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Abstract

Two graphical approaches have been presented to obtain marks of a group,
where one approach is based on a set of homomers and the other is based on a
set of equivalent ligands. These procedures have been illustrated by using the point
group D3 as a common example. Comparison of these approaches has revealed that
their foundation comes from the one-to-one correspondence among a homomer set
H[G(/G:)], a ligand set £[G(/G,)], and a set of coscts G /G, which are all assigned
to the coset representations G(/G;), where G is a group and G; is a subgroup of
G.

1 Historical Background and Definitions

Character tables have long been used in the study of infrared and Raman spectroscopy
1, 2] and in the modeling of molecular movements [3, 4, 5], as found in many textbooks.
Mark tables are not, however, so common or popular as character tables. Historically,
Burnside (1911) published some mark tables for a few groups in the 2nd edition of his
famous book [6] but attracted only little attention. Redfield thought he had (re)discovered
these tables in 1937, as found in his article published far after his death [7]. Lloyd [8]
pointed out to one of the authors (S.E.) that the copy of Burnside’s book used by Redfield
was the first edition of Burnside’s book which did not contain marks. It seems, then the
copy of Burnside’s book which was found in Redfield’s personal library (after he died) was
the first eddition which did not contain marks! It seems, then, that both mathematicians,
Burnside and Redfield, did independently use these functions, viz.. marks of a group.
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Fujita recently revived interest in these tables and developed a versatile theory of the
combinatorial enumeration of (stereo)isomers [9]. Fujita's approach requires people who
think mathematically and, consequently, is likely to rule out organic chemists who will
certainly benefit from the theory of marks (if they are willing to think in an abstract
way).!

The objective of this work is to present two graphical (almost nonmathematical) ap-
proaches to calculating marks of chemically important groups. These approaches work
for all groups that are important to discuss stereoisomerism and stereochemistry. Instead
of using abstract algebraic methods we use simple geometric methods such as rotation
and/or reflection of (colored or substituted) graphs especially designed according to the
symmetry operations of the group. In order to be able to understand the method we need
to define cosets and coset representations of a group.

1.1 Cosets and Coset Representations of a Group

Normally a group is expressed as a set of symmetry operations. For example, for the
chiral dihedral point group Dy we write:

Dy = {I,C,,C},C5,Cy, C3}, 6]

where the elements (three two-fold axes and one three-fold axis) of symmetry are pictor-
ically illustrated on trans-transoid-trans-transoid-trans-perhydrotriphenylene (1) and on
a fixed cyclohexane derivative with six subsitutents (Q) of the same chirality (2). The
substituent Q may be selected from chiral ligands such as R-CXYZ, S-CXYZ etc. Note
that the three two-fold axes which respectively correspond to the rotations C», Cj3, and
C% are perpenticular to the three-fold axis for the rotations Cj and C2.

Cs Cy

& ;

Figure 1: A perhydrotriphenylene and a fixed cyclohexane both of Dy-symmetry. Each
of the terminal cyclohexane rings (1, 2, and 3) in the former molecule belongs to Ca-
symmetry. The symbol Q in the latter molecule represents a chiral substituent. Each of
the segments (Q,C—CQ,, 7 = 1,2,3) belongs to Cy-symmetry.

A more general way of depicting (envisaging) the symmetry operations of a group G is to
construct a geometric object (graph) which remains invariant (stabilized) only under the

'One of the authors (S.F.) has recently reported a nonmathematical article to discuss stereochemistry
in terms of this approach [10], since he is a synthetic-organic ¢hemist of part-time mathematical thinking.
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Figure 2: Cyclopropane derivatives of Dy-symmetry. The symbol & represents the three-
fold axis. Each encircled ligand (o~ C-0) of 3 belongs to C», because the plain con-
taining the ligand is slightly slanted. The symbol Q) represents a chiral substituent. Each
of the encircled ligands (Q—C—Q) belongs to Cy-symmetry.

symmetry operations of G. When G = Dj, a convenient model (3 or 4) is selected as
shown in Fig. 2, where a cyclopropane skeleton is used after the reduction of the original
Djp-symmetry. The distorted cyclopropane ring of 3 has Dj-symmetry, where the planes
containing H-C-H (o-~C ) are not perpendicular to the cyclopropane ring but are
slanted by the same angle.® The other model (4) for reducing the original symmetry
is obtained by placing six chiral subsituents (Q) of the same chirality, e.g., R-CXYZ or
S-CXYZ. Construction of such models is the key point-of our graphical approach.

