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Abstract

This contribution to the special issue on applications of tables of marks in
chemistry contains a review of the basics of enumeration theory under finite
group action, including tables of marks. For more mathematical details the
reader is referred to the article [7] and the book [5]. For applications to
chemistry the articles in the present issue of MATCH are recommended as
well as the books [3] and [2].

1 Finite Group Actions

Let G denote a multiplicative group and X a nonempty set. For example, X may
be the set of sites of a molecular skeleton, while G means the symmetry group of the
skeleton. Throughout the paper we shall consider the following very easy example:

X = {z1,...,25} is the set of vertices of a regular pentagon,
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and G will be the group of rotations of it, in mathematical terms, G = Cj, the cyclic
group of order 5.
An action of G on X (for example, the action of the symmetry group G on the set

of sites X) is described by a mapping

Gx X — X:(g,7) v gz,
such that, for each z € X and any g, ¢ € G, the following holds:
1.1 a(g'z) = (9¢')z, and 1z =z,

for z € X, g,¢' € G and the identity element 1 € G. In the case of the action of the
symmetry group on the set of sites, gz will be the site of the skeleton that replaces
the site x (in space) after the application of the symmetry element g. We abbreviate

this by saying that G acts on X or by writing
6X,
since G acts from the left on X. It is clear that analogously actions of groups on sets

from the right can be defined and applied. A second formulation of the conditions
1.1 is:

1.2 Lemma The mapping
6:G— Sx:9g— 3,
from G to the symmetric group Sx on X, where g:x — gz, is a homomorphism, a

permutation representation of G on X.

We shall call g the permutation induced by g on X and G := 6(G) the permutation
group tnduced by G on X. The kernel of 4, i.e. the set of elements which are mapped

onto the identity mapping idx (the unit element of Sy), will be denoted as follows:
Gx:=ker(§):={g|g=06(¢)=idx} ={g|Vz € X: gz =2z}

Being the kernel of a homomorphism, it is a normal subgroup of G, and the homo-

morphism theorem yields the isomorphism

1.3 GGy ~G:g-Gx g
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An action of G on X has first of all the following property which is immediate from

the two conditions 1.1 mentioned in its definition:
1.4 gr=1 <= z=g "2

X induces several structures on X and G, and it is the close arithmetic and alge-
braic connection between these structures which makes the concept of group action
so efficient. To begin with, the action induces the following equivalence relation on
X:
gy = dgcC: 1 =ga.

The equivalence classes G(z) := {gz | g € G} are called orbits. Please note that
each element can be reached from every other element of this orbit, and so this
orbit is in fact the orbit of every element of it under the action of G. As ~ is an
equivalence relation on X, a transversal T of the orbits, which means a complete
set of representatives of the equivalence classes, yields a set partition of X, ie. a

complete dissection of X into the pairwise disjoint and nonempty subsets G(t):

x=|)_en

The sat of ell arhits will be denoted by
G\X :={G@) |t e T} ={G(z) | z € X},
and we shall denote the set of all their transversals by
T(G\X) :={T | T is a transversal of G\ X }.

In the case when both G and X are finite, we call the action a finite action. We
notice that, according to 1.3, for each finite G--set X, we may also assume without
loss of generality that G is finite. If G has exactly one orbit on X, i.e. if and only
if G\ X = {X}, then we say that the action is fransitive, or that G acts transitively
on the set X.

As it was mentioned above, an action of G on X yields a partition of X. It is trivial

but very important to note that also the converse is true: FEach set partition of
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X (and therefore each equivalence relation on X, too) gives rise to an action of a
certain group G on X as follows. Let, for an index set I, X;, i € I, denote the blocks
of the set partition (the classes of the equivalence relation) in question, i.e. the X;
are nonempty, pairwise disjoint, and their union is equal to X. Then the following
subgroup of the symmetric group Sy acts in a natural way on X and it has the X;
as its orbits:

15 Ps,, ={nesx|Viel nX, = X},

where 7.X; .= {72 | # € X;}. Summarizing our considerations in two sentences, we

have obtained:

1.6 Corollary An action of a group G on a set X is equivalent to a permutation
representation of G on X and it yields a set partition of X into orbits. Conversely,
each set partition of (or equivalence relation on) X corresponds i a natural way to
an action of a certain subgroup of the symmetric group Sx which has the blocks of

the partition (or the equivalence classes) as its orbits.
The preceding result shows that

all the structures in mathematics and sciences that can be de-
fined as equivalence classes on sets can be described as orbits

of groups.

Prominent examples are linear codes, designs, graphs, switching functions, physical
states and chemical isomers.
To the orbits G(z), which are subsets of X, there correspond certain subgroups of

@. For each 2 € X we introduce its stabilizer:
Gr:={g€G|gr=1x}

the subgroup of elements of G that stabilize the point x.
The last one of the fundamental concepts induced by an action of G on X is that

of fized points. A point z € X is said to be fized under g € G if and only if gz = z,



155

and the set of all the fixed points of g is indicated by
X,:={r€X|gr=zx}
More generally, for any subset S C G, we put
Xs:={z€X|VgeS: gz=a}.

The following bunch of examples will show that various important group theoretical

structures can be considered as orbits or stabilizers:

1.7 Application (conjugacy classes, centralizers, cosets in groups) If G

denotes a group, then

e ( acts on itself by left multiplication:
GxG—G:(g,z)— gz

This action is called the (left) regular representation of G, it is obviously

transitive, and all the stabilizers are equal to the identity subgroup {1}.
o If we restrict attention to the subgroup U, then we obtain the action
UxG - Gi(u,z)—u-x

of U on G and the orbits of the elements are the right cosets U(g) = Ug of
the subgroup U. The stabilizers are trivial again: U, = {1}. Correspondingly,
we obtain the left cosets gU of U as orbits, if we consider the right regular

representation.

This shows that different right cosets as well as different left cosets are disjoint
and that both the set of right cosets and the set of left cosets of U is a set
partition of G.

o ( acts on itself by conjugation:

GxG—>G:(g,z)—rg-z-g".
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The orbits of this action are the conjugacy classes of elements,
G(z) =C%x) := {yzg' | g€ G},
and the stabilizers are the centralizers of elements:
G, =Cqla) = {g € G | gzg™" = x}.
An immediate consequence is that different conjugacy classes of elements are

disjoint, since they are orbits, they also form a set partition of G. Moreover,

cenitralizers of elements are subgroups, they are stabilizers.

If U denotes a subgroup of G (in short: U < @), then G acts on the set
G/U = {zU

z € G} of its left cosets as follows:
G xGIU = GlU:(g,2U) — gzU.
This action is transitive, and the stabilizer of zU is the subgroup zUz ' which

is conjugate to U.

1

Thus aUz™" 15 a subgroup, too.

G acts on the set L(G) := {U

U < G} of all its subgroups by conjugation:
G x L(G) — L(G): (9,U) > glg ™.

The orbits of this action are the conjugacy classes of subgroups, and the sta-

bilizers are the normalizers :
GU)=U:={qgUg™"|geq},

and

Gy = Ng(U) :={g€ G| gU =Ug}.

Hence different conjugacy classes of subgroups are disjoint, and normalizers of

subgroups are also subgroups.
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Returning to the general case we first state the main (and obvious) properties of the

stabilizers of elements belonging to the same orbit:
18 Gz = 0G0, G = {9G.07" | g € G} = {Gr | ' € G(2)}.

It means that the total set of stabilivers Gy, 9 € G, of the elements in the orbit
G(z) forms the conjugacy class E’z of G, (recall the last item of the examples given
in 1.7).

