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1. Introduction

One of the first mathematicians to consider the problem of enumerating chemical
isomers was Arthur Cayley' (1821-1 895) (see, for example [2]). In the 1930s, his ideas
were followed up by George Pdlya (1887-1985) whose work culminated with a lengthy
paper published in 1937 [11]; this was quickly recognised as a major contribution to the
subject. Pélya’s paper is based largely on a single theorem, his “Hauptsatz”, and it was to
be many years before the mathematical world became aware that Pélya was not the first
person to discover the technique in that theorem. Whilst not explicitly stating the
theorem, J. Howard Redfield had used it in a paper in 1927 [14]. This was the only paper

! In several places in the chemistry literature (see [15] for example), he is incorrectly referred to as Sir
Arthur Cayley. This may be due to confusion with Sir George Cayley (1772-1857), the pioneer of
aerodynamics.
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by Redfield published in his lifetime, but it was not the end of his mathematical
researches, for he went on to develop a theory of what he termed extended characters.
But just as Pélya wrote his paper unaware of Redfield’s work, so Redfield was not aware
that his extended characters had also been discovered previously: they are in the second
edition of Burnside’s book [1], but Burnside called them marks. Redfield continued his
researches during the 1930s and, in 1940, he submitted a second paper to the American
Journal of Mathematics. Unfortunately this paper was rejected and it was not to appear in
print until 1984 [17]. Other unpublished material has also been found in Redfield’s
“Nachlass”. The two Redfield papers anticipated many of the major developments in the

theory of enumeration made from the 1930s to the 1960s.

This is not the place to discuss why Redfield’s first paper remained unread, nor
whether his second paper should have been rejected. Suffice it to say that if their contents
had been known and appreciated at the time, then the history of enumeration in the
Twentieth Century would have been very different. In the present paper some of the main
ideas in Redfield’s work are discussed and it is concluded that sometimes it is simpler to
dispense with Redfield’s frame group. Chemical applications of Redfield’s techniques

are not given here, but some can be found in [7] and [8] and in the references therein.

2. Who was Redfield?

John Howard Redfield, Inr, (1879-1944) was born in Philadelphia. He attended
the Penn Charter School (motto: “Good instruction is better than riches™), where he
received a good classical education. Then, over a rather protracted period, interspersed
with periods of work, he obtained qualifications from a number of reputable colleges and
universities in a variety of subjects:

1899 B.S. (mechanalia), Haverford College;

1902 B.S. (civil engineering), Massachusetts [nstitute of Technology;

1908 Certificat d’études Frangaises, Université de Paris;

1910 M.A. (Romance languages) Harvard;

1914  Ph.D. Harvard.

His Ph.D. thesis was entitled “The earlier Latin-Romance Loan Words in Basque and

their Bearing on the History of Basque and the Neighbouring Romance Languages”. Part



217

of it consists of long lists of words and it is of interest to note that his grand-father,
another John Howard Redfield, also produced long lists in his field of interest (see, for

example, [13]).

Although the younger Redfield had several short term lecturing appointments,
variously in languages and in mathematics, for much of his working life he earned his
living as a civil engineer. For a few months in 1937, for example, he was structural
designer of steel and reinforced concrete for a technical high school building at

Wilmington, Delaware. Further biographical details of Redfield may be found in [6] .

3. The 1927 Paper

Amongst the few mathematical books which Redfield owned were Love’s two
volumes on Elasticity [9]. This material would have been relevant to his professional
work, but his interest in enumeration seems to have come from studying work of

MacMahon, including [10], though what prompted him to do that is unknown.

Kerber [5], in this issue of Match, discusses the principal ideas of enumeration
under group action in the present day language and notation of permutation groups.
Except where stated otherwise, all references in this paper to Kerber are to [5]. The basic
tool of the theory of enumeration under finite group action is what Kerber terms the
Cauchy-Frobenius Lemma, but it is also referred to as Burnside’s Lemma or, more

neutrally, as the Orbit-Counting Lemma.

