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Motivation

When young undergraduate students of natural sciences or chemistry meet thermodynamics
for the first time they are, according to the experience of the second author, overwhelmed by
new insights and concepts. One particular difficulty seems to be the concept of Entropy,

nowadays very often introduced in an axiomatic manner [1, 2, 3, 4], leaving the student with

an uneasy feeling about this peculiar and abstract entity.

Sometimes on the other hand Entropy is approached by thermal cycles, especially by working
out Carnot’s Cycle [5, 6]. It seems that most chemistry students think that this is the only

important cycle and sometimes even think that there are no others.
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In fact there are, of course, infinitely many different cycles and quite a few cycles with three
or four steps, one of which is Carnot’s Cycle, others describing the Diesel- or Otto-Processes

[7], which are important to estimate the efficiency of reciprocating engines.

In this paper - aimed at graduate students in a second course on thermodynamics - we
enumerate all thermal cycles with three or four steps using isothermal, isobaric, isochoric and
adiabatic processes basically using a modification of Pélya’s Theorem, which can be

conveniently introduced on this occasion.
One could also include polytropic processes [7] - a nice extension which is left to the reader.

A Mathematica Notebook (kreisprozesse.nb) is freely accessible under

www.mathe2.uni-bayreuth.de/match/online/links.html#kpnb which not only constructs these

cycles giving all the points of the cycle in the p-V-plane, but also calculates heat, work and

entropy-changes for each single step using the equations for an ideal gas.

Processes and Cycles

We construct cycles in a p-F-diagram using the following processes :

Designator Type of Process Equation
r isobaric VWi = ¥Vih
0 adiabatic pht=pnt
T isothermal pV = ph
v isochoric pil!Ty = p/T

(A polytropic process is described by p 7" = pob2 " with x#¢, /e, )

So any cycle is given by an ordered set C = (a, b, ¢, d, ...) with ae {p,Q,T,V},
be {p,Q, TV}, ce {p.Q.T,V}, de {p,Q,T,V} and so on. The question is, how many C

with exactly three or four elements exist?
To be meaningful there are restrictions on C.

Shifting the elements of C to the left or right does not change the cycle in a p-V-diagram:

(p.O.p.T)=(T.p. Q.p)=(p. T.p. O =(Q, p. T. p)
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This is equivalent to the statement that a cycle of length m is invariant under the operations of

the pure rotation group C,, (the cyclic group of order m).

Another restriction is that no two equal letters may follow each other. This would be a mere

prolongation of the former process and consequently a pattern like

(p.p.T.Q)
is forbidden. In fact this process is equivalent to ( p, T, Q).

This in turn means with respect to the shifting process that the last letter must be different

from the first one.

So we have to find all cycles which obey these rules. As noted later, however, it is sometimes
possible to draw distinct diagrams in the p-F-plane corresponding to the same cycle.
Furthermore, occasionally a cycle satisfying the stated properties seems to correspond to no
closed cycle in the p-F-plane and some cycles which can be realised in the p-V-plane may be

infeasible for technical reasons.

The Method of Solution

Without the restriction that no two consecutive processes be identical, the problem could be
solved by a routine application of Polya's Theorem. Polya’s paper |9], which has some 110
pages, is often cited but presumably rarely read and, in spite of its importance, it took some 50
years for an English translation to appear [10]. His basic ideas of counting entities which are
invariant under application of the elements of a given (symmetry) group are outlined in a

quite readable form in short in [11]. The only ingredient used there is the Cauchy-Frobenius
Lemma, which is lucidly explained in [12]. In fact Pélya had been anticipated by Redfield

[13] and the theorem is often called the Redfield-Polya Theorem.