2 Orbits, Cosets and Double Cosets

The crucial point is the following natural bijection between the orbit of z and the

set of left cosets of its stabilizer G :

2.1 The Fundamental Lemma The mapping G(z) = G/G. gz — gG, 15 a

bijection between the orbit G(x) and the set of left cosets

G/Gz:{gcx | QGG]'

This bijection allows us to replace the elements of the orbit by subsets of the acting
group. The group is, of course, usually much bigger, but it carries a very help-
ful algebraic structure that can be used both for enumerative and for constructive

purposes.
2.2 Corollary The length of the orbit is the index of the stabilizer:

|G(=)| = |G/G.l.



158
In particular, if |G| is finite, then |G(z)| = |G|/|G.|, and so the length of each orbit
is a dwisor of the group order in this finite case.

2.3 Application (divisibilities in groups) An application to the examples given
in 1.7 yields: If G is finite, g € G, and U < G, then the order of U divides the order
of G :

|U| divides |G},

and the orders of the conjugacy classes of elements and of subgroups satisfy the

following equations:

IC%(g)| = IGI/ICalg)| , and |T] = |G/|Na(U)|.

Besides these divisibility results we note that the mapping
¢:G(x) = GG gz ¢G,

commutes with the action of G, ¢(gz) = gp(z). This shows that in fact the restricted

action of G on the orbit G(z),
G x G(z) = Glz): (g, ha) = ghs,

is essentially the same - in a sense which we are going to describe next — as the

action of G on G /G, via left multiplication of the cosets:
2.4 G x GG, = GG (g, hGy) — ghGy.

This leads to the question of a suitable concept of morphism between actions of
groups. Two actions G x X — X and G x Y — YV will be called similar iff they
differ only by a bijection 8: X — Y between the sets which satisfies gf(z) = 0(gz).

We indicate this in the following way:
(;X ~ GY.

An important special case follows directly from 2.1:
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2.5 Corollary If ¢ X is an action then, for any x € X, the action of G on the orbit

G(z) is similar to the action of G' on the set of left cosets of the stabilizer G,
cG(x) =~ 6(G/Gy).

;From a given action we can derive various other actions in a natural way, e.g. X
yields X, G being the homomorphic image of G in Sx, which was already men-
tioned. We also obtain the subactions M on subsets M C X which are nonempty
unions of orbits. Furthermore there are the restrictions ;X to the subgroups U of
G. As the orbits of ;X are unions of orbits of X, the comparison of subactions
and restrictions is a suitable way of generalizing or specializing structures if they

can be defined as orbits. The following example will show what is meant by this.

2.6 Applications (bilateral classes, cosets and double cosets) Let U denote

a subgroup of the direct product G x G. Then U acts on G as follows:
UxG— G:((a,b),g) — agb™".

The orbits U(g) = {agb™" | (a,b) € U} of this action are called the bilateral classes
of G with respect to U (this notion was introduced by Hasselbarth, Ruch, Klein and
Seligman, see [4] and its motivation [11]). We note that therefore different bilateral
classes, being orbits, are disjoint. By specializing U we obtain various interesting

group theoretical structures some of which have already been mentioned:

o If A is a subgroup of G, then both A x {1} and {1} x A are subgroups of
G x G. Their orbits are the subsets

(4 x {1})(g) = Ag,
the right cosets of A in G, and
({1} x A)(g) = g4,

the left cosets of A in G.
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o If B denotes a second subgroup of G, then we can put U equal to the subgroup
A x B, obtaining as orbits the (A, B)-double cosets of G:

(Ax B)(g) = AgB :={agb|a € A,be B}.
e Another subgroup of G x G is its diagonal subgroup
A(GxG):={(g,9) | g € G}-
Its orbits are the conjugacy classes:
A(GxG)(9) = {d'99"™" | ' € G} =C%(g).

Hence left and right cosets, double cosets and conjugacy classes turn out to be
special cases of bilateral classes. Being orbits, two left cosets, two right cosets, two
double cosets and two conjugacy classes are either equal or disjoint and the stabilizer
of an element is a subgroup of the group in question. Moreover, in the finite case,
the order of each of these orbits is equal to the index of the stabilizer. We have
mentioned this in connection with conjugacy classes and centralizers of elements
already, here is the consequence for double cosets: Since the stabilizer of g € G in

Ax Bis
(Ax B), = {(gbg™",b) | b B,ghg™" € A} = ANgBy™",

we obtain, for finite groups G with subgroups 4 and B,

Al
” 4981 = Tan ooy

and if D denotes a transversal of the set A\G/B of (A, B)-double cosets, then

Al|B
28 G| =" 49B| = Z ‘AH‘B; it

geD
<

Having double cosets now at hand, we can formulate another very interesting and

useful consequence of 2.1 and 2.5:



161

2.9 Breaking of Symmetry If ¢ X is an action and U a subgroup of G, then for
each z € X we have the following bijection between the orbits of U on G(z) and the
set of (U, G;)-double cosets:

¥z : UNG(2) = U\NG/G::U(gz) = UgGs.,
with respect to the action
U x G(z) = G(2): (4, 97) — ugx.

We shall return to that later, since it is of enormous importance, in particular for con-
structive purposes. It was intensively used for the construction of unlabeled graphs,
representatives of isometry classes of linear codes, isomorphism types of designs,
chemical isomers, physical states, and it can be applied to very many other cases,

t0o. The method used is the following application of the Breaking of Symmetry 2.9.

2.10 Application (a method for the construction of finite unlabeled struc-

tures)

o Define the desired set of finite nnlabeled structures as the set of classes of an

equivalence relation on the set X of labeled structures.

e Replace the equivalence relation by a suitable action of a group U on X, so

that the structures in question correspond to the set of orbits U\ X.

¢ In order to reduce complexity by restricting attention to a suitable subset of
U\X, introduce a suitable bigger group G O U and an action ¢ X for which

X 1s the restriction of g X to U.

e Restrict attention to the orbits G(z). Evaluate a transversal T of G\ X, and

for each x € T construct a transversal T, of U\G/G,.

e Retranslate the elements of the T, into elements of X and obtain this way «

transversal Ty of the equivalence classes U\ X, i.e. of the desired structures in
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question:

Ty = |J v (7).

2T
<

2.11 Example (Symmetry Classes of Mappings) Now we are going to introduce
an action, derived from X, which forms our peradigmatic example, since it is most
relevant for applications in chemistry and has many other applications, too. It is
used in several other contributions to this special issue of MATCH.

In order to prepare this, we form the set of all the mappings from X into another
set Y (the reader may think of X as the set of sites of a molecular skeleton, and
as Y being a set of admissible types of substituents that can be attached to these
sites):

Y ={f|f:X>Y}

Let us introduce the following action on ¥ X induced by the given action of G (which

will be the symmetry group of the skeleton, say) on this set of mappings:
GxY*¥ = Y¥:(g,f)m foq™,

ie. (g, f) is mapped onto f where
f@) = (foa") (@) = f(g7 ).