3.1 The Orbit-Counting Lemma The number of orbits of a finite group G acting on a

finite set X is equal to the average number of fixed points:
1
— Xl
PR
where X, ={xe X [gx = x} is the fixed point set of g.
Redfield introduced a polynomial which he called the group-reduction function;

the same polynomial was introduced by Pdlya and it is usually known by the name which

he gave it: the cyele index. The polynomial leads to a generating function version of the



218

orbit-counting lemma. The new lemma is essentially a special case of the weighted
version of the orbit-counting lemma discussed by Kerber, but in much of Pélya’s work,
the set ¥ is an infinite set, but subject to the restriction that for each f € ¥* and each
ve Y, the inverse image f'(») is a finite set. In such cases, the generating functions

are usually power series rather than polynomials, but as this paper concentrates on
Redfield’s work, the reader is referred to P6lya and Read [12] for examples of the use of

power series in the theory.

If a finite group G acts on a finite set X, then the action of each ge G splits X'
into disjoint cycles. For enumeration purposes, it is only the numbers of cycles of the

various lengths (sizes) which are important, and not which set element is in which cycle.

3.2 Definition Let G be a finite group acting on a finite set X. The cycle monomial of the

element g € G is defined to be the product

in the variables s, s, ..., where a,(g) is the number of i-cycles (cycles of length 7)

induced in X by g.

3.3 Definition The cycle index Z(G, X ;s,,5,,...) of a finite group G acting on a finite set
X is the average of the cycle monomials of the group elements. Hence,
1 1¥]
2(G. X385 )= 2 T [/
|G| geG i=l

(When convenient the left hand side will be abbreviated to Z(G;s),5,,...).)

The polynomial in Kerber’s Corollary 4.4 can be obtained by making the

substitution

34 =3y

v
in the cycle index. The notation s, used here follows Redfield and he chose it since, in the
above substitution, s; is interpreted as the power sum symmetric function in the elements

yevy.
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3.5 Example How many ways are there to place four identical blue and two identical

yellow balls at the vertices of a tetratagonal bipyramid?

The solid in question (see Fig. 1) can be obtained from the regular octahedron by
moving vertically the top and bottom vertices the same distance away from (or closer to )
the centre of the solid. Hence the tetragonal bipyramid has fewer symmetries than the
octahedron. Hans Dolhaine has kindly pointed out to the author that this type of
tetragonal distortion of icosahedral geometry does occur for some co-ordination

complexes such as tetra-ammine cobalt dichloride Co(NH3),Cl,.

0

5

Fig, I A tetragonal bipyramid

As an abstract group, the rotation group of the tetragonal bipyramid is the
dihedral group Dy4. The cycle index Z(G, 4;s,,s,....) for the action of Dy on a square A

with vertices numbered 1, 2, 3, 4 cyclically is
cg @ o ] 4 2 2
Z(0, As-‘1~~’zv--)‘§{-"| +2s5, 35, 25 5,}.

Each of the rotations (including the identity) extends to a rotation of the bipyramid with
both 0 and 5 as fixed points. The four reflexions of the square correspond to rotations of
the bipyramid in which vertices 0 and 5 interchange. Hence the cycle index for the action

on the six vertices of a bipyramid B is
1 p
36 Z(D;, B:8i,8y5ss) = g{s,6 +2575, +25; +3s753}.

Here the weight w(f) of a ball can be defined informally as the initial letter of its colour,
0.
w(blue ball) = 4,
w(yellow ball) = y.
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More precisely, the weights lie in a polynomial ring generated by elements b and y with
rational coefficients. Substituting s, =’ + ' in the cycle index gives a polynomial
P(b,y)=Z(D,,B;s, »b' +1")
= %{(H P2+ Y)Y (0 + ¥ )H20T + Y 3B+ ) B+
=b°+26%p+4b*y  +4b' Yy +4b%y" 4 2By  +p".
The coefficient 4 of the term 45* 3" is the solution to the question asked: there are four

different ways to place four blue and two yellow balls at the corners of a regular

tetragonal bipyramid.

The above solution has produced more information than was sought. For any non-
negative integers p and g, the coefficient of 57 y* is the number of ways of placing p blue

balls and g yellow balls at the vertices of the tetragonal bipyramid. Of course, if just one

term in the expansion is required then there is no need to calculate P(5,y) in full - the

labour can be reduced by expanding only those factors which will contribute to the

desired term.

Much of Redfield’s 1927 paper considers an alternative method of solution which
does produce just the single number sought, but it involves the use of more than one
cycle index. For the present example, two cycle indices are needed and the second one is
that of the symmetry group of the four blue and two yellow balls. This is just the direct
product S, x S, of the symmetric group S, acting on the blue balls with the symmetric

group S, on the yellow balls. The cycle indices of Sy and S, are
Z(8,:8,:80: 85,0 = %{s{’ +65.5, + 85,5, +35; +65,}
and
Z0(5,551,85) :%{le +5,}.