The group Dj; has four subgroups and writes this sequence of subgroups, SSG (a set of
subgroups), as follows:

SSG(D1) = {C],C-;,C;,D;g}, (2)
where C, = {I} or {E}; Cy = {I,Cy}; and Cy = {I,C;, C3}. Note that the group C, is
selected as a representative of three conjugate subgroups, because an equivalent SSG can
be obtained by selecting another subgronp, C, = {I,C3} or C4 = {I,C4}.

The elements of a group can be classified in terms of one of its subgroups, e.g.,

D3 = Cz[ + Cgc:g + CQC‘?, (3)
where we obtain
Cyl = {I,Cy}, CyCy = {C3,Cy}, and  C,0f = {C3,Ch} 4)

by referring to the multiplication table of D3.* The subsets of elements on the right-hand

A thick-line bond and a dotted-line bond incident to the same carbon atom (C*) are contained in
a plane, where the bisecting line of the angle of H-C*-H is identical with that of the angle of C-C*-C.
Thus, the thick-line bond is directed upward from the page planc by an angle less than 90°, while the
corresponding dotted-line bond sinks by the same angle.

3If we take a graphical approach thoroughly, another method of explanation should be considered
instead of such a multiplication table. For example, let us consider C2C3 = €, which appears in the
derivation, C2Cy = {105, CaC3} = {Cy,C3'}. Atom 1 in 3 is converted into atom 3 by the operation (5
(Fig-2). Then atom 3 is converted into atom 2 by the operation Cy. The total effect of CoC's corresponds
to the conversion of atom 1 into atom 2, which is identical with the effect of the operation CY. Thereby,
we obtain C5C3 = Cy without using the multiplication table of Dj3. For the sake of simplicity, however,
we sometimes take such a compromised but convenient way as found in the text.



124

Table 1: Coset Representation D3(/C5)

Sym. opn. | Col CyCy CoC3: | D3(/Cs)
(labeled)
1 2 3

I 1 2 3| (H)B)
Cy 1 3 2 | 1)E3)
cl 3 2 1 (2)(1 3)
cy 2 1 3 3)(12)
Cy 2 3 1 (123)
C? 3 1 2 (132)

side of eq. 3 (or eq. 4) are called (right) cosets and one writes them as a set of cosets:
D3/C» = {C21,C5C;,CxC3}, (5)

where the cosets are explicitly represented by eq. 4. Equation 5 (or eq. 3) is called a coset
decomposition of Dy in terms of Cy.

When all the symmetry operations are applied to the three cosets on the right-hand sides
of eq. 5, one generates a permutation representation (PR) called a coset representation
(CR) of a point group, D; in this case, by one of its subgroup, here C,. This particular
CR is abbreviated as D3(/C>), since this is concerned with the coset decomposition
expressed by eq. 5. Table 1 outlines the resulting permutations, which are expressed as
products of cycles after the cosets are labeled as 1, 2, and 3. Note, for example, that
the product of cycles (1)(2 3) for the symmetry operation C; represents the fixation of
1 (one-cycle) and the interchange between 2 and 3 (two-cycle) and that the product of
cycles (1 3 2) for the symmetry operation Cj represents a cyclic rearrangement, 1 - 3 «
2 « 1 (three-cycle).

