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Abstract

This contribution to the special issue on tables of marks in chemistry describes
applications of enumeration under finite group actions to a particular class of com-
binatorial libraries. They arise from a symmetric parent compound via reactions
with a given set of building blocks. Such libraries were described in particular in
[2] and [3], their enumeration by weight is described in [1], using Pélya’s theory of
enumeration. The enumeration by symmetry group is given in the paper [7], where
tables of marks are used. In the present paper we give a refinement of both these
methods, enumerating such libraries by weight and symmetry group. The mathe-
matical background can be found in the review article [9] contained in the this issuc
of MATCH and in the book [8].
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1 Isomerism

Molecules are deseribed in an approzimative way. The lowest level of approximation is
the arithmetic level, where just the multiplicities of the involved elements are given by
the molecular formula. For example, in the formula CqHg of benzene.

The next level, the topolegical level, uses the structural formula. It is an interaction model
since it emphasizes in addition that certain atoms in the molecule are supposed to inter-
act. The mathematical concept for such interaction models is the notion of multigraph,
where the vertices are colored by atom names and the cdges, the covaleni bonds, indicate
the interaction. Multiple edges can occur, but no loops. For example, to the molecular
formula CgHg there correspond 217 mathematically possible structural formulae, the con-
nectivity isomers. Nowadays generators are available which give the complete system of
mathematically possible structural formulae quickly and redundancy-free (no doublettes
show up). They use the information from the arithmetic level (the molecular formula)
and accept a lot of optional further conditions on the structural formula, for example ring
sizes, hydrogen distribution, hybridization etc. An example is MOLGEN! (see e.g. [6]).
The third approximation is the geometric level, where structural formulae are placed in
space, using, say, an energy model and optimization methods that give an idea how the
molecule might “look like” if it is not disturbed by the presence of other molecules or
something else. These isomers are called stereoisomers, and it is not clear yet, how all
the stereoisomers corresponding a structural formulae obtained from a molecular formula
can be constructed in general. The reason is that there are usually very many cnergetic
minima, and there are no decent methods yet that allow us to evaluate them easily and in
the general case, to classify the corresponding conformations and to evaluate a complete
system of representatives of these classes.

A method that allows to bridge part of the gap between the topological and the geometric
level was suggested very early, namely in the papers of A. C. Lunn and J. K. Senior ([14])
and the seminal paper by G. Pélya ([15]). Lunn and Senior express their approach ([14],
p. 1030) to this problem in the following way:

If the structural (connexity) formula of a compound be written out in full,

it will be seen that the molecule ean be thought of as a skeleton carrying a

hitp:/ fwww.mathe2.uni-bayreuth.de/molgend/
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certain number of univalent substituents.

Of course they mention that there may be ambiguities, but once a skeleton and a set of
substituents is chosen, it is clear how to proceed using the symmetry group of the skeleton
and the substituents in order to enumerate the complete set of mathematically possible
molecules obtained from the various distributions of the substituents over the sites of
the skeleton. These molecules are called permutational or substitutional isomers of the
skeleton and the given set of substituents.

This situation has been discussed in various papers many years ago, permutational isomers
have been counted, and it was shown that the set of different permutational isomers can
bijectively be mapped onto a set of double cosets (see [16], the review article [17] and
[10], (11]), which is very helpful once we are interested in the structural formulae of
permutational isomers. But we are not going to describe this, since we can refer to the
review article [9] in the present issue of MATCH. Moreover, we should like to emphasize
the enumeration by symmetry type and we want to apply these methods to ¢ particular
case of combinatorial chemistry, where libraries of molecules are considered which come

from a symmetrical parent compound, as it is described, for example, in [2] and [3].

