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Abstract : The number of chiral and achiral skeletons resulting from homomorphic polyalkylations of
any degree m of a monocyclic cycloalkane with a ring size » are derived from combinatorial formulae.
Furthermore this theoretical study shows the composite character of the chirality and achirality of n-

membered rings substituted by alky] groups.

Introduction

Among numerous articles devoted to the enumeration of isomers of polysubstituted organic
molecules one may retain the original contribution of Robinson et al' who have provided a
method to derive explicit recurrence formulae useful for counting chiral and achiral alkanes

and monosubstituted alkanes. More recently Balaban et al” have presented an algorithm for
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the determination of the number of alkanes having » carbons and a longest chain length d.
The mathematical modelling generally encountered in these papers and many others deals
with Polya’s counting theorem’ particularly in the series of acyclic organic compounds.
Despite the abundant chemical literature on this topic one may notice that the final goal of

Polya’s model is to obtain a counting polynomial of the form f(x):Zc,x‘ where the

coefficients ¢, represent the bulk results of the enumeration of chemical isomers or
stereoisomers of any series of organic molecules with a degree of substitution i, Furthermore
this enumerative procedure is not selective for a defined polysubstituted organic compound

and its main disadvantages is the unwieldiness to expand the power series Zc'x‘ which

increases exponentially for higher integer values i in the case of large polysubstituted organic
molecules. The applications of Polya’s counting method are scarce owing to these reasons, in
the series of monocyclic and polycyclic organic compounds*® with coexisting constitutional
position and stereoisomerisms. Qur purpose in this paper is to circumvent the limitations of
Polya’s method and develop a direct and selective combinatorial procedure for counting chiral
and achiral skeletons of an n-membered ring connected to m homomorphic alkyl groups.
Throughout this paper we use some graph theory concepts by reference to the corresponding

chemical terms and give some definitions and preliminaries.

Definitions and mathematical formulation

Let HPMCA denote any homomorphically polyalkylated derivative of a monocyclic
eycloalkane (i.c an n-memberd ring system substituted by m homomorphic alkyl groups) with
the empirical formula C,H,, , (C,H,, ,),,. The m alkyl groups (C,H,,.,) are homomorphic
(from Greek homos meaning same and morphe meaning form)’ if they are structurally and
stereochemically identical when they are detached from the ring system. Thus single
homomorphic alkyl groups exhibit the same geometrical structure and the same steric
configuration. The molecular stereograph G, of HPMCA shown in figure | consists of m
subgraphs T, called steric frees representing alkyl groups ((’,( H:m) and one subgraph G,
which is a stereograph of the parent monocyclic hydrocarbon C,H,, with a ring size n. The

stereograph G contains » labelled vertices corresponding to tetravalent carbons which are
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linked to unlabeled vertices representing a total of 2# hydrogen atoms or substitution sites.
We claim that the composite molecular graph G, can be constructed by attaching the roots of

m homomorphic rooted steric trees 7, of order & to m unlabeled vertices.

Figure 1 : Molecular graphs G, T, and G, representing respectively a monocycloalkane C, H,,,
an alkyl group (C, Hiwii ) and a branched monocyclic cycloalkane C,H,, M(CkH“ ; )

i

Let the system C,H,, . (C,H,, ), be denoted by (n,2n,m,k). These four positive
integers denote respectively the ring size, the number of available substitution sites, the
degree of substitution, and the order of the alkyl group. In the parlance of graph theory any
alkyl group (C,H.,,,) is equivalent to a rooted steric tree which may have one or several
structural isomers and several stereoisomers including chiral and achiral forms. Let s, and
p, denote respectively the total number and the number of achiral rooted steric trees of order
k. It may be recalled that the generating functions containing these numbers have been derived

by Robinson et al' in the polynomials: s,(x)= s,x*,and p,(x)= p,x* for 0<k<14.
* k

In table 1 hereafter we present the values of 5., p, and s, — p, that we have extended to the

level k<18.
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Table 1: Values of 5,, p, and 5, — p, representing respectively the total number
and the numbers of achiral and chiral rooted steric trees of order £ <18.