Now to obtain the marks one counts the number of fixed cosets (i.e., fixed points) under
the operation of subgroups. This number is called the mark of a given subgroup (i.e.,
corresponding to a given CR). To do this we collect the permutations and list. the sub-
groups in a non-descending order (i.e., find SSG). The elements forming a subgroup are
“marked” as the symbol / and the fixed points are counted. This is illustrated in Table
2. For example, the mark for C, is the number of one-cycles common to its elements
marked with /, i.e., (1)(2)(3) and (1)(2 3). Then, the mark is obtained to be 1. When
the above procedure is repeated for all subgroups and the resulting rows are assembled in
the order of SSG, one obtains the mark table (MT) of G. Table 3 gives the MT for Dj.
Many such tables are collected in the appendix of Fujita’s book [9]. With some concen-
tration and experience of using multiplication tables (cf. keeping track of multiplication —
order of elements), an organic chemist may succeed in deriving the above and such tables
especially for groups not possessing very large orders.

However, the mathematical description of chemistry or physics, which is necessary to
understanding, does not always leave things “flowery”. For example, the mathematical



Table 2: Calculation of the Row of Marks (MR) of D3(/C5)

SSG
Sym. opn. Ds(/Cy) €, Cy C3 Dy
d mEG3 v v vV

Cy (1)(2 3) v v
Cs (2)(13) v
&4 (3)(12) v
C (123) v oV
3 (132) v

MR[Dy(/Cs)l= (3 1 0 0)

Table 3: Mark Table of Dy

Cl CZ Cﬁ D.’l
Dy/c)| 6 0 0 0
Dy/Cy)| 3 1 0 0
Dy(/Cy) | 2 0 2 0
Dy(/Dy) | 1L il 1 1
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description of a given CR is given for a group G and a subgroup H:
G(/H)={r, | Y9€G}, (6)
where 7, is the permutation corresponding to the symmetry element g is denoted by

_(Hﬂl Hgy - ng)
Ty = ;

7
Hgig Hgy -~ Hgyg @

where r = |G|/|H|. In Table 1, g is “resolved” into the elements of Dy (eq. 1) and H
into the SSG (eq. 2).

In fact, the degree of abstraction given by eqs. 6 and T may be sufficient to repell most
experimental chemists of such a topic. However in the presence of “motive” such a chemist
may not decide to close the book, instead, does some extra effort. So what is the benefit
behind this game? As far as organic chemistry is concerned, the theory of marks opens
the door to two important aspects.

A. Combinatorial Chemistry: Enumeration and classification of (stereo)isomers into
their subgrups. In contrast to theories of Pélya-Redfield enumeration [11] and Bal-
asubramanian’s wreath-product method [12], only the “Enumeration Journey” of
Fujita [9] leads to the so-called Isomer-Counting-Matrix (ICM)* which counts how
many isomers are there in each subgroup. The former schemes other than the ICM
give only total counts. So the “extra” effort of finding out mark tables is rewarded
by the generation of the ICM. To illustrate this remarkable difference we cite be-
low the generation function (GF), Z(z + y), of all isomers of cyclopropane whose
hydrogen atoms (variable z) are substituted by one type of substituents (variable
)

Z(z +y) = 25+ 2 + 4a?y* + 428 + daty? + Oy +oF 8)
The above function according to the Pélya-Redfield theory does not say anything
about the stereochemistry of these isomers. The ICM of Fujita, on the other hand,
looks as follows (Table 4), where the numbers of isomers are itemized with respect
to two criteria: formulas (zy" for mone or CH,,Q,) and symmetries.

For example, three isomers characterized as z'y? and C-symmetry are depicted
in Fig. 3. This part of important chemical applications of the theory of marks of
groups will not be considered here but Fujita’s book [9] contains many examples of
such combinatorial enumerations.