2 Polya’s Ansatz

Pélya gave a very clear description of a mathematical method that can be used in order to
evaluate the number of these substitutional isomers as well as the size of libraries coming
from symmetric parent compounds. In order to describe this Ansatz, we consider an
example, taken from [3]: Assume a cubane derivative of the following form:

ca 9

a c

Cl
Cl

and suppose that the central cubane molecule forms a regular cube in space. The four

active sites of this derivative react with amino acids. We assume that there are up to
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21 of them. The cubane derivative can react with amino acids, the chemical reaction

is well known. The question arises how we can enumerate the corresponding library of

molecules, and how we can construct the corresponding structural formulac. In order to

describe how this problem can be solved we recall Pélya’s method from [9]:

2.1 Pélya’s Ansatz

Denote the set of sites of the symmetric parent compound by X and the set of (differ-
ent) substitutents by Y. (Hence, in our present cubane example, X = {x, 22, T3, 21}
and Y = {y,...,y21}, consisting of the active sites and of the admissible different

amino acids, respectively.)

Consider an attachment of building blocks (amino acids) to the active sites as a

mapping f from the set X of sites into the set Y of substituents:

fiX oY

Choose the symmetry group G in accordance with the problem in question. (In
the cubane case it consists — since the amino acids are chiral and therefore no

reflections can be allowed — of the 12 proper rotations of the cube.)

The symmetry group G of the skeleton acts on the set X of sites, i.e. we are given
a mapping
GxX - X:(g,7) — gz,

such that g(g'z) = (g¢')x and 1o =z, for all x € X and every g,9' € G.

This action of the symmetry group G on the set X of sites induces an action of G
on the set

Y¥ = (XY}
of all the colorations f of X :
Gx ¥ 5 ¥¥i(g, ) gf.

where gf is defined by
9f(z) = fg '2).
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o The set of orbits
G\Y* =(G(/) | f e Y*}, G(f) == {af |9 € G},

is called the set of symmetry classes of mappings. FEach set of representatives of these
classes is a complete set of essentially different molecules in our situation where X
is the set of sites of the skeleton and Y the set of (different) admissible substituents,

if the symmetry group G was correctly chosen.

3 Application to Combinatorial Libraries
3.1 The Symmetry Group

In order to apply Pélya’s Ansatz we begin with a discussion of the symmetry group of
the central cubane derivative. It consists of 12 proper rotations, in mathematical terms
it is the alternating group A,. The reason is that the active sites of the cubane form the

vertices of a regular tetrahedron

In terms of the usual chemical notation for point groups, it is denoted by T. The elements

of T arc casily described after numbering the vertices:

Zq
I3

ry
T2

The group T contains the identity element, which leaves every vertex fixed, together with

three double transpositions,
(1, £2) (3, T4), (21, 23) (22, T4), (71, T4) (22, T3),
each of which consists of two cyclic factors of length 2. Moreover, T contains 8 3-cycles,

(1,22, T3)(24), (T2, 71, 23) (24), (21, T2, T4)(7T3), (72, 71, 24) (23),



204

(1,73, 24) (2), (T3, 71, T4) (T2), (T2, T3, T4) (21}, (73, T2, 24)(T1).
(We use the mathematical notation of permutations as product of cyelic factors instead
of the standard chemical notation for symmetry elements since it is more suitable for the

formulae 1o come.)

3.2 The Size of the Library

The first step in the enumeration of the corresponding combinatorial library is the eval-
uation of the size of the library in terms of the number |Y| of admissible amino acids.
For this purpose we use the Lemma of Cauchy—Frobenius which says that the number of
symmetry classes of mappings is equal to
1 o
(@ gXE; pe,
where ¢(g) means the number of cyclic factors of ¢ € G on the set of vertices. In our
particular case we obtain, since G = T, the following expression for the size of the library:

1 .
E(uy

S13 VP48 [V M

For example, if |Y| = 20, we obtain 13700 different molecules that form the library, which
means that the 20* = 160000 different attachments of 20 admissible amino acids fall
into exactly 13700 symmetry classes of mappings! Here is the sequence of library sizes
IT\Y™

Y| |l 2 3 4 5 6 T 8 9 10 11 12 13 14
lT\\Y“\:|1 5 15 36 75 141 245 400 621 925 1331 1860 2535 3381

Yl: |13 16 17 18 19 20 21
IT\Y[: [4425 5696 7225 9045 11191 1370 16611

3.3 Enumeration by Weight

The next step is the enumeration by weight, i.e. by prescribed multiplicities for the
occurrence of amino acids. According to the result of Polya we have (for the notation and

the definition of multiplicative weight see [9]):

3.1 Theorem The generating function for the numbers of orbits by weight is
¥

l a4if
g 2L+t 4 ) o3

g€G i=1
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where a;(g) is the number of cyclic factors of length i in the cycle decomposition of the

permutation induced by g on the set X.