Since the cycle index of a direct product is the product of the cycle indices, the cycle

index of S, xS, is

33 Z(S, X 8,;8,,8,,8,,8,) =ﬁ{s‘4 + 6575, +85,5, + 35, +6s4}><%{s‘2 +5,}
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1
= 5{5," + 758, +8s) 8, + 95787 + 6575, +85,5,5, +35 +65,5,)

Redfield introduced a composition of (binary operation on) polynomials which

nowadays is usually denoted by *. It is defined as follows:

+ for two identical monomials
L R R A SR a G Nefi o odr .
Somte SRS s S1ha 2% rta e ls st
* the composition of two non-identical monomials is zero;
* the composition * is distributive over addition of monomials, so the composition of

two polynomials can be multiplied out as if * were ordinary multiplication.

Applying these rules to the cycle indices 3.6 and 3.7 gives:

%{s," +2s]s, + 255 +35753}

1 2
* &{sf +75,'s, +85,5, +95]5; + 6575, +85,5,5, + 357 +65,5,}

- sim{f’s!sf +12(1724' s, +6(2°30)s] +27(1722721)s7s3 .

Finally, the answer to the question posed is the sum of the coefficients in this
polynomial. This is
{720+96 + 288 432}/384 4,

in agreement with the answer obtained earlier.

The two methods of solution correspond to two different formulations of the
problem. In the first method a distribution of balls at the vertices is regarded as a function
[ X — Y where X is the set of six vertices and ¥ = {b, y} is a set of two coloured balls.
The single group G acts on the set X. In the second method, a distribution is regarded as a
one-one correspondence between the set of six vertices and the collection (or multiset) of
four blue and two yellow balls. There are two groups, one acting on the vertices and the
other on the balls. Thus in the second formulation, the vertices and balls play

symmetrical roles and the ideas can be extended to one-one-...-one correspondences. In
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the 1927 paper Redfield considers ¢ sets which he calls ranges, each of which has a
group G, called a range group, actingonit (i =1, 2, ..., g).

‘The above example is not one given by Redfield; he illustrates the method by
finding the number of ways of placing four black and four white balls at the vertices of a
cube. The answer to this problem is seven, but the method gives only the number of
cubes and no information on how to construct them. With so few, however, it is not hard
to think out what they are and Redfield draws them. He then notes that each of the seven
has its own symmetry (or stabiliser) group and he seeks a method for breaking down the
counting according to the individual symmetry groups. In the 1920s, he was only
partially successful in solving this problem. If the possible symmetry groups
are /,,H ,.....H and there are & arrangements with symmetry group f;, then he proved

that the various cycle indices satisfy
3.8 ZG W Z(G)* . 2(G,) =Y Z(H ),
i=l

where G|, Gy, ..., G, are the range groups. But to solve the problem posed by Redfield
requires finding the & when the range groups G, are given. This cannot be done in
general, since different 4; may have identical cycle indices and, furthermore, the cycle
indices of the H; are not always linearly independent. Redfield gave two possible

decompositions for his example of the cube:
E%{?Osf +54s8 32s]s] 1287}

=%{s,ﬂ +35) +833s$}+%{s? £ +2.vf}+%{sf 388

+ %{sf +2s2s0 )+ 2[%{.9? +53}]+st

1 3 1 5.5 1
:Z{x.’+s§+25;}+2[§{s:‘+2.r;sl“}] 4[5{vf vj}]
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The first decomposition is the correct one, but this cannot be deduced from the algebra
alone. The fact is that the cycle index is the wrong tool to do enumeration according to

symmetry groups as Redfield was later to realise.

4. Redfield’s Researches in the 1930s (Marks of Permutation Groups)
From a typescript dated 1935 [15], we know that by that date Redfield knew how
to solve the problem of enumeration by symmetry group, but he had not yet proved that
the method always works. Not long afterwards, he had obtained a proof, but, in a
typescript produced for a lecture which he gave at Pennsylvania State University in 1937,
he stated **... none of these proofs has yet been brought to a degree of elegance which
would permit me to give any intelligible account of them in the time available”. The
1937 typescript has now been published [16]. Instead of the cycle index, Redfield used
what he termed extended characters, but Burnside [1] had introduced them under the
name of marks. It was not until 1940 that Redfield submitted a paper containing his

solution, but it was rejected at that time and was to remain unpublished until 1984 [17].