k 8 Pr Se =Py
0 i ! 0

1 I i 0

2 i I 0

3 2 2 0

4 5 3 2

2) 1 3 6

6 28 8 20

Z 74 4 50

8 199 23 176

9 551 41 310

1 1333 69 1464

1 4436 i22 434

12 12832 208 12624
13 37496 370 37126
4 110500 636 109864
15 327420 1134 326286
6 979819 1963 977856
17 2944873 3505 2941368
18 8896515 6099 8890416

All the graphical representations of (C,H,,.,) by rooted steric trees can be collected into

three sets of elements equivalent to sterically distinct stereoisomers. Let E

ate

, E, and E,
denote these sets with the cardinality s,, p,, and (s,-p,), respectively. The elements of

E,,. include the enantiomer pairs and achiral skeletons while those of E_ and E, are

exclusively achiral and chiral skeletons. We adopt the convention to designate each sterically
distinct stereoisomer by a letter of the alphabet and each enantiomer pair by a couple of
identical letters differentiated by a prime symbol (see figure 2 and table 2 the notations of

type B, B’ and so on). Therefore £, E,,and E_ are transformed into sets of alphabetical

letters and some examples are given for 1<k<5 in table 2.
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Figure 2: Graphical representations of distinct rooted steric trees identified by letters of the
alphabet.

CFHII

Table 2: Collection in the sets E,,., E_ , and E, of alphabetical letters as alternative
designations of distinct rooted steric trees.

CkHZiH] Ea+r Ea E-‘

CH, {4} {4} 1)

CH, {4} {4} (@)

CH, {48} {4, 8} (@)

C,H, {4,B.B,C,D} {4,c,D} {B.B}

C.H, {4,B,8',C,C',D,E,F,F',G,H} {4,D,E.G,H} {B.B,C,C",F,F}

The substitutions of m hydrogen atoms by m homomorphic alkyl groups or rooted steric trees
is equivalent in combinatorics to the placement of m objects of one kind into m boxes. A
homomorphism between rooted steric trees is then a structural and sterical homomorphism in
which the structures and configurations of substituents are preserved. If the rooted steric trees

may be symbolized by an alphabet collected in the sets E

a+c?

E, and E_, the first problem to

solve is the determination of the number of homomorphic m-tuples of letters one may obtain
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from these sets i.e. how many words of length m and of type w,=aa...a one may form with
one kind of letter chosen among the elements of the sets £,., £, and E_.
Let N(s,.r}, N(s, — p;,r) and N(p,,r) be the numbers of distinct words of length m

formed with r kinds of distinct letters collected in the sets £, , E, and E_, respectively.
The relation between these three associated sets and their cardinalities are as given in
equations (1) and (2), respectively:

E, . =E VUE, (1)

E

e

Eﬂ

= Prs |Er.‘ =8~ Py ]

=

Therefore one obtains:
s 5 —p 2
N(s*,r):[r‘},N(sk-pwrk( L ] andN(pk.r):(:} ©)

In the case of homomerphic words of length m, r = 1, then N(s,, 1) = 5,, N(s,-p,, 1) = 5,-
p, and N(p,, )= p,. Note that N(s,, 1) =N(s,- p,, 1) + N(p,, 1). With this result one
may easily deduce that the numbers N(s,, 1), N(s,-p,, 1) and N(p,, 1) of distinct
homomorphic words written up by using a unique letter of an alphabet are independent of

their length m. To exemplify this situation we consider the set £, for rooted steric trees T,

where 3sk<5. If we let » = [ the complete list of distinct homomorphic words of length m =

4, noted by wy, are given in table 3.

Table 3: Homomorphic words of length m = 4 symbolizing distinct types of homomeorphic
polyalkylations for a given integer number k.