B. Characters of Groups: This is the other vent of chemical applications of the theory
of marks. Although mark tables are not popular in chemical every-day use, as, e.g.
character tables, yet Fujita demonstrated that a row of marks of a given CR of a
group corresponds to the sum of irreducible representations (IR) of that group [19].
This remarkable finding is a “gift” to the experimental chemist who wishes to know
more about character tables but being hindered with the very abstract nature of

4Called by one of the authors (S.E.), the “Heaven of Fujita” [13)! But the other author (S.F.) calls
this the USCI approach in connection with USCIs (unit subduced cycle indices) that have newly been
derived from CRs and their subductions. Other approaches have been reported to enumerate isomers
with respect also to symmetries of isomers [14]—[18], but they have not put emphasis on CRs and their
subductions.
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Table 4: ICM of Cyclopropane Derivatives

Cl C‘Z CS D3
S o0 0 0 1

z8
i, ay [ 10 0 0
ety 1 3 0 0

iy, 3 0 1 0

Figure 3: Three isomers of C; corresponding to zy* (four o and two ). Isomers 6 and
7 are diastereomers because we use the distorted cyclopropane skeleton (see text).

representation theory. We will elsewhere present a nonmathematical approach to
obtaining 1-dimensional characters from marks of a group, since the mark tables
are somewhat ecasier to obtain than character tables.

2 Graphical Approaches of Marks

2.1 Graphical Approach Based on an Orbit of Homomers

Chapter 15 of Fujita’s book [9] has revealed that isomers derived from a skeleton of G-
symmetry are classified into several sets (orbits) of homomers of each subgroup (G; C G)
on the action of G and that ecach orbit of homomers belongs to the CR (G(/G,)). This
fact was originally used to combinatorial enumeration in Fujita’s book. But, it is applied
here to obtain marks of the gronp G after introducing an appropriate graph (regular
body).* Thus, we adopt the following procedure:

Step 1: I'ind a graph (regular body) which remains invariant (fixed) specifically under the
symmetrical operations of the group.® The number of vertices (substitution sites)
in such a graph must be equal to the order (the number of symmetrical operations)
of the group.

The word specifically is crucial. Take, e.g. the point group Dj (eq. 1), where
|Dy| = 6. Strictly speaking, cyclopropane itself is not suitable as a graphical model

h

5For other qualitative applications to sterec istry, see [20].

®0ne of the authors (S.F.) has referred to this graph as regular body, since this graph corresponds to
a regular representation G(/G) [19]. A general diagram for such regular bodies has been depicted as
Figure 7.1 in Chapter 7 of Fujita’s book [9]. Figures 7.2, 7.3 and 7.4 have given illustrative examples of
regular bodies for Dy, and Ty
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for Dj, although it has six hydrogens as substitution sites. Since cyclopropane
belongs to Dy, it remains fixed also under three dihedral reflections (o4's), one
horizontal reflection (o), and two rotoreflections (S and S%), which may lead to
wrong marks. The two promising ways for reducing the original symmetry have
already been described, i.e. the use of the distorted cyclopropane ring of D (3)
and the substitution with chiral substituents (Q), as shown in 4 (Fig. 2). A further
way is illustrated in Fig. 4, in which a model with two superimposed triangles that
are slightly rotated to each other. Note that such a model can be obtained as one
conformation of ethane.

Figure 4: A Dj-model with superimposed triangles. The line through their centers is
perpendicular to their planes, where the triangle drawn in thick lines is an upper one.

Step 2: Find the sequence of subgroups, SSG, and order the subgroups in a nondescend-
ing way and whence find all CR’s: G(/G,), i = 1,2,...,s where s is the number of
subgroups in the SSG. In general, G, = C, = {I} and G; = G. One recalls here
the two “terminal” CR’s: i.e. the regular representation G(/C,) and the identity
representation G(/G).

Step 3: In this step we find a set of colored graphs which models (represents) each CR.”
So the number of these sets is equal to the number of subgroups and to the number
of CRs.

The members of each set may be called homomers (h’s) and the set itself is an
equivalence class (orbit) given by the symbol H = H[CR] = H[G(/G)].

For an extreme case, the identity representation G{(/G) corresponds to the nncolored
graph (h) which generates the symmetry operations of G. In general, the cardinality
of H|G(/G)] is equal to 1. For example, we can select the graph 3 (Fig. 2) as a
single homomer for Dy(/Dy), i.e, H[D3(/D3)] = {3}.