Much of Redfield’s 1927 paper can be reformulated in terms of group characters
and this was done by Foulkes [3]. In addition, he showed in that paper that marks can be
used to solve the problem of enumerating by symmetry group, but he was, of course,
unaware that Redfield had already done this in the 1930s.

In the 1940 paper, Redfield again considers one-one-...-one correspondences
between g sets of objects each with a range group G, (i = 1, 2, ..., ¢) acting on it. But now
every range group is a subgroup of a supergroup F which he termed the frame group. The
frame group was absent from the 1927 paper but, with hindsight, Redfield points out that
it can be introduced there as a symmetric group; it would be Sx in the case of his cube

problem.

Redfield’s method for enumerating arrangements is to use the mark table of the
frame group. Both Burnside and Redfield wrote mark tables as lower triangular matrices,

so they are transposed about the main diagonal compared with the way in which Kerber
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writes them. When written in lower triangular form each number in the first column of

the mark table is the number of cosets of the corresponding subgroup in the whole group.

4.1 Definition The row m(H;) of a lower triangular mark table corresponding to

subgroup H; is called the mark vector of H,.

The analogue of the composition * of cycle indices is the co-ordinate by co-ordinate

product (denoted here by ) of mark vectors, and the analogue of equation 3.8 is:
4.2 m(G)em(G,)e..e (G)=)¢ (H),
i=|

where the marks are those of the subgroups of the frame group F.

In his 1940 paper, Redfield illustrates his theory by superposing icosahedra each
of which has certain faces marked in some way. Specifically he marks an antipodal pair
of faces of the first icosahedron with the letter A, an antipodal pair of the second
icosahedron with B, etc. The frame group is the icosahedral group (the rotation group of
the icosahedron), and this is isomorphic to the alternating group A4s. Each range group is
the rotation group of an icosahedron with two antipodal faces marked in the same way
and this group has order six. Redfield does calculations for the superposition of two and
of three icosahedra. Not surprisingly with three icosahedra, most superpositions have

identity symmetry.

The frame group can be any supergroup containing all the range groups, but it is
desirable to take it as small as possible. The bigger the group, the more subgroups it will
have and the bigger the mark table will be. For many examples, the frame group is so
large that finding its mark table is difficult or impossible. Nevertheless, when the mark
table of the frame group is known, then Redfield’s use of it has an elegant simplicity
about it and the method will be illustrated with a larger example than Redfield gave. The
frame group will be the symmetric group Ss, which has twice the order of 45 and nineteen
conjugacy classes of subgroups instead of nine. A transversal {U;} of the conjugacy
classes of the subgroups of Ss, together with the mark table is given by Kerber [4]. These
are reproduced below, but with the mark table in lower triangular form. As is now
customary, zeros above the main diagonal are omitted and other zeros are denoted by

dots.
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4.3 Problem Enumerate according to their symmetry groups, the structures obtained by
placing three blue and two yellow balls at the vertices of a square-based pyramid (see
Fig. 2).

3
1

Fig. 2 A square-based pyramid

Uy =(1) [120 q
Uy ={(34)) 60 6

U, ={(01)(34)) 60 . 4

U,y ={(021)) 40 . . 4

U ={(04123)) b7 .

U, ={(02),(34)) 30062 . .2

Uy ={(0413)) B0 5 B o 5 o5 B

Uy ={0DB4).(0003) [30 . 6 . . . . 6

Us ={(021),(34)) 2002 .2 ... .2

U, =({(021),(01)) W B wap agyd

Uy, ={(020),(01)34)) | 20 4 2 2

Uy, ={((04123),02)34)) |12 . 4 . 2 , 2

Uy, ={(0413),(34) 15 o 3 1l !

Uy, =((021),(02),(34)) |10 4 2 1 ) 111 1

Uys ={(041),(043)) 10 2 4 i 2

Uy, =((1423),(0312)) 6 . 2 1 2 ' 1
Up={oa3,0143) |5 3 12 .0 101 o2 L1 L]

Uy =((04123),(01243)) | 2 . 2 2 2 2 .22 i .o 2
Uiy 25} I & T B U U O O R

Any rotation of the square-based pyramid fixes vertex 0 and cyclically permutes
the other four vertices, so the rotation group of the pyramid is the cyclic group Cs, which
has 30 cosets in Ss. There are three classes of subgroups with 30 cosets, but it is clear
from the generating elements, that Us is the only one which is cyclic. So the mark vector

for the rotation group of the bipyramid is
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m(l7) =(30,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0).