C)xHZk-H sk pk Eu+u w4(r = l)
C.H, 2| 2 ({4,B} AAAA, BBBR
Gy it 3 |{4.8.8.C.D} AAAA,BBBB.B'B'B'B' CCCC BDDD
AAAA,BBBB,B'B'B'B',CCCC,
G 1115 [{4,B,B,C,C',D,E,F,F G H} | CCCC,DDDD, EEEE, FFFF,
F'F'FF,GGGG, HHHH

From the above notations one may retain that the alphabet of s, distinct letters generates
N(s,, 1)= s, distinct homorphic words w,, and this result is the number of homomorphic
polyalkylations. Then the number N(s,,l) includes N(s, - p,,l)= 5, — p, homomorphic

polyalkylations generated from (s, — p, ) chiral rooted trees and N(p,.1)= p, homomorphic
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polyalkylations generated from p, achiral rooted trees. For fixed values s, =1land p, =5
given in our example one may obtain N(s,,])=11 types of homomorphic polyalkylations
using the alkyl group C.H,,. This result includes N(s, —p,,])=6 homomorphic
polyalkylations noted : {BBBB, B'B'B'B’, CCCC, C’'C'C'C’, FFFF, F'F’F'F’} which are
issued from chiral configurations and N(p,,l)=5 other homomorphic polyalkylations noted
{4444, DDDD, EEEE GGGG HHHH} which come from achiral rooted trees of C,H,,. In
conclusion to this part it appears that a polyalkylated monocyclic cycloalkane with an
empirical formula C,H,, , (C,H.,, ) gives rise to N(s, - p,,l) skeletons with chiral
homomerphic alkyl groups and N(p,,1) skeletons with achiral homomorphic alkyl groups.

Therefore the problem of counting chiral and achiral skeletons for an n-membered ring
substituted by homomorphic rooted steric trees is split into :

1°)-the enumeration of chiral and achiral skeletons of stereo and positions isomers resulting
from homopolyalkylations of order m with chiral rooted trees of order k; there are
N(s; — p;.1) such possibilities.

2°)- the enumeration of chiral and achiral skeletons of stereo and positions isomers resuiting
from homeopolyalkylations of order m with achiral rooted trees of order k; there are

N(p,.1) such occurences.

The subgraph G, of an n-membered ring belongs to the symmetry point group D,

which includes 4n symmetry operations and contains 2n unlabeled vertices or substitution
sites which are permutable under the action of these 4n symmetry operations. According to
this consideration we must carry out 4n permutation operations among the 2n substitution
sites for each homomorphic substitution of degree m (i.e we have to proceed each time to the

placement of m homomorphic rooted steric trees of one kind among the 2n substitution sites).

These 4n permutations are collected in partition notation in the set P given by eqs (4) and (5) :

p= {a, ] e+ 0. ad[d*} a,[n?]a, [2nl ai2™ ]} for 1 odd @

p= {a, & 1%(!1 +2p7].q, [ﬁ ]a [2 ],%[1“2"’2 ]} fokHamn )
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By eliminating in P the contributions of reflections and rotoreflections one may derive in

relations (6)-(7) the set P’ of 2n permutations induced by rotation symmetries only.

P'= {a{' [Iz” l n[Z" ],, ol [d%},m, a, [n2 ]} for n odd (6)
= {a," [lz"l(n + l)- [2”1.,.,(1£{d27" ],.,‘.a:,[-'iz]} for neven (7

The notation [7] in expressions (4)-(7) refers to j permutation cycles with length i, and the
coefficients @, and a, are determined from equations (8)-(12) where@(d), =¢(d), and

@(u), correspond to the

a,=¢(d),, dindd) (8
a,, =@(d), d(odd) 9
a; = go(d),p +@(d),; deven)# 240 ( g odd) (10)
a, =@(d),, +@(d), + @4, d(even)= 21 ( podd) (i
a, = @(d),, sidoddoreven (12

Euler totient function® for the integer numbers o or & which are the order of proper or
improper rotation axes (see indices rp or ri respectively).

