. Although the C; can explain the apparent achirality, it is
incapable of explaining fixation into an axial methyl and an equatorial one.

In the present ﬁppmach based on D, the symmetry of cis-1,2-dimethylcyclohexane
is assigned to C,, which is a Type I’ case (Table 2). According to the general ex-
pression Q ¥ @, the enantiomeric confomers of cis-1,2-dimethyleyclohexane (Q and
Q) appear under fixed conditions. The two methyl ligands construct a 6,(/01)—0rbil..
which is enantiospheric and enantiochronal. The enantiosphericity indicates that cis-
1,2-dimethylcyclohexane is prochiral (as a meso-compound). On the other hand, the
enantiochronality indicates that it is pro-anisoenergetic to bring out separation into an
axial methyl and an equatorial one under fixed condition.

As for anisoenergetic derivatives, their energetic properties cannot be described by the
point group Dyy,. For example, an all-trans-1,2,3,4,5,6-hexasubstituted derivative based
on a simple polygon (planar) formula belongs to Dy that is a subgroup of Dg,. Obvi-
ously, this polygon formula is incapable of specifying the dynamic nature between the two
conformers 4a and 4b (Fig. 2).

The present approach treats the pair of the conformers (4a/4b depicted in Fig. 2) as a
Type III derivative. The anisoenergetic nature of 4a/4b is explained by the group Dsy
t.hai, is a subgroup of D,;,, Although the same symbol Dy, is used, the D4, as a subgroup
of Ds,. characterizes the Dyg-symmetries of both the conformers (4a and 4b) as well as
the conformational change between them.

7 Conclusion

A psendo-point group Dy, has been applied to the design of high- ﬁymmetry cyclohox-
ane derwa.h\es which are designated by its subgroups such as Dgg, DM, D;,,, D;,.,
C'm., Cb., Ds, D,, and D. The existence/nonexistence of these derivatives has been
prediced by comparing partial cycle indices with and without chirality fittingness (PCI-
CFs and PCIs). Encrgetical equivalency/nonequivalency for equatorial and axial ligands
has been discussed by virtue of CRs, which are classified enantiochronal. homochronal,
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and hemichronal ones. Symmetric equivalency/nonequivalency has also been discussed
by the sphericities of CRs.
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