For our example library we get

1
2 (n+- Hur) +30T+ .+ uf ) +80E+ . +uh )+ u) . (2)

This gives, for |Y| = 2 the generating function
U 91+ Y1+ YE
where, for example, the presence of the summand ydy} (with its coefficient 1) says that

there is exactly one element in the library that contains 3 amino acids y, and one amino

acid y. In the case when |Y| = 3 we obtain

i+ v+t ulv +uln + ol + i
+Y3ys + YaU3 + Ui + TS + 3Y3 + VVavs + VWY + Viva;-
This generating functions is often called the group reduction function and it should be
mentioned that these functions can be evaluated online’. Moreover it should be said
that its coefficients are not always equal to 1, for example, if |Y| = 4, the group reduction
function contains the summand 2y, y»ysys which means that there are 2 essentially different

molecules that are obtained by attaching 4 different amino acids.

3.4 Enumeration by Symmetry Group

The following step is the enumeration by stabilizer class, or, in terms of sciences, the

enumeration by symmetry group. Burnside’s Lemma (see [9] for details) implies

3.2 Theorem The number of orbits of G on Y~ which have the clements of the conjugacy
class U as stabilizers (U; an element of the ith conjugacy class of subgroups of G) is the

entry in the ith row of the vector
B(G)- | r)us

B(G) is the Burnside matrix of G, the inverse of the table of marks.

2htip://www.mathe2.uni-bayreuth.de/axel /grf engl. html
or
http://www-ang kfunigraz.ac.at/~ fripert/fga/klpolya.html
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In order to apply this consequence of Burnside’s Lemma to the cubane library, we take
the table of marks of the symmetry group T from [9]: A transversal of the conjugacy

classes of subgroups is

U, = (1) = Gi={l}
Uy = ((13)(24)) = Cp={L0Cy}
Uy = {(123)) = O3 ={1,C3,C})
U = ((13)(24), 14)(23)) = Dy = {I,C,C3,C3}
Us = ((123),(142)) =T
The table of marks is
12 6 4 3 1
02031
MT)=MA)=|0 0 1 0 1
0o 0 0 3 1
0o 0 0 01

Its inverse, the Burnside matrix, looks as follows:

/12 -1/4 -1/3 1/6 1/3
0 1/2 0 -1/2 0

B(T)=B(A)=| 0 0 1 0 -1
00 0 1/3 -1/3
00 0 0 1

It is easy to see from the cyclic factors of the respective gencrators that the subgroups
U, 1=1,2,3,4,5 have 4,2,2,1, | orbits on X :
Up = (1 = (1)(2)(3)(4)), and hence it has the orbits {1}, {2}, {3}, and {4} :

Y YEY

U, = ((13)(24)) has the orbits {1,2} and {3,4} :
1 3
Uy = {(124) = (124)(3)) has the orbits {1,2,4} and {3} :

R
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and so on with Uy and Us which both have a single orbit. Hence the desired vector of

numbers of molecules by symmetry type in the library is

1/12 -1/4 -1/3 1/6 1/3 [yt
0 1/2 0 -1/2 0 Y2
0 0 1 0 -1 |- |YP
0 0 0 1/3 -1/3 Y]
0 0 0 0 1 ¥

(/Y] = (/Y P - (/3)YP + /6) Y]+ (1/3)]Y]
(2 )? - /2y
- V- ¥
(L/3)y | = (1/3)|y]
vt
(L/12)[Y ] — (7/12)|Y[? + (1/2) Y|
/2P —(1/2)Y]
= |¥j2 = [
0
[y

Here is a table of values for the smallest values of |Y] :

Y]: |1 23 4 5
[T\ Y*:[0 0 3 14 40
[T\zY*[:]0 1 3 6 10
IT\g,Y*:{0 2 6 12 20
[T\ Y*:|0 00 0 0
[T\z,Y*:|1 23 4 5

This table shows that there are exactly 3,14, 40, ... molecules with trivial (rotational)

symmetry group U, = {1} in the library if |Y| = 3,4,5,...