The 4n permutations occur for each type of rooted steric tree 7, . The number of such
occurrences is equal to N(s, — p,,1) and N(p,,l) for chiral and achiral rooted steric trees of
order k, respectively. Finally the determination of chiral and achiral skeletons of stereo and
position isomers of a monocycloalkane polyalkylated with a single type of homomorphic
rooted steric tree of order k is equivalent to the problem of counting chiral and achiral

skeletons of the system C,H,, X, . The solution to this problem presented in our previous

2n-m

studies™ is summarized in eqs (13)-(20). Let the systemC, H,, , X, be denoted (n,2n,m) and

let us define for » odd and m odd or even, the sets D,, ={l,2,...,d,“.,n,2n} and
D, ={L...d",..,m} containing the divisors of 2 and m. Throughout this paper the notations
n ,m_and n_,m, are assigned to the integer numbers # odd m odd , and n even, m even,
respectively. We extract from the sets aforementioned the subsets D,, nD, and

Dy, N D, which contain the common divisors {d_} of the integer numbers(2n,m). Then

the enantiomer pairs and achiral skeletons inventories are given by eqs (13)-(16).



243

It d.#2eD,, ~D, and g =mT,then

2n
] 2 » (13)
A‘(n,.m,)zz; d§(2a,,‘ —-a,,‘)‘ | 27{ . ]

dﬁ

2n

1 i Z i) ”4)

Am(n_.m_)=; ,{Z,g(ﬂ"’ ) m 5 2’{ u J

d,

If d#2eD,, ND, ,then:

2n
1 . 4 15
A=) o, —a | —2{%"} s
d,
2n
1 sild ” (16,
Aae("—-mJ:i ,,Z',z(ad’ 7441). ; +(n +l{gl_] )
d,

But if n even and m odd or even, we define this time the sets D, ={1, 2,..od,...,n} and
D,. ={1,..,,d',...,m} containing the divisors of n and m. We extract from these sets the
subsets D, N D, or D, MD, which contain the common divisors {d.} of the integer
numbers (n, m). Then the enantiomer pairs and achiral skeletons inventories are given by egs

(17)-(20).



244

If d. #2e D, AD, and u’=”’T_1,then

| | o r iz
Alnm )=~ ;ﬂ(z"?'- ~a ) ﬁ - zy{”ﬂ" ] v
d,
2n
1 | de = :
Addrm) = é(“-f. ~a K| 2'{"11" ] "
d{.‘
If d,#2eD, "D,  then:
2n
l | 2 : 2 p 19,
A,,[”w”LJ:a ‘,Zﬂ(za"' —a, ) . +;: [%*ﬂ(nxﬂ)ﬂ][ EJ (19
: m 2
d
2n
s 2 ;
Am'n“’fh):ﬁ d‘zﬂ(‘ﬂ -a, ) dﬂ‘ i ﬁ{anrn(er])i%iZI%J v
d,

The terms A, (n,,m,) and A, {n, ,m,) denote respectively the numbers of chiral and achiral
skeletons of stereo and position isomers of a homopolysubstituted monacyclic
cycloalkane(HPMCA) C H,, X, where X is a singular and structurally non isomerizable
substituent. Some of these numbers summarized in table 4 have been presented in our

previous studies.”®
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Table 4: Number of enantiomer pairs and achiral skeletons of a homopolysubstituted
cycloalkane C, H, X,k where 3sn<8and I<m<n.

2v1--nt
n m W, (n.m) A (n,m)
| 0 1
3 2 1 2!
3 L 2
1 0 1
4 2 1 4
3 2 3
4 3 7
1 0 |
2 2 3
2 3 4 4
4 10 6
5 10 6
1 0 1
2 2 5
6 3 7 S
4 18 14
5 28 10
6 35 20
1 0 1
2 3 4
3 10 6
? 4 35 12
S 64 15
6 106 20
7 113 20
1 0 1
2 3 6
3 14 7
8 4 53 24
5 126 21
6 241 50
7 340 35
8 390 65