The orbits of G on Y¥ will be called symmetry classes of mappings. Led

3 The Number of Orbits

The equation |G(z)| = |G/G,| is crucial in the proof of the following counting
lemma which, together with later refinements, forms the basic tool of the theory of

enumeration under finite group action':

!This Lemma of Cauchy and Frobenius is quite often attributed to Burnside and called Burn-
side’s Lemma, but it is older, and Burnside proved a much stronger result which I call Burnside’s
Lemma and which is given below. For the history of this attribution see [9] and [14]
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3.1 The Cauchy—Frobenius Lemma The number of orbits of a finite group G
acting on a finite set X is equal to the average number of fized points:

1

IGAX| = = 301X

IG1 9€G
The next remark helps considerably to shorten the calculations necessary for appli-
cations of this lemma. It shows that we can replace the summation over all g € G
by a summation over a fransversal of the conjugacy classes, as the number of fixed

points turns out to be constant on each such class:
3.2 Lemma For each finite group action, the mapping
Xg = Xggg-1:7 7 gz
is a bijection between these two sets of fized points, and hence
x:G = Nog = | X,

is a class function, i.e. it is constant on the conjugacy classes of G. More formally,

for any g,¢' € G, we have that | Xg| = [Xggg-1].
The mapping ¥ is called the character of ¢ X.

3.3 Corollary Let ¢ X be a finite action and let C denote a transversal of the
conjugacy classes of G. Then

1 -
71 22 1O @)X =, 3 1Calo)l 1%

9eC g€C

IG\X] =

Another formulation of the Cauchy-Frobenius Lemma makes use of the permutation
representation g — g defined by the action in question. The permutation group G
which is the image of G under this representation, yields an action X of G on

X ,which has the same orbits, and so we also have:

3.4 Corollary If ;X denotes a finite action, then
1 1 5
16N = i 31Xl = @ Y Ic@)lIx,l,
€@ gec

where C' denotes a transversal of the conjugacy classes of G.
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3.5 Application (the numbers of bilateral classes and of double cosets)
The Cauchy-Frobenius Lemma yields among many other cardinalities the number
of bilateral classes and therefore also the number of double cosets. Recall from 2.6
that bilateral classes are the orbits of the following action of a subgroup U of the

direct product G x G :
UxG— G:((a,b),g) — agh™".

In order to apply the Lemma of Cauchy-Frobenius to that situation, we have to

evaluate the number |G, | of fixed points of (a,b) € U on G which is

g | &= ghg™}| = { |Cg(a)| = [Ce(b)], if a,b are conjugates,

otherwise.
Thus, by the Cauchy-Frobenius Lemma, we obtain the number of bilateral classes
in the following form:

1G] 7 |C%(a) N CE(B)|

=1 P

(ab)ev
It can be simplified since characters are constant on conjugacy classes of elements,

and so the number of bilateral classes turns out to be ([4])

1G] Z [(C4(g) x C‘”(q))ﬂU\:

NG =T« C5()|

if C' denotes a transversal of the conjugacy classes of elements in G. In particular,

the set
A\G/B:={AgB | g€ G} =(Ax BI\G

of (A, B)-double cosets has the order

_ 161 §~IC(0)n AIC ()N B
36 NG/ = G 2~ foeta

Lod

In chemical applications, G is usually a symmetry group of a molecular skeleton,

and it depends of the particular situation if we allow reflections or not, in which
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case we consider the subgroup of proper rotations. The proper rotations form (if
there are reflections at all} a subgroup of index 2, i.e. a subgroup of half the order
of G. In this case, we may use a homomorphism ¢ from G into the group of order
two which consists of the integers +1, and where we map each proper rotation onto
1 while the other elements of G are mapped onto —1. A similar situation occurs in
mathematics, when we consider permutations and separate them into even and odd
ones using the sign which is defined to be +1 on even and —1 on odd permutations.

This can be generalized to finite actions ¢ X by putting
@) = (-1,

where ¢(g) means the number of cyclic factors of g, or, in other terms, the number

[¢g)\X| of orbits of the group (g) generated by g. Its kernel
G ={geC|elg) =1}

is either G itself or a subgroup of index 2, this is easy to see. Denoting its inverse
image by
G*={geG|e(@) =1},

we obtain a usefu) interpretation of the alternating sum of fixed point numbers:

3.7 Lemma For any finite action X such that G # G, the number of orbits of G
on X which split over G* (i.e. which decompose into more than vne  and hence
into two -~ Gt orbits) is equal to
1 . 1 i
o @)X, = = 3 @Iyl
6] 2 iG] 2
gEG

3.8 Corollary In the case when G # G, the number of G- orbits on X which do
not split over G is equal to

1 o0 - @I,

9eC
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the selfenantiomeric orbits

23] =]
i the enantiomeric pairs

Figure 1: Enantiomeric pairs and selfenantiomeric orbits

Note what this means. If G acts on a finite set X in such a way that G' # G, then
we can group the orbits of G on X into a set of orbits which are also G orbits.
In figure 1 we denote these orbits by the symbol &. The other G-orbits split into
two G orbits, we indicate one of them by @, the other one by &, and call the pair
{®, &} an enantiomeric pair of G™-orbits.

Hence 3.7 gives us the number of enantiomeric pairs of orbits, while 3.8 yields the
number of selfenantiomerie orbits of G on X. The elements £ € X belonging fo
selfenantiomeric orbits are called achiral objects, while the others are called chiral.
These notions of enantiomerism and chirality are taken from chemistry, as it was
mentioned already, where G is usnally the symmetry group of the molecule while
G is its subgroup consisting of the proper rotations. We call ¢X a chiral action if
and only if G # G*. Using this notation we can now rephrase 3.7 and 3.8 in the

following way:

3.9 Corollary If o X is a finite chiral action, then the number of selfenantiomeric
orbits of G on X is equal to
L " .
@ 21~ €@X,| = 2HONX| — I6T\X],
"t gec
while the number of enantiomeric pairs of orbits is

& 2 eo)

9eG

X, = |GNX]| - [G\X].

Now we are going to enumerate the symmetry classes of mappings introduced above.
Their total number can be obtained by an application of the Cauchy Frobenius

Lemma as soon as we know the number of fixed points f € ¥, for each element
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g € G. Assume that
«(3)

g= H(I,, 9Ty .. g% ')
v=1
is the disjoint cycle decomposition of g, the permutation of X' which corresponds to
g. Then f is a fixed point of g if and only if, for each z,, the other values of f arise

from the values f(x,) according to the following equations:

fl@)=flg7'z) = flg7%) = ... .

This means that f is fixed under g if and only if f is constant on each cycle (or
orbit) of g. This, together with the Cauchy- Frobenius Lemma, yields the number of
symmetry classes of mappings, since, for each cyclic factor of § we have a choice of

|Y'| values for [:

3.10 Theorem
¢ 1 i
G\Y*|==3"|v @,

geG

where ¢(g) = |[{(g)\X| denotes the number of cyclic factors of g.

A nice application is the enumeration of necklaces?, which means equivalence classes
of colourations of the vertices of a regular n-gon in m colours, say. In this case X is
the set of n vertices of the regular n-gon, while ¥ is the set of m colours, and the
group G is the cyclic group €, if we do not allow reflections.

In order to apply the preceding theorem to this case we use that the cyclic group
contains, for each divisor ¢ of n, exactly () elements that consist of (exactly n/t)
cycles of length ¢, where (—) means the Euler function, i.e. ¢(t) is the number of
nonnegative integers smaller than ¢ that are relatively prime to ¢. (An easy way of
calculating these values is to use the fact that ¢(1) =1 and ¢t = Ean‘i’(d): the sum

of the values of ¢ on the divisors of £.)

21t is applied and refined in the Educational Note by H. Dolhaine and E.K. Lloyd in this issuc
of MATCH
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3.11 Corollary The number of necklaces consisting of n pearls in m colours, with
respect to the cyclic group Ch, 18 equal to
1 njt
=Y eltym™".
n
Un

Here is an example: Three colourings of the regular 5-gou.