For general cases of G(/G;) (¢ = 1,2,..., ), the symmetry of the graph must be
reduced by coloring (substituting) some of the vertices of h (€ H[G(/G))), ie.
the single homomer which models the identity representation. The colors are used,
say, black and white so that the resulting graph is fixed under the operations of
G;. Conventionally, when there is a choice, the number of black vertices is less
than the number of white (open) ones. The resulting colored graph is denoted as
b € HIG(/G)L.

Step 4: To find marks, we count fixed colored graphs (contained in H[G(/G;)]) on the
action of each subgroup of the SSG.

"One of the authors (S.F.) has once discussed this item in terms of subductive and inductive derivation
for designing molecules of high symmetry [21].
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Example 1 [An Orbit of Homomers for D;(/C,)]:

(Step 1) To find one (h;) of the homomers which belongs to H[Dj(/C5)], we start from
3 as a regular body (h € H[D3(/D;)]), where the six vertices are numbered arbitrarily,
as found in Fig. 2.

(Step 2) We have obtained the SSG for Dj. as shown in eq. 2. Now, we select Cy =
{1,C3} for the next step.

(Step 3) When the operations of C, are applied to the set of vertices of 3 as h, one
obtains three sets (“color-equalities™) of equivalent vertices: {1,4}, {2,6}, and {3,5}.% It
follows that candidate homomers which remain fixed only under C; are determined to be
5, 6, and 7 shown in Fig. 3. Since these candidates give equivalent results, we tentatively
select 5 as hy (€ H[Ds(/C5)]). as shown in Fig. 5.

In order to obtain other members of the set, one applies all of the symmetry opperations
of the “mother group” Dy to hy, as shown in Fig. 5. The operations I and C; involved
in C; fix h; invariant. The operations C3 and C? in the coset C>Cj produce a homomer
hy (5b), while C3 and C in the coset C,C3 produce another homomer hy (5¢). Hence,
we obtain H[D3(/C3)] = {h;, he,h3}, where the homomers are depicted in Fig. 5.

.o oo
.Y,
o/ 0 o/ :
h, 5a (= 5) hy 5b hy 5¢
Col = {I,C}} CaCy={C5,CI} CaC2 = {CZ,C}

Figure 5: An orbit of homomers H[D3(/C5)| generated by symmetry operations of Dj.
The symmetry operations of cach coset, convert hy into the corresponding homomer (hy,
hy, or h3). For a portray of symmetry operations, see Fig, 2.

The order of H[D3(/C3)] is equal to |Dj|/|Cy| = 6/2 = 3. This is a general result, viz.,
HIG(/G])| = |G|/IG], (9)

which can be easily proved as a corollary of Theorem 15.2 of Fujita's book [9].

(Step 4) It is (almost) trivial to find marks from the colored graphs by inspection, e.g.,
from H[Dy(/C,)] listed in Fig. 5. List the graphs which remain invariant under the
symmetry operations of each subgroup in the order of the SSG of the group Dj. For the
case of Dy(/C'), one obtains the following mark row (MR):

C, Cy C3 Dy
{hi, he, by} {hy} {0} {0}
3 1 0 [}

where {(#} represents an empty set. i.e., no homomers belonging to H[D3(/C5)] are fixed
under C». The MR (3 1 0 0) is algebraically the same as the second row of Table 3.

8 According to the USCI approach [9], this division is ascribed to the subduction of the regular repre-
sentation, i.e., Da(/C\) | Ca = 3C4(/Cy).
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The above procedure can be systematically done as follows. Place the individual homo-
mers in a row, and check if a subgroup at issue fixes each homomer. The checks are

counted for each row. For the case of D3(/C5), one obtains the following mark row
(MR):*

hl hg h; sum

v vV Vo3
C; v 1
H[Ds(/Cs))
[ ] O O .
N >\ C Cy Cy Dy
o —eo @ —0 {hi,ho} {6} {h;,hy} {0}
o/ e 0/ ‘e 2 0 2 0
hy he

o] C; C; Dy
{hi,....he} {0} {0} {0}
6 00 0

Figure 6: Orbits of homomers, H[D3(/C3)] and #[D3(/C1)], and the resulting MR's.