Pélya's method consists of two parts. First a polynomial in several variables (here denoted by
51,82, ...) is formed and then substitutions are made for the s,. Polya called the polynomial the

cycle-index, but Redfield called it the group reduction function. An element ge G belonging
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to a symmetry G acting on a set X splits the elements of X into cycles of various lengths. The

cycle-index Z (s,,s,,...) is defined by

i (8) o 12 (E) inl2)
A (S i L

El

1
Y=—
EF=

where j{g) denotes the number of cycles of length / in the splitting and m is the size of X. In
the case of the cyclic group Cy, of order m, the length of every cycle must be a divisor of m

and it is well-known that the cycle index Z. (s,,5,,...,s,) in this case is

2T

1
Zi (814855008, )=—
& mig

where r|m means r divides m and ¢ is Euler's function defined by ¢(1)=1 and forr=2,3, ...
, @(r) is the number of integers s between 1 and r inclusive which are relatively prime to r
(i.e. the greatest common divisor of s and r equals 1). The values of ¢ (see Table 1) can be

obtained either from the definition or from the fact that (see, for example, [14, p77])
o)y =r(1-Y p)1-1/p,)..A=1p,)

where pi, py, ..., px are all the distinct primes dividing r. So, for example,
#(12)=12(1-1/2)(1 1/3) 4.

Table 1 Euler's function
r 1 (2314|5167 ]8[9]10]1 12
o(r) 1 11224 |21614]6 4 10 4

In the case of four types of processes, the substitution s, = p" + Q" +T" + V" in the cycle

index produces the generating function

1 ‘
2P +O T VY
rm
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When this is expanded explicitly into the form of a power series

Ze(m,.m!,m‘,m‘,)p""Q"”T""V’"‘ .

ey e my=m

the coefficient e(m,,m,,m,,m,) is the number of cycles of length m = m| + ma + ms + my

which contain m; processes of type p, m» of type O, m; of type T and ma of type V.
With n types A1, 4a, ... , A, of processes, the corresponding substitution is
s=Al + A+ .+ AL

The total number ey, of cycles of length m is obtained by setting 4, =4, =... = 4, = 1, so that

s, = n for all r and, therefore,

epy =3 B

m

¥lm

So, with cycles of length 3,
e,= %{(ﬁ(l)n‘ +¢(3)n} = %{n‘ +2n}.
In particular,e,, =11 and e, , =24.
With cycles of length 4 and n types of processes we obtain
8= %{aﬁ(] W+ PN + @A) = %{n“ +n’ +2n},
eg e, =70.

But this does not take into account that no two equal types of processes are allowed to follow

each other.

With restrictions on which types of processes may immediately follow which, the above
calculations need to be modified and smaller numbers will be obtained. With cycles of length

three, simple arguments can be used. Each element in a three cycle is adjacent to the other
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two, hence, if the only restriction is that no type of process is next to itself, then each of the

three types in the cycle must be different. Thus there are [:] ways to choose the three

elements and, if cycle (a, b, ¢} is a regarded as different from (a, ¢, b), then there are Z[ZJ
different cycles (see the m =3 column in Table 3).

For cycles of size m > 4, however, such a simple argument is not available. Instead, a
modification of Pélya's Theorem can be used in which each s™'" in the cycle index is
replaced by the trace of an appropriate matrix. The method is explained by Lloyd [8] who
considered the problem of enumerating necklaces using beads of several different colours
where there are restrictions on which colours may appear next to which. By changing the
words (bead — process and colour — type of process) the ideas in that paper can be applied

to the present problem.

The matrix T used in [8] will be called M here in order to avoid confusion with the
isothermal process. Also, Lloyd used the dihedral group D,, but using the cyclic group C,,
only requires replacing the cycle index of the dihedral group by that of the cyclic group. With
the dihedral group, a cycle such as ( p, ¥, O, T') is regarded as the same as the reverse order
cycle (p, T, O, V') whereas they are counted as separate cycles when the cyclic group is used.

Lloyd's paper consists solely of theory and is not illustrated with any examples.

For n types Ay, 43, ... , A, of processes, the n x n matrices M, M, and B are defined by (see

(81

entry (M); = A; if process 4; may immediately follow process 4; and (M); =0 if not;
entry (My); = (My)', r=1,2, .3
entry (B); =1 if (M); # 0 and (B)y = 0 if (M) = 0.

So, for example, with four types p, O, T, V of processes where no type is adjacent to itself

(and with no other restrictions on adjacency) the matrices are:
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0o oTV 0 QO TV 01 1 1
OTV r LA 724
si=|P M=|? TV’BEIOIl
pQO0OYV P 0 v 11 01
p OT 0 pO T 0 1110

The substitution required in the cycle index in order to obtain a generating function for the

present case with adjacency restrictions is, forr=2,3, ...,

se=tr(M"7),

r

so the required generating function is

Pt (M).