On the other hand, the molecules of the series C,H,, = C.H,,,, , where the m alkyl groups
are homomorphic give rise to a wide range of stereo and position isomers due to distinct
placements of the m alkyl groups C,H,,,, among 2n substitution sites of the n-membered
ring. The second characteristic of these compounds is related to distinct steric configurations

exhibited by these alkyl groups which may be chiral or achiral. With regard to this double
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stereospecificity we claim that the chirality or achirality of HPMCA results from crossed
composition of the chiral or achiral placements of m homomorphic alkyl groups on the ring
(sterecisomerism issued from the positioning of m groups) and the intrinsic chiral or achiral

character of each alkyl group. Such a composition is summarized in table 5 hereafter.

Table 5: Composition of the chirality and achirality of HPMCA.

Chirality or achirality Gl Tk
R iral alkyl groups Achiral alkyl groups
of HPMCA
Chiral placement chiral alky] groups-chiral placement (Af ) | achiral alky] groups-chiral placement (A:J )
Achiral placement chiral alky! groups-achiral placement (A7) | achiral alky! groups-achiral placement ( A )

Now according to table 5, let 4! (n,,m, k), AS(n,,m k), 4'(n,,m, k), Al(n,,m, k)
denote the numbers of skeletons of HPMCA with : (a) chiral alkyl groups-chiral placement,
(b) chiral alkyl groups-achiral placement, (¢) achiral alkyl groups-chiral placement, (d) achiral
alkyl groups-achiral placement, respectively. In table 5 the superscripts (¢) or (&) refer to
chiral or achiral alkyl groups while the underscripts (¢) or (a) are assigned to the chiral or
achiral placement or positioning of the m alkyl groups on the carbon ring. To derive these
numbers which are the solution of our enumeration problem, we apply the following rule:

The number of chiral or achiral skeletons of HPMCA is directly obiained from the product of

the number of occurrences N(s, — p,,1) and N(p,.))for chiral and achiral rooted steric
trees T, of order k and the number of chiral or achival placements A.(n ,m,) and

A,.(n, .m.) of these rooted steric trees on the n-membered ring.

Hence:
AZ(n om k) = N(s, = p DA (ne,m )= (s, = pi) A(mm) (21)
Al(n om k)= N(s, = p, D[ A (n,.m )] = (5 = p) A,.(mm) (22

Ai(n, m k) = N(p, D[ A (n,m,)]= (p,) A (n,m)

23)
Ai(n m kY= N(py DA, (n,m)]= (p,) A (nm) 4
The total number of enantiomer pairs of HPMCA is obtained by summing up three parameters
Al(n ,m k), A’(n ,m ,k)and A;(n ,m ,k).Then:

A (ny.my k) = Al (ne,my K)+ AL (n,,my k) + A7 (ny my k) 25
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while the total number of achiral skeletons of HPMCA is:
A,.(n,m k) =A;(n ,m k) (26)
We illustrate our counting procedure by two examples of calculations given hereafter in the

series of molecules C;H, ,(C,H,), .

Example 1: Enantiomer pairs and achiral skeletons of C;H,(C,H,),.

Let n=3, m=2, k=4, s,=5, p,=3, s,—p, =2, 4.(32)=1, 4,(3,2)= 2, then according to
equations (21)-(26) A (3,2,4)=(s,— p,). 4.3,2)=2x1=2 and A;(324)=(s,-p,).
A,.(3,2)=2x2=4; these species exhibit the absolute configurations RR or S8, see figure 3),
A!(32,4)=p,.A (32)=3x1=3, A;(3.24)=p,.4,.(3,2)=3x2=6 (these species are meso
forms). Finally the total number of enantiomer pairs and achiral skeletons of this system are
respectively:

A4.(3,24)=A4:(3,24)+4;(3,2,4)+ A7 (3.2,4)=2+4+3=9 and 4. (3,2,4)=4(3,2,4)=6.

Example 2: Enantiomer pairs and achiral skeletons of C,H,(C,H,);.