In a similar way, other mark rows for D are obtained. The corresponding sets of homo-
mers, i.e., H{D3(/C;)] and H[Ds(/C1)|, and the resulting mark rows (MR’s) are shown
in Fig. 6. The MR's are the same as the corresponding rows of Table 3. )

Although the theoretical foundation of the above procedure has been dissussed in general
in Chapter 15 of Fujita’s book [9], it is worthy to mention the detailed features of the
present case. As found in Fig. 5, the action of the symmetry operation C3 on the set
H[D;(/C2)] = {hy,hy, h3}, for example, produces another ordered set {hy, hs, hy}. This
operation corresponds to the following permutation or cycle (or generally the product of

cycles):
h, hy hy 1 2 3)=
(h2 hy hl) (3 5 1)=023 0]

Thus, we obtain permutations: (1)(2)(3) for I, (1)(2 3) for C,, (2)(1 3) for C} (3)(1 2) for
Cy, (12 3) for Cy, and (1 3 2) for CZ, when we apply every symmetry operations of Dj

91t should be noted here that this systematic way has been used in the enumeration of isomers. See
Table 15.2 of Fujita’s book [9].
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to the set H[D3(/C4)]. These permutations are identical with those collected in Table 1
that has been calculated by the algebraic consideration of cosets. Here we replace such
algebraic symbols with objects (colored graphs) whose rotations and/or reflections can be
more easily envisaged from the chemists’ point of view.

The replacement can be verified by the fact the set H[D3(/C3)] = {hy, hs, h3} corresponds
to the cosets in eq. 5 in one-to-one fashion via their labels (h; « 15 hy < 2: and hy + 3).
More concretely speaking. the cosets listed in Fig. 5 linked with the respective homomers
involved in the set H[D4(/C5)]. In other words, the set H[D3(/C5)] is ascribed to the
CR D3(/C5)."* Thercby, the stabilizer of h; is determined to be Cj, which indicates
that the homomer h; belongs to the Cy-symmetry. In a similar way, hy belongs to the
C-symmetry and hy belongs to the C5-symmetry. They are homomeric so that the three
groups (Ca, C’, and C) are conjugate to each other within Dj.

2.2 Graphical Approach Based on Orbits of Ligands

According to Lemma 7.1 of Fujita’s book [9], a regular body characterized by a regular
representation G(/C)) has blocks (ligands) of G;-symmetry so that they construct an
orbit governed by G(/G;). This fact is applied here to give an alternative method for
obtaining marks of the group G.

Step 1: The same procedure described in the preceding subsection is followed. The
subsitution sites of the selected graph (regnlar body) construct an orbit governed

by G(/C1).
Step 2: The same procedure described in the preceding subsection is followed.

Step 3: We select a set. of blocks of G; symmetry from the substitution sites of the
selected graph. The set models the corresponding CR G(/G;). The members
(blocks) of each set may be called ligands or segments (£'s) and the set itself is an
equivalence class (orbit) given by the symbol £ = L[CR] = L[G(/G.)]-

Step 4: To find marks, we count fixed ligands (€ L|G(/Gi)]) on the action of each
subgraph of the SSG.

Example 2 [An Orbit of Ligands for Dy(/Cx2)):

(Step 1) Let us now consider the distorted cyclopropane 3 shown in Fig. 2, where the
six subsitution sites numbered as 1 to 6.

(Step 2) The same procedure in Step 2 of Example 1 is followed.

(Step 3) When the operations of C'y are applied to the set of vertices of 3 as the regular
body, one obtains three sets of equivalent vertices: {1,4}, {2,6}, and {3,5}. Since these
candidates of a ligand set give equivalent results, we tentatively select {1,4} as a ligand
£ (€ £[D3(/C3))), as encircled in Fig. 2.