!
M olm

The total number of cycles is again obtained by putting 4; = 42 = ... = 4, = 1. Each M, then

becomes equal to B. Hence:

Theorem With n types of processes, the total number e,,(B) of cycles of length m with

adjacency restrictions specified by the matrix B is, form=2,3,4, ..andn=1,2,3, ...,

en(B) = #Z(ﬁ(r)lr(B"”').

rim

It should be noted that some of the cycles included in this count do not use all the types of
processes. For example, with four types p, O, 7, ¥, the number e4(B) would include cycles

suchas (p, T, p, V') in which Q is not used. Such cycles are wanted in the enumeration.

Thermal Cycles with Four Types of Processes and Lengths Three, Four and

Five

In this case, the matrix B is the 4 X 4 matrix above and to solve the cycle enumeration

problem, a knowledge of its powers is required. The first five are:
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01 117 [3222] 6777 [21 202 2] [60 61 61 61
1 01 1| |2 3 2 2 T 6 T T 20 21 20 20 6l 60 o] 61
1troa] 223200776720 20 21 206 61 60 61|
111 0] |2223] (7776 [202 20 216 6 61 60

The corresponding traces are:
tr(B) =0, (B =12, w(B)=24, w(B*)=84, t(B)=240.

For cycles of lengths 3, 4 and 5, therefore, with four types of processes, the theorem can be

applied to conclude that:

ex(B)= —{p() te(B) + p(3) r(B)} = %{(1X24)+(1><0)}=8;

_ W=

ex(B)= - {p(D) tr(BY) + $(2) (B + p(ANr(B)} = % {(1%84) + (1x12) + (2x0)} = 24;

E=

es(B) = é {e(1) r(B%) + P(S)tr(B)} = % {(1x240) + (4x0)} = 48.

These numbers agree with those found by the Mathematica program already mentioned. The

program yields 8 cycles of length 3:

{p TV, (P TO(P V. T)(p. V.0, (P, O T) (2, Q. V). (T V. O (T, O, V)

However, a close consideration shows that, for example, (p, T, V') and (p, ¥, T') are the same
cycles, but gone through the other way round. This leaves effectively only four 3-cycles to be
considered. Furthermore there is a certain ambiguity as to how to draw a cycle. For example it

could well be discussed in the classroom whether the cycles (V, p, T')

p
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are equivalent. Of course they are not, giving again a total of eight different cycles — but this

has nothing to do with the enumeration process.

One of the calculations above shows that there are 24 cycles of length 4; the cycles

themselves can be found by using the Mathematica program which yields:
T T)(p Lo V) (2. TP, O (P, T.V.T).(p, T.V,O),(p, T, O, T),
(. LV (P V., V) (. V. O (p, V.TV)(p, V,T. Q) (p, V, O, T),

BV, 0V, 0, 0 (2, QT V) (p. Q. T.OL (2, OV, T), (p, O, V, 0),
TV, TV LV, T.OW TV, V)(T.O,.T.O(T,0, V.0, (V. 0, V, 0)}.

The reader may care to draw closed cycles in the p-¥-plane corresponding to these 24 cycles
in a clockwise manner ( this corresponds to transferring heat to work ). This can be done for
23 of the cycles, but it does not seem to be possible to obtain a closed cycle for number 7, ( p,

T, 0, V') while a counter-clockwise cycle is perfectly possible.

Carnot’s cycle is (T, 0, T, O), number 22, which is technically hardly feasible (7) due to the

high pressures involved. The program gives the entropy-changes for the single steps

¥V, V.
log| =~ |, 0, log| ~= |, 0
(Dg[Vz] 0g|:VJ ]
summing up to zero as it must be.

Further cycles may be mentioned

Diesel cycle : (p. O, V., Q)
Otto cycle : Q.70
Ackeret-Keller cycle : (p.T,p.T)
Joule cycle ; (p, Q. p, Q)

The main difference between a diesel and normal fuel engine is the retardation of combustion
so that the expansion proceeds at constant pressure. This needs a more stable construction, but

gives higher efficiencies.
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Thermal Cycles with Four Types of Processes and Length m

1t is not difficult to obtain an explicit expression for the trace tr(B') of B forany t=1,2, ...

and any n. The details for the case n =4 are now given.