The symmetry group of the balls is.S, XS, which, since it has order 12, has 10 cosets in
8s. There are two classes of subgroups with 10 cosets, but again it is clear from the
generating elements that Uj4 is an S, x§, but that U5 is not. Hence the required mark

vector for the group acting on the balls is
m(U4)=(10,4,2,1,0,2,0,0,1,1,1,0,0,1,0,0,0,0, 0).
The co-ordinate by co-ordinate product of the two vectors is
m(Us) « m(U;4) =(300,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0).
To solve the problem, it remains to express this vector as a linear combination of the

rows of the mark table. In other words, the vector § = (&, &, ..., &10) must be found which

satisfies
m(U;) » m(Ujy) =EM

where M is the mark table matrix. Hence

§={m(U7) » m(U1)}B
where the Burnside matrix B =M. But since M is triangular, rather than inverting M, it
is much easier to note that the final non-zero entry in the matrix is the 4 in the 3rd co-
ordinate, and this can only be obtained from m(U5). Subtracting m(Us) from m(U5) e
m(U)4) gives

(240,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

and this vector is just twice the first row of the table. Hence

m(U7) » m(Urs) = m(Us) +2m(U)).
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The interpretation of this equation is that there are three ways to distribute three blue and
two yellow balls at the vertices of a square based pyramid. One of these arrangements
has a group conjugate to U as its symmetry group whilst the other two have only identity

symmetry (see Fig. 3, bottom row).

0 0 0
4 A D
Ug g 3 U3 U g 4
0 0 0
oy U3 UNg 3

Fig. 3 Distributions of blue e and yellow o balls on a square-based pyramid.

It is just as easy to find the number of ways of distributing four blue and one
yellow balls. The symmetry group S, xS, has order 24, so it has 5 cosets in Ss, therefore

it must be conjugate to group Uj;. Now

m(Us) e m(U7) =(150,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0, 0, 0)
=m(U7) +m(L)).

This time there are only two arrangements, one with U; symmetry and the other with
identity symmetry (see Fig. 3, top row). Finally, there is, of course, only one way to place
five blue balls on the pyramid (also shown in Fig. 3 top row) and this corresponds to the

simple result that
m(Uz) « m(Uig) = m(Uy).

None of the distributions of the balls is chiral, so if the problem is reworked using

the full symmetry group (including reflexions) of the square-based pyramid instead of the
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rotation group, then the same numbers of pyramids will be obtained but all the individual
symmetry groups double in size. The mark vector m({/,3) replaces the vector m(U) in
the products above and the reader may care to work out the corresponding linear

combinations.

5. Post Redfield: Dispensing with the Frame Group

As already mentioned, Redfield’s use of marks is constrained by the need to
know the mark table of the frame group. When there are only two range groups G, and
G, however, it is sometimes possible to dispense with the frame group F. For problems
of distributing balls at vertices (or ligands on sites of a co-ordination complex), the group
G is a direct product of symmetric groups. In such cases, reverting to the first
formulation discussed in §3 dispenses with both the range group G and the frame group
F_ 1t is then possible to use the mark table of G, for the enumeration. Furthermore,
weight functions can also be incorporated into the enumeration (see Kerber’s Corollary
7.3). This will be illustrated by revisiting example 3.5, but now the enumeration will be
done according to symmetry groups as well as by weight. The mark table used will not be
that of S (which has 56 conjugacy classes of subgroups) but that of Dy (which has only 8

such classes).

The symmetry group of the tetragonal bipyramid is the dihedral group Dy, but
since it is easier to write vectors of polynomials as column vectors rather than as row
vectors, the mark table for D, and its inverse will now be written, in the style favoured by

Kerber, as upper triangular matrices.

The cycle monomial of a group element ge G acting on a set X was defined in
3.2. In the theory of marks, the emphasis shifts to considering actions of entire subgroups
rather than individual elements. It is appropriate, therefore, to introduce for groups an

analogue of the cycle monomial.

5.1 Definition If G is a finite group acting on a finite set X, then the orbit monomial of

the action is

HS.“‘((I’

i
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where a{G) is the number of i-orbits (orbits of size i) in the action.