3.5 Enumeration by Weight and Symmetry Group

There is also the weighted form of Burnside’s Lemma (see [9]). Its application to the

enumeration of symmetry classes of mappings gives the following result:

3.3 Theorem The generating function for the enumeration of G—classes on YX of type

U; by weight w: f + ] f(z) € QY] is the j-th row of the following one column matrix:
B(G) - nvew;\m BE o

where 1,(U;) denotes the length of the v-th orbit of U; on X.
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Sinee it is easy to see from their generators that the subgroups U5, ¢ = 1,2, 3,4, 5, have
4,2,2,1,1 orbits on X, the desired vector of generating functions for the enumeration of
the molecules by symmetry type and weight in the library arising from the central cubane

derivative is

(Zer U)A
1/12 —1/4 —13 /6 1/3 A2
012 0 12 0 (Eyev Y )
0 0 L 0 -1 : (EyEY ya) (EyGY y)
0 0 0 13 —1/3 X
0 0 0 0 1 Tper ¥

Zer y4

Here is a table of generating funetions:

Vi)t o2 | 3

U0 0 yiveys + yiudys + niveis

Ui | 0] wivd YiVE + UiVE + ¥iuE

Ca: || 0| sdue + vl | wdye + uiys + 0wl + 0098 + vdys + vt
Ui: | 0 0 0

Us: i | wlt+w it H

For example,

Y1
]

n
Ya
is asymmetric, i.e. it has U} = {1} as (rotational) symmetry group, it corresponds to the
summand y?yays in the first row and the last column of the foregoing table, while

i
Y2

W
Yz
is of type Us = (5 and corresponds to the summand g7y in the second row and the last

but one column.

3.6 Construction by Symmetry Group

A generator for combinatorial libraries, an extension of MOLGEN, is in progress, it will be

described elsewhere. Besides the gencration of combinatorial libraries it allows statistical
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examinations of the library since it comprises an interface to powerful statistical packages
like R or S-Plus.

Besides a construction of the total library we can restrict attention to elements with given
symmetry group. For this purpose we can use Laue’s Lemma ([12] and [9]), which is in
fact a constructive version of Burnside’s Lemma. It is based on the observation that the
normalizer Ng(U) of U in G acts on the set (Y¥)y of mappings fixed by U, and implies
that every transversal of the orbits of the normalizer Ng(U) on the set of fixed points

2 ) S 7 o 4 N X
(Y )UW ~ by Vi (]ng.inv(y W

is a transversal of the set of orbits of G on ¥ which are of type U. More formally, each
2
TeT (NG(U)/U\\ (v )U)
is a transversal of the orbits of type UofGonX:
TeT(G\sY¥).

(We use the notation 7(H\ M) for the total set of transversals of the set of orbits H\M.)
Moreover, all these orbits of Ng(U)/U are of the same size |[Ng(U)/U|, and hence it is

easy to generate elements of them uniformly at random.

For example, if X = {1,2,3,4}, G = T = Ay and Y = {y,0}. then we can see from
(9], where the table of marks of T is given, that it has subgroups U, = {1, (13)(24)} and
Jy = {1, (12)(34), (13)(24), (14)(23)}. Moreover, U, is maximal in U,. Their orbit sets on

X are
U\Y¥ = {{1, 3}, {24}}, Ua\Y¥ = {{1,2,3,4}}.
Hence the set of mappings f = (f(1), £(2), £(3), f(4)) which are fixed under U, is
(YX)U, = {(y1, v, 10, 01). (W20 Vs W20 42)s (1, Y20 01, W2) (20 91, W2y 1) }-
Since U, is transitive, we have to subtract from this set the constant mappings, obtaining
(YX)y, = {(Wn, ¥2: 91, ), (V2. 11,32, 1) }-