The simple structure of B carries over to its powers. For each ¢ = 1, 2, ... all the diagonal
entries of B' are identical and so are all the off-diagonal entries. Furthermore, if 7 is odd then
the off-diagonal entries are 1 greater than the diagonal entries, but if # is even then they are 1

less.

Let g, denote the common diagonal entries of B’ and b, the common off-diagonal entries.
Then, since B = BE',

aii B B B 011 1][a b b B8
by by | |1 01 1|k a4 b B
b by @ b | |11 0 1|8 b a b
by by by @ 1 11 0fld b b a

i+l 1+l

Equating the (1, 1) and (1, 2) entries on both sides, it follows that

a1 =3b, M

by =a,+2b,. @
These relations enable values of a,, b; and tr(B) = 4a, to be calculated recursively, but explicit
expressions can also be obtained. Replacing t by ¢ + 1 in (2) gives

b = ap) + 2by. (3)
Then eliminating a;:) between (1) and (3) leads to

b, =26, —3b, =0,

141

This is a standard type of recurrence relation (second order linear homogeneous with constant

coefficients) discussed in, for example, Barnett [15, Chap. 5]. It has a solution of the form

b= ok + pA,
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where A4, and A, are the roots of the auxiliary equation
A -24-3=0,

and @ and S are constants which can be evaluated by using the initial conditions &, = 1 and

bz:2,

(Some readers may be more familiar with solving analagous differential equations. The
corresponding differential equation here is ¥ —2x—3x =0 for which the solution takes the

form x(t)=ae™ + fe™ )
Itis, therefore, easy to deduce that
b= L -1,
4
o %@"' ~(=h},

t(B) = 4a,=3{3"" —(-1)""}.

Although these explicit solutions can be used to calculate values for any given ¢, in order to

build up a table, it is easier to use the fact that the quantities satisfy the following relations:

b =35+ (_])J s
an =3a- (-1)',
tr(B"") = 3{ tr(B) - 4(~1)' }.

Values of the traces tr(B') are given in the » = 4 row of Table 2.
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Thermal cycles with # members and length m

The details here are exactly parallel to the case n = 4. The starting matrix B is now nxx but,
as before, all diagenal entries equal 0 and all off-diagonal entries equal 1. The coefficients 3

and 2 in equations (1) and (2) change to n—1 and n - 2 respectively, but the new relations

a,, =(n-0p,

b, =a +(n-2)b,

can be solved in exactly the same way to get

b= Li(n-1) (1)),

a= T (=1 = () = b+ 1)

(B) = na,= (n-1) {(n=1)'" ~(=1)""}.
In this general case, the traces satisfy

tr(B"') = (n=1) {tr(B) —n(-1)'}.

Values of the traces forn=1, 2, 3, ... and t =2, 3, 4, ... are given in Table 2 and values of the
numbers e,,(8) in Table 3.

Table 2 Values for tr(B') where B is nxn

n-f|1l] 2 3 4 5 6 7 8 9 10
1 01 0 0 0 0 0 0 0 0 0
2 of 2 0 2 0 2 0 2 0 2
3 0 6 6 18 30 66 126 258 510 1026
4 0] 12 24 84 240 732 2184 6564 19680 59052
5 0 20f 60| 260 1020 4100| 16380 65540 | 262140 [ 1048580
6 0| 30| 120| 630 3120 | 15630 | 78120 | 390630 | 1953120 | 9765630




149

Table 3 Numbers e,(B) of cycles of length m with n types of processes

nm| 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0
2 1 0 1 0 1 0 1 0 1
3 3 2 6 6 14 18 36 58 108
4 6 8 24 48 130 312 834 2192 5934
51 10§ 20 70| 204 700 2340 8230 29140 | 104968
6| 15| 40| 165 624 2635| 11160 | 48915| 217040 | 976887

Conclusion

This paper considers the problem of enumerating the number of closed loops in the p-¥-plane

consisting of given parts and representing thermal cycles.

Carnot’s cycle, well known to students of natural sciences or chemistry is only one out of
about 24 cycles having four steps which can be constructed using isothermal, isochoric,

isobaric and adiabatic processes.
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