Let n=3, m=3, k=4, 5,=5, p,=3, s, —p, =2, 4.(33)=1and A4,.(33)=2, then according to
equations  (21)-(26): A (3,3,4)=(s, — p,)A.(3,3)=2x1=2 and 4;(334)=(s, —p,).
A,.(3,3)=2x2=4; these species exhibit the absolute configurations RR or SS, see figure 3),
A7(33,4)=p,.4,(3,3)=3x1=3, A4.(3,3,4)=p,.4,(3,3)=3x2=6. Finally the total number of
enantiomer pairs and achiral skeletons of this system are respectively:
A4.(334)=A4:(33,4)+4,(33,4)+A47(3,3,4)=2+4+3=9 and 4,.(3,2,4)=4;(3,2,4)=6.

The figure inventories obtained from this counting procedure are given in table 5 for ring

sizes 3< n <6, the degrees of substitution m < n, and the order 3< k <8.
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Table 6 : Numbers of enantiomer pairs and achiral skeletons for monocyclic systems with a
ring size 3<n <6 the degrees of substitution m < » and the order 3< k <8.

IN— 3 4 5
il om e Jag [ae Tar Jac {ag Jar Jag {ac Jag [ar [az {4
0 0 0 0 o0 0 2 o oo 2 o
2 o 0 2 o 02 L i 4 6 0
o] I O oo 4 6 fo o 8 8 o
4 i o 0 6 a4 fo o 20 02 o
5 | 1 0 0 20 12 |o
o ! ! 1 o
1 o 2 0 3 0 3 0 :2 0 i3 0
2 2 4 3 6 2 12 4 6 6 9 14
Pl I R T R LR o I8 & 2 a2 |4
4 | B 6 2t 20 12 30 a8 36
5 | i 20 12 30 18 |56
6 i 70
o 05 Jo 16 5 o 6 o 5 Jo
2 6 5 10 j6 24 20 |12 s e s iz
5 3 |6 o 10 12 18 15 24 '24 20 (20 42
4 a2 35 [60 36 5030|108
5 60 36 S0 330|168
6 | | | | 210
1 IE] 0o 20 0 8 0 20 0 Jo
2 8 116 [20 80 8 32 |40 60 16 24 |40
6 1P 3 16 |40 60 1624 |80 80 32 132|140
4 60 140 24 156|200 1120 ‘80 48 |360
5 i 200 1120 80 48 |s60
6 : 700
1 o 14 Jo 60 0 14 Jo 60 0 14 o
2 14 28 |60 240 ‘1456|120 180 28 142|120
7P 4T g 20 180 28 42 f240 240 5656|420
4 180 420 42 98 |600 360 140 84 |1080
5 ! ; ! 600 1360 1140 |84 |1680 |6
6 2100 |
i Jo 1eo 23 23 10 1760 23 o
2 176352 23 46 92 352 528 46 69 [352
g B Ji7e 352 23 e 69 |04 70492 192 (1232
4 161 [1760 1056 (230 1138|3168 |24¢
5 I i 1760 11056 230 138 |4928
6 ‘ | | 1 6160
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s

Al(3,2,4)=p,.4,(3,2)=3x1=3

o] ol
J O

O, (TR

A7(3,34)=p,.A, (33)=3x2=6

n=3, k=4, m=2

A(3,2,4)=(s, — p,).A,.(3.2)=2x2=4

Figure 3: Representation of chiral and achiral skeletons of C,H (C,H,), with homomorphic
C,H, groups.

CONCLUSION.

This theoretical study gives a good insight to the composite chirality of branched
cycloalkanes. In the series of HPMCA the molecular chirality results from the cross
composition of the steric character of alkyl branches and the stereoisomerism due to the
placements of these groups on the carbon ring. Furthermore the preceding developments give
evidence of the stereospecificity of polyalkylation reactions in cyclic systems. In a future
paper, the problem of pseudoachirality will be discussed arising when substituents of the same
order may have opposite chirality; also, all general problems will be analyzed arising when
the condition of homomorphic substitution will be suppressed i.e when alkyl substituents may

have different orders or different chiralities.
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