The mark table of a group G is independent of the way in which G acts, but the
orbit monomials are not. Kerber gives a transversal of the conjugacy classes of the
subgroups of Dy, together with the mark table. The subgroups in his list act on a square
with vertices numbered 1, 2, 3, 4 in cyclic order. The square is two-dimensional and four
of the elements in this action are reflexions. In the action on the tetragonal bipyramid,
however, the corresponding elements are rotations in which vertices 0 and 5 are

interchanged.

In §3, the substitution 3.4 was made into the cycle monomials in the cycle index;
the same substitution will now be made into the orbit monomials. Details of the actions

of Dy on a square and on a tetragonal bipyramid are given in Tables 1 and 2 respectively.

Table 1 The Dihedral Group Dy acting on a Square
Column 1: the generators for subgroups acting on the square.
Column 2: the orbit monomials for the action on the square.
Column 3: the mark table of D,.

U, =) P 8 4 4 4 2 2 2 1]
U, =((13)(24)) s? 4 . . 2221
U, ={(14)(23)) s? I ¢ 1
U, =((13)) sk, 2 .2 .1
Uy ={(14)(23).((12)(34)) 5, 2 . 1
U, ={(13),(24)) 5! 2 ;1
U, =((1234)) 5, 21
U, = {(1234)(24)) = D, s, ] 1)
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Table 2 The dihedral Group D4 acting on a Tetragonal Bipyramid

Column 1: the generators for subgroups acting on the bipyramid.

Column 2: the orbit monomials for the action on the bipyramid.

Column 3: generating functions for the orbits obtained by making substitution 3.4 into

the orbit monomials.

U, ={1) a? [(b+)°

U, ={(13)24) stk B+y)Y (3 +y"y
U, = {(14)(23)(05)) s By

U, ={(13)05)) (b+y) @+
U, = ((14)(23).(12)(34)) sis, @+ Y
U, ={(13)(05),(24)05)) sl ®*+y')

U, ={(1234)) sis, B+t +yY)
Uy ={(1234),(24)(05))= D 5,5, LB+ ¥ )b + ) |

One could solve the present problem without inverting the mark table, but since
the vectors involved contain polynomials rather than integer entries, it is not quite so easy
to do so. Instead Kerber’s Corollary 7.3 can be used. That states that to enumerate
arrangements according to symmetry group and weight, the Burnside matrix (inverse of
the mark table) is applied to the vector of generating functions for the orbits. For the

present example, the calculation gives

-1 -2 22 2 2 . Qo+t T [6%2 +67y +62y°
20 =2 =2 =2 4|t e 8
4 L i . . . (ﬁ2+y2)3 bayzi-hzy‘
1 L S | [T RS LS e Ll P AR ) AT M
E 4 GRS ORI
4 L 4B By?aniyt

4|y et eyt | |elyrey
LI AR b | B FAR N SRS Ay

The summands 4%y, 26°°, b in row 4 of the column vector on the right hand side mean,
respectively, that amongst the distributions with U symmetry, there is one with 5 blue
and 1 yellow balls, two with 3 balls of each colour and 1 with 1 blue and 5 yellow balls.

The zero in row 5 means that none of the distributions has Us symmetry.
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If only the numbers of distributions are required, then the solutions can be

obtained by setting b = | = y. The corresponding calculation is

-1 -2 -2 2 2 . [e4] [3]

2 . . =2 -2 -2 4||16 1

4 . -4 3 5 |l 8 2

1 4 . —4 16 (4
8 4 —a|| 4| |of

4 . —4|| 8 2

4 -4 8 2

L 8|[ 4] 4]

Alternatively, in this case, the solutions can be obtained as in §4 without inverting the

mark table.

0 0 0
1 1 1
3 3 3
U, U, U,
3 ] 3 T 5 4
0 0 0 0
1 | 1 1
3 3 3 3
U U U, U,
g * s 5 2 5
0 0 0 0
1 ] 1 1
3 3 3 3
3 U, : 2% : U s Y

Fig. 4 Distributions of blue and yellow o balls on a tetragonal bipyramid.
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There are 18 distributions altogether, but each of the polynomials in the vectors
above is symmetric in b and y. There are 11 distributions with p blue and ¢ yellow balls

with p2g.The 11 are illustrated in Fig. 4 with their symmetry groups indicated.

6. Conclusions

This paper has examined some of the enumeration techniques used by Redfield.
In particular, his elegant use of mark tables has been explained, but this method is only
practicable for fairly small groups, because of the difficulty of calculating mark tables. In
certain cases, some of the groups can be eliminated and the mark table of a smaller group
can be used.
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