Since Uy is transitive and contained in the normalizer of Us, this set (YA)"'),J.2 is an orbit

of N4, (Us) and we find a transversal T of the type Us-orbits of T :

T = {(y1, 1,3, 1)} € T (T\g, {v1,1}*) -
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4 'Two Further Libraries

In the papers [2] and [3] there are two further libraries contained which we should also
consider under enumerative aspects. One of them has a xanthene as central molecule

a__.o o0g_.a

0
o LI o
0 o

and the other one a benzene triacid chlorine as its symmetric parent compound:

Cl 0

Cl

Cl
4.1 The library arising from xanthene

In the xanthene case, the symmetry group ¢ = Cs is of order 2 and there are 4 active sites.
Hence the symmetry group consists of the identity element and a double transposition
(2 23){zax4). Therefore. the formula for the size of the library turns out to be

1 4 2

SV E+IYD),
Here is the table of the corresponding sizes of the libraries:

V[: |1 2 3 4 5 6 7 8 9 10 1 12
[TAYT[:[1 10 45 136 325 666 12256 2080 3321 5050 7381 10440

vl: | 18 14 15 16 17T 18 19 20 2
iT\\Y4i:|14365 19306 25425 32896 41905 52650 65341 80200 97461

The enumeration by weight gives, according to the theorem of Pélya, in the xanthene case

(S 20)).

yEY yey

the formula

for example we obtain g}, if |[¥] = 1, while for |Y| = 2 we get

vl + 2 + WiVE + 20 + s
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Burnside's Lemma gives the numbers of molecules with prescribed symmetry group. In

the xanthene case there are two subgroups only, Uy = {1} and Us = {(2123)(z2x4)}, and

(e ) (),

here are the values for several |Y|:

the formula is

¥[: [12 3 4 5 6§ 7
[Co\5Y'T:[0 6 36 120 300 630 1176
I\ |1 4 9 16 25 36 49

For the enumeration of molecules by weight and symmetry group we find the formula

4
( 1/2 —1/2 ) (Zyey y) 2
0 1 ¥
(Zst y?)
here is the resulting vector fo the case |V|=2:

( 2uys + 2975 + 2193 )
yl + 2u7ys + vs

4.2 The library arising from the benzene triacid chlorine

In the case of the benzene triacid chlorine, the symmetry group is the dihedral group of

order 6 on the set of three active sites, and so the size of the library is
1 3 2 b ’d
E(D’]' +3-|YP+2-|Y]).

The table of sizes 1s

V]: |12 3 4 5 6 7 8 9 10 11 12 13 14
[TV [T 4 10 20 35 56 84 120 165 220 286 364 455 560

lvi: |15 16 17 18 19 20 21
IT\Y'[:[680 816 969 1140 1330 1540 1771

The enumeration by weight gives, according to the theorem of Pélya,

(S (SE )+ (59)

yeyY yeY yeY

Burnside’s Lemma gives the numbers of molecules with prescribed symmetry group G' =

(5 : A transversal of the conjugacy classes of subgroups is

Ur = (1), Uy = ((12)), Us = ((123)), Uy = ((123), (12)) = Ds.
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The corresponding formula for the numbers of molecules by symmetry group turns out to

be
16 —1/2 —1/6 1/2

3
R A
00 12 172 v )
0 0 0 1

which gives the following values, for example,

V]: |1 23 4 5 6 7
IC\g,Y[:]0 0 1 4 10 20 35
ICa\g, Y0 2 6 12 20 30 42
ICs\g,Y*:]0 00 0 0 0 0
IC\g,Y*:]t 23 4 5 6 7

For the enumeration of molecules by weight and symmetry group we find the formula
3
1/6 —1/2 —1/6 1/2 (Zyé“y)
0 1 0 -1 (zyﬂ,y) (Zycyyz)
0 01/2 -1/2
0 0 é 1/ Zyer ¥’
Eye]’ya

here is the result for [YV]| = 2:
0

v + uniyd
0

ui+ 3
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