O O O

According to 3.10 there are altogether
1

é (9(1)2° + p(5)2") = = (1-2°+4.2") =38

such symmetry classes of mappings.

4 Enumeration by Weight

In the preceding chapter the Cauchy Frobenius Lemma was mentioned, and we
studied certain actions of groups on sets of the form ¥ in some detail. We saw that
various structures like necklaces can be defined as orbits on such sets of mappings,
and so we already have a method at hand to evaluate the total number of such
structures. The question arises how these methods can be refined in such a way
that we can also derive the number of orbits with certain prescribed properties like,
for example, the number of necklaces with n pearls in m colours, where we, in
addition, prescribe how many pearls should be there for each of the given colours.
The answer to many such questions can be given by introducing a weight which
means a mapping, defined on the set X on which the group is acting and which
is supposed to be constant on each orbit. The range of the weights which we will
consider is mostly a polynomial ring over @. The final result will be a generating
Junction for the enumeration problem in question, i.e. we shall obtain a polynomial
which has the desired numbers of orbits as coefficients of its different monornial

summands. The basic tool is
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4.1 The Cauchy-Frobenius Lemma, weighted form Let ¢ X denote a finite
action and w: X — R a map from X into a commutative ring R containing Q as @
subring. If w is constant on the orbits of G on X, then we have, for any transversal
T of the orbits:
Em(t) = |C]"_| Z Z w(z) = |_Cl;'| Z Z w(z).
ter gEG zEXy GeG T€Xy

This result will be used in the following way for the enumeration of orbits with
prescribed properties. We consider weights w with values in a wvector space, for
example in a polynomial ring. These weight functions will be chosen in such a way
that the values are the same on orbits with the considered property, while their
values on orbits which we should like to distinguish are linearly independent. Then
we obviously can read off from Y w(¢) the number of orbits with the property in
question. It is just the coefficient of the vector w(ty), if 4, has that property, in the
vector 3 w(t).

The lemma 4.1 implies 3.1 (put w: z + 1), which we call the constant form of the
Canchy-Frobenius Lemma. In order to apply 4.1 to the enumeration of symmetry
classes of mappings f in YX we introduce, for a given W:Y — R, R a commutative
ring with @ as a subring, the multiplicative weight w, defined by

w:YX = R f H W([f(x)),
TEX

and notice that for any finite actions ¢ X and every W, the corresponding multi-
plicative weight w is constant on the orbits of G on ¥'*. Thus 4.1 can be applied
as soon as we have evaluated the sum of the weights of those f which are fixed
under ¢ € G. An application of the weighted form of the Cauchy Frobenius Lemma
yields the desired generating function for the enumeration of symmetry classes by

the multiplicative weight w:

4.2 Theorem Let ¢ X be a finite action, W:Y — R a mapping into a commutative
ring contuining Q as a subring, and denote by w the corresponding multiplicative

weight function on Y~. Then for each transversal T of these orbits, we have that
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the swmn of its values on a transversal of the orbits is equal to

X| sis
wo I (S ww)™,

geG i=1  yeY
where a;(g) means the number of cyclic factors of length @ in the cycle decomposition

of g, i.e. the number of orbits of order i of (g) on X.

The most general weight function is obtained when we take for W a mapping which
sends each y € V' Lo an indeterminate of a polynomial ring. For the sake of notational
simplicity we can do this by taking the elements y € Y themselves as indeterminates
and putting

WY - QY|y—ry,

where Q[V'] denotes the polynomial ring over @ in the set ¥ of commuting inde-
terminates. This yields the multiplicative weight w(f) = [], f(z), a monomial in

Q[V]. If we define the content of f € Y¥ to be the mapping
1.3 e(fo=):Y = Ney = |fHy),
ie. ¢(f,y) is the multiplicity with which f takes the value y, then we get

4.4 Corollary The number of G—classes on Y, the elements of which have the
satne content as f € Y, is equal to the coefficient of the monomial Hu y ) dn the

polynomial
|X|

é Z H(Z?f)mm'

geqd i=1 yeVt

A nice example is the enumeration of necklaces by weight:

4.5 Application (necklaces by weight) We ask for the number of different neck-
laces with n pearls in up to m colours and given content. In order to bring this
problem within reach of unromantic mathematics, we consider such a necklace again
as a colouring of the set X of vertices of a regular n—gon, the colours taken from
a set Y of colours, i.e. a necklace is considered as a mapping f € ¥*. Two such

necklaces or colourings are different if and only if none of them can be obtained
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from the other one by a rotation. Hence we are faced with an action of the form
o(¥Y™), namely the natural action of a cyclic group G := C, of order n = {X| on
the set ¥X. (In the case when we want to allow reflections, we have to consider
G = D,, the dihedral group.) We are now in a position to count these orbits by
content. In order to do this we use the cycle structure of the elements of €, which
was mentioned already, obtaining by an application of 1.4 the desired selution of

the necklace problem:

4.6 Corollary The number of different necklaces containing b; pearis of the i-th
colour y; € Y, is (if ¥ = {1, ..., Y} ) the coefficient of ' ... 48 in the polynomial
1
=D o)+ )
din
For an example we take m := 2 and n := 5, obtaining the generating function
1 5 5 2 o, :
5 (s +90)” + 4017 + 13)) = of + vl + 20t + 2058 + s +v5-
The presence of the monomial summand 2y?y2 means that there are exactly two
different necklaces consisting of 5 pearls three of which are of the colour ¥, and two

of which are of the colour y,. The drawing shows representatives of the symmetry

OIROIRS,
o O Q

classes:
5 Counting by Symmetry Group

We just discussed the enumeration of orbits by weight, a problem that can be solved

by an easy refinement of the Cauchy- Frobenius Lemma. In the present section we
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shall introduce another variation of this lemma in order to count, orbits by stabilizer
class, or, in terms of applications in science, by symmetry group.
Recall that the elements of an orbit have as their stabilizers a full conjugacy class

of subgroups of G,
VoeX: {Gp |2 €G@)} =G, ={g9Cg " | geC}.

We say that a: is the type of this orbit. The set of orbits of type ﬁ, for a given
subgroup U of G, is called the U-stratum and indicated by

EX.

Consider the lattice L(G) of subgroups U* of G. The group G is supposed to be
finite. L(G) is a partially ordered set, partially ordered by the inclusion order C.

This order can be expressed in terms of the zeta function ¢ on L(G), defined by

1; TR
0, otherwise,

LUk = {

for any two subgroups U and U* of ;. We can assume that the subgroups U? of G

are numbered in such a way that
Bl UVcl* = i<k
The zete matriz ((G) is defined by

(G) = (CW*,U"),

it is an upper triangular matrix with ones along its main diagonal, because of 5.1,

and so it can be inverted, and the inverse is a matrix with integer elements as well:
W@ = (U, ) = clay

This matrix is called the Mdbius-matriz of G, and the Mébius function u{—,—) on
L(G) is defined to be the function with the values given by the Mibius matrix.

Let us consider an easy example, & := S;. Here is the lattice of subgroups:
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Uﬁ

where U' = (1), U? = (12)), U® = ((13)), U* = ((3), U° = {(123)), U° = Sy,

This gives the zeta-matrix

111111
1 0001
1001
(89 = R
11
1
and so we obtain, by inversion, the Mdbius-matrix
1 -1 -1 -1 -1 3
1 0 0 0 -1
1 0 0 -1
f‘(sﬂ)_ 1 0 —1
1 -1
1

In order to evaluate |[G\5X |, we consider, for a finite action X and for the sub-

groups U of G, the sets
Xy:={z€eX|VgeU: gz=z}.

Burnside called the order |Xy| of this set the mark of U on X. We express it in

terms of lengths of strata:

1Xol =D "¢, V)%—'IG\\;.XL

By Mobius Inversion (which simply means by an application of the fact that the
Mébius-matrix is the inverse of the zeta-matrix) this equation is equivalent to:
14

52 16N X | = g7 2o MU V)XV
v
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In order to simplify this expression we consider the set T(G) consisting of the con-

jugacy classes of subgroups of G:
G) = {170, sy 54,1}, with representatives U; € ":’,.

U# must not be mixed up with U;, and d will denote the number of conjugacy classes

of subgroups of G. Putting

[
5:3 g = 1,1 [1
5 5 ‘G/MZU( G/U\“(J ),
where p(0;, Dk =Y vep, #(Ui, V). we can introduce the matrix
0 ~
5.1 B(G) = (ba) = [Na(U/U (nw. 0w)
0

T suggest we call this matrix the Burnside matriz of G, although Burnside considered
in fact the inverse of B((),
M(G) = B(G)™.

For example,

[ )

1
1
M(S3) = 5
1

Burnside called the inverse of B(G) the table of marks; we shall return Lo this matrix
later.
Using the Burnside matrix of ¢ we can now reformulate 5.2, since the number [ X}

of invariants of the subgroup V" is clearly constant on the conjugacy class v i
5.5 Xy =+ Xypy 112+ gz is a bijection.
The crucial result is

5.6 Burnside’s Lemma [f X is a finite action, then the wvector of the lengths

[G\g, X | of the strata of G on X satisfies the equation

A\ X1 | =BG | X
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We can apply this now in order to enumerate the G—classes on Y* by type. Since
f € YX is fixed under each g € U; if and only if f is constant on each orbit of U; on

X, we obtain:

5.7 Corollary The number of symmetry classes of G on YX of type U; is the i-th

entry of the one column matriz
B(G)- | [yma

If X is again the pentagon, ¥ = {y1,1} and G = Cj, we have (since Cj contains
only one proper subgroup, the trivial subgroup {1}) that

ce=( g 1) mamcn=(5 7).

M(Cs):(g i) and B(CS)=(165 _11/5)‘

Hence, by Burnside's Lemma, we obtain the following result on the numbers of

w (3)-(5).

in accordance with the above drawing of a transversal of the symmetry classes.

so that

orbits by stabilizer class:

6 Tables of Marks and Burnside Matrices

The inverse M(G) = (mi) of the Burnside matrix B(G) = (by) was introduced
by Burnside (1911,{1]) and called the table of marks, as it was mentioned already.
Sometimes it is also called the supercharacter table for a reason which will become

clear later. The definition of by, together with the identity
6.1 T3¢ (U Te) = (Tl C(Ts, Un),

where

CUTR) = 3 UL V), T U) = 3 ¢V, L)

Vel vel;
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This shows that the elements of the table of marks are of the following form:

6.2 — '%”lk‘c( Ui, T) = '(;/Ll”"c(u B €N

The claiin that m;, € N follows from the first identity since the order of a conjugacy

class of a subgroup is equal to the index of the normalizer, and so

71U Ny
6.3 G/U _ Ne(U)l
(U] |Us|

Equation 6.2 shows that

n© = (cw.t) | Wewarul |,
0

and hence the entries of M(G) describe the poset
(L(G), ).

It consists of the conjugacy classes lj’, of subgroups and the partial order

<Up = JUEel,Vely: U<V

<

6.4
6.2 implies the following equivalence:

6.5 my, # 0 & [72 = E’k.

Burnside called M(G) the table of marks for the following reason:

6.6 Lemma The entry my. s the number of left cosets of Uy in G which remain

Sized under left multiplication by the elements of U;.

Hence my is, so to speak, the mark which U leaves when it is acting on the left
cosets of Uy. We now derive further properties of these elements. As @ is assumed
to be finite, we can choose a numbering of the conjugacy classes (7', such that the

following implication holds:

6.7 \Us| < Ul = i< k.
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This guarantees in particular that the partial order is respected:

6.8 U=<U = i<k

Under the assumptions of 6.7, M(G) is upper triangular, Uy = {1}, Us_, = G, and

so the table of marks takes the following form:

Gl ... (G/U] ... 1

69 M(©) = ' INa(u/ud

Other consequences of 6.2 are divisibility properties:

6.10 Lemma If 17, = ffk, then my, = mk*C(U,-,fJ:k), and so myy, divides all the mqy,

in the same column.

Moreover, certain nonzero elements in a column form a monotonic sequence, for
mix # 0 # myr means that ﬁ,v < 17,; = ﬁr If in addition [1 =< Ef,- holds, which

implies that ¢ < j, then we have

t
!

]

i 2U; 2 UL

As we may assume U; < U; without restriction, we obtain:
Uig 't SUp = gUig™' < Uy,

so that an application of

=%

6.11 My =
SNA

[{g€ G| glig™" <UL}
finally yields

6.12 Corollary If U; < i:’_-,‘ < Uy, then the corresponding elements in the k-th
column of the table of marks of G satisfy

My 2 Mg > Mgk
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The evaluation of the table of marks is nsually quite difficult since one has to know
L(G), its Hasse diagram, and the orders of the U; and their normalizers. Fortunately
there exists several subgroup lattice programs, for example GAP and MAGMA,
which can be used in order to evaluate tables of marks and Burnside matrices.
Burnside’s original motivation for introducing the table of marks was the problem
of decomposing a given action into its orbits or, in other words, to decompose a per-
mutation representation into its transitive constituents. The question was whether it
suffices to consider only the character of the action ¢ X, i.e. the function y: g — | X,|.
In order to explain character theoretically what is meant by the decomposition of the
action ¢ X into its transitive constituents we first recall that there exists a natural
equivalence relation on the set of actions of G on finite sets. Two actions, X and
«Y, say, were called similar if and only if there exists a bijection #: X — Y which
is G -invariant, i.e. for which the following holds: V z € X,9 € G : #(gz) = g0(z).
We know from 2.5 that there are exactly as many similarity classes of transitive

actions as there are conjugacy classes of subgroups. An immediate implication is

6.13 Lemma The set { o(G/U;) | i = 1,....d} 15 a transversal of the similarity

classes of transitive actions of G.
6.14 Corollary The characters
Xi:G = Cig = [(GIU,],

of the actions (GJU),U; € Us,i € d, are the transitive characters of G. These
characters have the following values (recall that CY(g) denotes the conjugacy class
and C;(g) the centralizer of ¢):

X'(g) = H ‘CG(Q) n brl?l
; = A
Uil 1C%(g)l
Burnside saw that a knowledge of the character x of X together with a table
of the x; does not suffice to decompose x into its transitive constituents. Such

a decomposition is equivalent to the evaluation of the coefficients n; € N in the
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equation

X =3 nx,

icd
where 7n; is the number of orbits of G on X similar to (G /U;), as G-sets. It turns
out that replacing the x; by the rows of the table of marks we get a unique linear

combination. We first mention that the x; form part of the table of marks.

6.15 Lemma If U; = (g) is a cyclic subgroup of G and xi the character of c(G/Uy),
then ma = xi(g)-

This is the reason why M(G) is sometimes called the table of supercharacters of G,
and it also shows that it is helpful to indicate the columns of M (G) which belong to
cyclic subgroups so that we can easily identify the transitive characters from M (G).

For example the table of marks of S is

24 12 12 8 6 6 6 4 3 2 1\ «
2 . .2 . .21 . 1]+
4 . 2 2 6 3 2 1]«
2 .. .1 . 2 1]+«
2w o w4 1
6.16 M(S,) = 3 5 o A 1]«
6 . 3 21
2 F 1
de & &
2 1
1

a table which corresponds to the following numbering of subgroups U;:
U = (1), Uz = ((24)), Us = {(13)(24)), Uy = ((132}),

Us = ((13), (24)), Us = ((1234)), Uz = {(12)(34), (14)(23)),
Us = ((132), (13)), Uy = ((1234), (24)), Uo = {(132), (142)),

Un = ((1324), (1342)).
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The rows which correspond to cyclic groups are marked by an arrow +, and hence

the table of transitive permutation characters of Sy is as follows:

(1) (1*2) () (13) ()
X1 24 . ; . .
X2 12 2
X3 12 4 .
X4 8 - 2
X5 6 2 2 ;
X6 6 2 2
X7 6 . 6
X& 4 2 F 1 5
X9 3 1 3 s 1
Xi0 2 4 2 2 f
X1 il 1 1 1 e

A few words on the entries by, of the Burnside matrix B(G) = M(G)~" are in order
since in fact it is this matrix which we usually apply for enumerative purposes (see

section 3.1). By the definition of b, we have
6.17 by € Q.
Moreover, the following can easily be derived:

6.18 Corollary If the numbering of the econjugacy classes of subgroups of G satis-
fies 5.1, then we have for the Burnside matriz of G:

i H(LUR) H1,G
CET R | 710575 I [&]
"ty * z
= U] #(li,G)
8(G) = [Na (i)l [Ne [U70;]
0 ' :
1

i From the definitions of mi;, and by we obtain interesting relations between vari-
ous elements or products of elements of Lthese two maltrices, e.g. that the fallowing

products are rational integral:

6.19 by = {(Us, Uu(U, U) € 2.
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7 Weighted Enumeration by Stabilizer Class

The proof of the weighted form 4.1 of the Cauchy-Frobenius Lemma is as easy as
the proof of its constant form 3.1. The same holds for the corresponding weighted
form of Burnside’s Lemma, which we are going to introduce next. Recall that, by

Burnside's result 5.2, we obtain for a transversal T of G\ X :

G\eXl= Y 1= lé‘ﬁ” IICAZPI

1eT: Gell T€Xy
If we now replace the 1's on both sides by the weight of the element to which they

correspond, then we obtain the identity

> wt)= % 2 wU.V) ¥ wisz).

eT: Gel z€Xy

Since the bijection described in 5.5 is weight preserving, we get

12
71 3w = ‘G/UIZHU‘,U;C 57 wia).

teT: Giell; r€Xy,
A direct consequence is the desired result on the enumeration by weight and stabi-

lizer class:

7.2 Burnside’s Lemma, weighted form Let ¢X denote a finite action and
w: X — R a weight function from X into a commutative ring R which contains
Q as a subring. If w is constant on the orbits of X, then we have, for the elements
i of a transversal T of the orbits and the vector of the sums of weights of transversals
of strata G\\ﬁIX of G on X, the equation

et ) | = BG) - | Tavyea, v(@)

This weighted form of Burnside’s Lemma was, as far as I know, first stated and
proved in P. Stockmeyer’s thesis ([13]). He provided applications of the following
immediate consequence to the enumeration of graphs (resp. symmetry classes of

mappings) by weight and type:



182

7.3 Corollary The generating function for the enumeration of G- classes on YX of
type ﬁ_.,- by weight w: f — [] f(z) € QY] is the j-th row of the following one column

malriz:

B(G)- | TLewax Ly ¥ ™

where I, (U;) denotes the length of the v-th orbit of U, on X.

For example, we can easily enumerate necklaces by weight and stabilizer class. A
particularly simple case is when the number of pearls of the necklaces is a prime
number p, say, and the symmetry group G is the cyclic group C,. This group has

just two subgroups, the trivial ones, {1} and C,. Hence the table of marks is

mea=(5 1)

while its inverse, the Burnside matrix, is

B(C,) = ( e =y )

Hence, according to the weighted form of Burnside's Lemma, the corresponding
vector of generating functions is

. (ZyGY i

B(C,) A
Zyg Y Y
For the prime number p = 5, for example, we obtain this way the vector
( vivs +2-uivs + 2 vl +vivs ) )

uus + uius
The presence of the summand 2 - %3y in the polynomial in the first row says, for
example, that there are exactly two necklaces with symmetry group {1} and three
pearls in the first and two pearls in the second colour, while the second row shows
that the necklaces with symmetry group (=stabilizer) C; are the two necklaces where

all the pearls have the same colour.

7.4 Application (asymmetric symmetry classes by weight) A case of partic-

ular interest is the enumeration by weight of asymmetric symmetry classes, i.e. of
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orbits with trivial stabilizer class 1. The corresponding generating function is direct

from 7.1:

7.5 Z w(t) = Z‘K’i Z:) E w(z).

teT: Gi=1 o Up<Gs
This series is called the asymmetry series. For example, the asymmetry series of the

action (Y *) is

Ui X1
wo aexIEa-TARST(S)

where U\\; X denotes the set of orbits of length 7 of Uy on X.

7.7 Corollary The generating function for the enumeration of asymmetric G-

classes on Y™ by multiplicative weight is

AG XY .

In the case of the cyclic group the asymmetry indicator is

njd
7.8 A(Cy,m) = z;,s(d (Zu) :

d|n YEY
Here p denotes the number theoretic Mobius function, the Mdbius function on the

set of natural numbers ordered by divisibility. Lol

8 Examples of Tables of Marks and Burnside Ma-
trices

This section contains tables of marks and Burnside matrices of several cyclic, dihe-

dral, symmetric and alternating groups.

8.1 Cyclic Groups

The cyclic groups C,, where p is a prime number, were already mentioned. They

contain trivial subgroups only, and so we have

M(C,,):(p i) B(Cp):(l/’p —ll/p)'
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There is also an explicit expression for the table of marks in the general case since
the subgroup lattice of C,, n > 0, is the lattice of divisors of n, but in order to make
life easier for the interested reader we show these matrices and their inverses, which

are less trivial.
The group Cy: The subgroups are

Uy = (1),U, = ((13)(24)), U; = {(1234)) = C\.
The table of marks and the Burnside matrix:

(4 2 1) (1/4 -1/4 . )
2 1], /2 -1/2
1 1

The group Cs: The subgroups are

Uy = (1), Uy = ((14)(25)(36)), Us = ((135)(246)), Uy = Cs.

The table of marks and the Burnside matrix:

6 3 2 1 1/6 —1/6 —1/6 1/6
3.1 /3 . -1/3
3 1 /2 -1/2

1 1

The group Cs: The subgroups are

Uy = (1), U = ((15)(26) (37)(48)), Us = ((1357)(2468)), Us = C.

The table of marks and the Burnside matrix:

1/8 -1/8 .
14 —1/4

8 4 2 1

1 .
i [ /2 -1/2
1 1

BB

The group Cy: The subgroups are

Ur = (1), Uz = {(147)(258)(369)), U3 = Cs.
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The table of marks and the Burnside matrix:
9 3 1 /9 -1/9 .
3 1], 1/3 -1/3|.
1 1
The group C): The subgroups are

Uy = (1), Uy = ((16)(27)(38)(49)(5, 10)), Us = ((13579)(2, 4,6,10)), Us = Cyo-

The table of marks and the Burnside matrix:

105 21 1/10 =1/10 -=1/10 1/10
5 1 1/5 R /-

2 1| /2 -1/2

1 1

8.2 Dihedral Groups

This section contains a system of representatives of the conjugacy classes of sub-
groups, the table of marks and the Burnside matrix of the dihedral groups D5 up
to Ds (of order 12).

The group Dy: A transversal of the conjugacy classes of subgroups is
Uy = (1), Uz = {(12)), Us = {(123)}, Uy = ((123), (12)} = Ds.

The table of marks is

[ S
— o

The Burnside matrix looks as follows

1/6 -1/2 -1/6 1/2
1 : -1
/2 -1/2

1

The group Dy: A transversal of the conjugacy classes of subgroups is

U= (1),U; = (13)(24)), Us = ((14)(23)), Us = {(13)),
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Us = ((14)(23), (12)(34)}, Us = ((13), (24)), Uz = ((1234)), Us = Dy

The table of marks is

[ SR )
(]
o

(3%
a1
e e e

The Burnside matrix looks as follows

1/8 —1/8 —1/4 —1/4 1/4 1/4 . .
/4 . . =1/4 —1/4 -1/4 1/2

2 . -1/2 .
yz . 12 )
/2 . . =12
2 . -2
/2 —1/2
1

The group Dj: A transversal of the conjugacy classes of subgroups is

U, = (1), Uy = ((12)(35)), Uy = ((12345)), Uy = Ds.

The table of marks is

L)
T o iy

The Burnside matrix looks as follows

/10 —1/2 —1/10  1/2
1 . -1
/2 -1/2

1

The group Ds: A transversal of the conjugacy classes of subgroups is

Ur = (1), Uz = ((14)(25)(36)), Uy = ((16)(25)(34)},

Ua = ((15)(24)), Uy = ((135)(246)), Us = ((16)(25)(34}, (13)(46)),
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Uz = {(135)(246), (14)(25)(36)), Us = {(135)(246), (16)(25)(34)),
Us = ((135)(246), (15)(24)), Uro = De.

The table of marks is

(12666432221
6 . . . 3 2 . 1
2 . .« 1 2 « 1

2 & L .. 2 1
4 . 2 2 21
L .. 1
2 . 1

2 .1

21

1

The Burnside matrix is
112 =1/12 —1/4 —1/4 —1/12 1/2 1/12 1/4 1/4 —1/2
6 .. Lo-l2-18 . L 1)2
/2 . o= L -2 . 1y2
/2 . =2 . . =1/2 12
1/4 . —1/4-1/4 —1/4 1/2
1 g = 3 =1
/2 . . -1/2
172 . -1/2
1/2 -1/2
1

8.3 Alternating Groups

This section contains a system of representatives of the conjugacy classes of sub-

groups, the table of marks and the Burnside matrix of A3 and A4.
The group A3: A transversal of the conjugacy classes of subgroups is

Ui = (1), Uz = {(123)).

(1)

The table of marks is
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The Burnside matrix looks as follows

(1/3 711/3)‘

The group Ay: A transversal of the conjugacy classes of subgroups is
Ur = (1), Uz = ((13)(24)), Us = ((123)),

Uy = ((13)(24), (14)(23)). Us = ((123), (142)) = As.

The table of marks is
12 6 4 3
2 . 3
1 &
3

—

The Burnside matrix looks as follows
112 —1/4 —1/3 1/6  1/3
172 . =12
1 : -1
/3 -1/3
1
8.4 Symmetric Groups

This section contains a system of representatives of the conjugacy classes of sub-
groups, the table of marks and the Burnside matrix of Sy and Sy, as well as a system

of representatives of the conjugacy classes of their subgroups.
The group S;: A transversal of the conjugacy classes of subgroups is
Uy = (1), Uy = ((12)), Us = {(123)), Uy = ((123), (12)) = S;.

The table of marks is

[
b bt
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The Burnside matrix looks as follows

1/6 —1/2 —1/6 1/2
1 ;=1
172 -1/2

1

Uy = (1), Uz = {(13)), Us = ((13)(24)), Us = ((132)),
Us = {(13), (24)), Us = ((1234)),
Uz = ((12)(34), (14)(23)), Us = {(132), (13)),

Uy = ((1234), (24)), Uyo = ((132), (142)), Usy = S

The group Sy: A transversal of the conjugacy classes of subgroups is

The table of marks is

24 12 12 8 6 6 6 4 3 2 1
2z 2 « « 2 1
4 . 2 2 6 3 21
2 = 1 21
2 . 1 1
2 s ¥ =« 1
6 . 3 21
) P 1
1 .1
21
1
The Burnside matrix looks as follows
1/24-1/4-1/8-1/6 1/4 1/12 1/2 1/6 —1/2
1/2 -1/2 . . =1 . . 1
1/4 ~1/4-1/4-1/4 . 1/2 . .
2. .. =12 ~1/2 1/2
172 . R
1)z - -1/2 . .
16 . -1/2-1/6 1/2
1 4 . -1
1 . -1
1/2 -1/2
1

Further tables can be found in (3], [2] and [5].
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9 Transversals of Symmetry Classes

The most ambitious enterprise is the redundancy free construction of a transversal

of the G classes on Y. For technical reasons we put
X ={xy,....,zz}and Y = {y, ..., Ym}-

Moreover, in order to decrease the complexity we restrict attention to G-classes of
fixed content

= . o
where A; = |[f7}{z;)|, the multiplicity with which f takes the value y,. Here is the

canonical mapping f with this content:

b=l alza)) = (- Yol Yoy -1 Ymo- - -5 Ym)-

At Az Am

The set of all the mappings of this content will be indicated as follows:
V¥ ={afai=hHor'|meS}

Since a permutation of the arguments does not change the content, this set ¥;* is a
union of orbits of G on Y*:

GV C G\Y™.

We should like to construct a transversal of G\\Y;". This reduces the complexity
since the desired transversal of GY\Y?¥ is the union of the transversals of the sets

G\Y,X, taken over all the contents A:
x| X
G\Y¥ = U,\G\Yf\ !
To begin with, we note that ¥;* is an orbit of the symmetric group Sy on X :
V¥ = 5x(f3).

Hence we can use the Fundamental Lemma 2.1 in order to derive the following

decisive result of Ruch, Hisselbarth and Richter ([11]):
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9.1 Lemma The following mapping is a bijection between the set of symmetry
classes of mappings of content A and the set of (G, Sy)-double cosets in the symmetric
group Sx :

GAYSY = G\Sx/S»,
where

S =D S

the stabilizer of fj.
Since the set of double cosets is a set of orbits,

G\Sx/Sx = G\\Sx/S»,

it is helpful to note that there are lezicographically smallest elements in the cosets,
from which we can get lexicographically smallest elements of the double cosets and
hence a canonical transversal of G\Y;X. In order to describe these elements we use

that a mapping f € Y;¥ can be displayed by its A-tabloid

Jioecdng s

the rows of which are formed by the indices of the inverse images in increasing order,
flai) =...=flzy,) =y, and iy <. <y,

flep)=...= flay,,) =, and fi < ... <y,

Let us consider again, as an example, the necklaces with 5 pearls in two colours,
n =15 m = 2, and, as a particular content, A = (3,2). Before we write down all
the 10 (3,2) tabloids in full detail, it is practical to note that in each tabloid the
first (or any other) row is uniquely determined by the remaining rows which form
the ¢runcated tabloid. Hence in the present case we need only to display the second

rows, here they are:

12, 13, T4, 15, 23, 24, 25. 34, 35, 15.
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According to the above arguments we have to find the orbits of the cyelic group
G = Cs = ((12345))

on this set. Applying the generating permutation (12345) of the cyclic group and all
its different, powers to such a truncated tabloid, we obtain the {two different) orbits

of the tabloids,

The lexicographically smallest elements of these orbits w:,w, are the tabloids cor-
responding to 12 € w; and 13 € wy. Adding the truncated first lines we obtain the

full tabloids

]
b
c
[

4
3

Hence there are exactly two different necklaces with 5 pearls in two colours, con-

<l

and

—
o
—

|

taining exactly two pearls in the second colour. Here they are:

These methods, using double cosets, can be applied in many other cases, too. Der-
mutation isomers can be constructed, diamutamers, combinatorial libraries. They
are discussed in further papers of the present issue.

In this way double cosets turned out to be a quite general tool for classification in
mathematics and in sciences, see [11], and in particular the review article [12].
Tabloids can be used for hand calculations, a computer oriented systematic way of
successively evaluating transversals of all the occuring weights, the ladder game, is

described in (7] and in [5].

10 Constructing by Symmetry Group

The evaluation of a transversal of all the orbits of G on Y* can be refined to an

evaluation of a transversal of the orbits of prescribed type . This was shown in 6]
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by R. Laue, using the following very general argument that is in fact a set theoretic

version of 5.2:

- Since each orbit of type U contains fixed points of U, we can find a transversal

of the orbits of this type among the set
Xy ={zeX|VgelU: gr=1x}

of fixed points of U.

We can restrict attention from Xy to the subset Xy of fixed points that have
no bigger subgroup as stabilizer. This set is easily obtained by subtracting
the fixed points of all the subgroups V' of G that contain U as a maximal
subgroup:

XU = )(u - U XV-

V: U wmas. in V
- Moreover, the elements of X;; which are in the same orbit of G are in the same
orbit with respect to the normalizer Ng(U) or — which is easier to check —

in the same orbit with respect to the factor group N¢(U)/U.
Summarizing we obtain
10.1 Laue’s Lemma Each transversal T of the set of orbits of No(U)/U on Kir;
T € T{Ng(U)/U\Xy)
is a transversal of the orbits of type 7 of G on X :
T € T(G\pX).

Moreover, all these orbits of No(U)/U are of the same size |Ng(U)/U

, and hence

it is easy to generate elements of them uniformly at random.

The application to symmetry classes ([6]) is easy since the mappings f € Y that
are fixed points of U are just the mappings which are constant on the orbits of U
and so we can easily display them in the following symbolic way:

Fer?),=I1 X

wEU\X yeY



194

since each monomial summand of this product arises by picking from each one of
the factors 3, .y y™! a summand 3 which means that the corresponding mapping

f has this value y on the orbit w.

10.2 Corollary (Laue) Each transversal T' of the set of orbits of Ng(U) /U on

() =t"- U,

V: U max. in V

i.e. each

TeT (N(,-(U)/U\\ (Y‘X) )

u

is a transversal of the orbits of type U of Gon X :
TeT(G\gY").

Moreover, all these orbits of Ne(U)/U are of the same size |No(U)/U|, and hence

it is easy to generate elements of them uniformily ot random.

For example, if X = {1,2,3,4}, G = Ay and ¥ = {y;, 12}, then we can see from the
section above, where the table of marks of A, is given, that it has the subgroups
U, = ((13)(24)) and Uy = ((13)(24), (14)(23)). Moreover, L, is maximal in U;. Their

orbit sets are

U,\Y* = {{1,3},{24}), UN\Y* = {{1,2,3,4}}.

Hence the set of mappings f = (f(1), f(2), f(3 =, f(4)) which are fixed under U, is

(Y9, = Ll vn v, 10, (2, v 0, ) (00 20 0292 (s 0, 02, 11 )
Since Uy is transitive, we have to subtract from this set the constand mappings,
obtaining
(Y")(,-', = {(?ll: Y2, Y1, y2), (Y2, Y1, Y2, 1)

Since Uy is transitive and contained in the normalizer of Uy, this set (¥Y4),,, is an

orbit of N4, (U,) and we find a transversal of the orbits of type U, :

T= {(%,yz,yhyz)}-
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This situation is discussed in the paper by W. Hésselbarth and the present author

in another contribution to this issue of MATCH. An application to Cg is given in

(8].
11 Generating Orbit Representatives

The evaluation of an orbit transversal is of limited use if the complete catalog is
too big (for example there exist chemical formulae that have billions of connectivity
isomers). Of course, there exist methods for the generation of selected subsets only.
But there are situations where one would prefer to test a hypothesis on the complete
catalog without being able to generate it. Hence the question arises how we can
generate orbit representatives uniformly at random, which means that we should
like to generate elements € X that belong to an orbit of G with the probability
GAX]|.

This can be done with the following algorithm:

11.1 The Dixon/Wilf Algorithm If X denotes a finite action, then we can

generate orbit representatives uniformly at random in the following way:

e Choose a conjugacy class C' of G with probability

|CH Xl
p(C) 1= =2, where g € C.
‘9= Eona]
e Pick any g € C and generate a fized point T of g, uniformly at random.

Then the probability that x is an element of the orbit w € G\X is 1/|G\X]|, i.e. z

is uniformly distributed over the orbits of G on X.

The application of this method to the generation of representatives of symmetry

classes of mappings reads as follows:

11.2 Corollary For finite cX andY the following procedure yields elements f € Y*

that are distributed over the G-classes on Y~ uniformly at random:
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e Choose a conjugacy class C' of G with the probability
e

p(C) = W;Q €

e Pick any g € C, evaluate its cycle decomposition and construct an f € YX that
takes values y € Y on these cycles which are distributed uniformly at random

over Y.

Consider our standard example for this situation: we would like to generate necklaces
with 5 pearls in 2 colours uniformly at random. The symmetry group & = Cs is
an abelian group, and hence the conjugacy classes consist of single elements, and
there are five of them. Assume that the first one is the class of the identity element,
it consists of 5 ¢yclic factors, ¢(1) = 5. The elements in the other four conjugacy
classes are cyclic permutations, consisting of a single cycle of length 5, and so, for
each of them, we have ¢(g) = 1. Moreover, we know already that there are altogether

8 orbits, which shows that the probabilities of the conjugacy classes are
4/5,1/20,1/20,1/20,1/20.

In order to choose a conjugacy class with the prescribed probability we use a gen-
erator that generates real numbers in the interval (0, 1] at random.

Assume, for example, that it generated a positive real number < 4/5. This means
that the first one of the conjugacy classes was chosen, the class of the identity
element. We have to pick an element of this class, there is not much choice, the

identity is the only element in this class. Its cycle decomposition is

1= (1) (wa) (w3) (w4) (s}

Now we have to generate a fixed point of this clement, uniformly at random. Fixed
points are the mappings f € YX, where X = {z,..., x5} and Y = {e,0} that are
constant on the cyclic factors. In order to generate such a fixed point uniformly
at random, we usc a generator which generates either  or o, uniformly at random.

Assume, for example, that five runs of that generator give the sequence

,0,00 8
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We associate this sequence with the vertices of the regular 5-gon (counterclockwise

or clockwise) and obtain the necklace

@
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