In order to obtain other members of the set, one applies all of the symmetry opperations
of the group Dy to #;, as shown in Fig. 2. The operations I and C5 involved in C fix £,
invariant. The operations Cy and Cj in the coset CpCj produce a ligand & (= {2,5}).
while C% and C in the coset C>C? produce another ligand 43 (= {3, 6}). Hence, we obtain

This has been generally proved as Theorem 15.2 and Corollary 15.1 of Fujita’s book [9].
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L[D;(/C>)] = {1, ¢2,€3}. If more organic meanings are required, each encircled ligand
labeled as £, £5, or £3 may be considered to be a segment of 0—C—o (i.e., a substituted
methylene).

(Step 4) In a parallel way as described in Step 4 of Example 1, we list the ligands
(e L£[Ds(/C>)]) which remain invariant under the symmetry operations of each subgroup
in the order of the SSG of the group Dj. By referring to Fig. 2, one obtains the following
mark row (MR):

C, C;, C3 D

{6, £, 6} {6} {0} {0}
3 1 0 0

where {0} represents an empty set, i.e., no ligands belonging to L{D3(/C5)] are fixed
under Cy. The MR (3 1 0 0) is algebraically the same as the second row of Table 3.

L[Ds(/Cs)]
C, C, C3 Dy
{11213} {4r5|6} {211[2} {0} {flv’gz} {@}
I ¢ 2 0 2 0

LIDy(/C))
C C: C; D

{1} --- {6} {6,,....6} {0} {0} {0}
Py wne ol 6 0 0 0

Figure 7: Orbits of ligands, £[D3(/C4)] and L[D3(/C))], and the resulting MR’s. For a
portray of symmetry operations, see Fig. 2.

According to this approach, other mark rows for Dy are also obtained. The corresponding
sets of ligands, i.e., £[D3(/Cj3)] and L[D3(/Ch)], and the resulting mark rows (MR’s)
are shown in Fig. 7. The MR’s are the same as the corresponding rows of Table 3.

Although the above procedure is based on the discussion described in Chapter 7 of Fujita’s
book [9}, it is worthy to mention of the present case in comparison with Example 1.
When we apply the symmetry operations of Dy to the set of the three ligands, we obtain
permutations: (1)(2)(3) for I, (1)(2 3) for Cy, (2)(1 3) for C5 (3)(1 2) for €Y, (1 2 3) for
Cy, and (1 3 2) for C3. These permutations are identical with those collected in Table 1.
This means that the cosets in eq. 5 correspond to the ligand set £[D3(/C>)] in 3 (Fig. 2)
in one-to-one fashion via their labels. In other words, the set of the ligand set is ascribed
to the CR Dj3(/C5). Thereby, the stabilizer of ¢, in 3 is determined to be C’, which
indicates that the ligand ¢, belongs to the Cp-symmetry.!" In a similar way, the ligand
£, belongs to the Cy-symmetry and the ligand £; belongs to the C-symmetry.

11f one considers an unsubstitued cyclopropane ring (D3y,), each ligand CH; belongs to C',-symmetry
(local symmetry). The introduction of the distorsion reduces the symmetry of the ring so as to restrict
the symmetry of the ligand (€, or 0—C—-Q) to Cs.
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Similarly, the symmetry operations of D5 are applied to the set of the terminal cyclo-
hexane rings (numbered as 1, 2, and 3) in the perhydrotriphenylene 1 (Fig. 1), to the set
of the ligands (Q,C  CQ,, n = 1,2,3) in the fixed cyclohexane 2 (Fig. 1), and to the
set of the ligands (CQ, mumbered as 1, 2, and 3) in the cyclopropane derivative 4 (Fig.
2), where each of the sets is ascribed to the CR D;3(/C3). Obviously, the symmetry of
each object (each terminal cyclohexane ring in 1, each ligand in 2, or each ligand in 4) is
determined to be Cy-symmetry. This treatment has been discussed in general cases [19].

2.3 Comparison of Two Graphical Approaches

As found in the above procedures and examples, the two graphical approaches are closely
related. The parallelism between the two approaches is illustrated in Fig. 8. It should be
noted that the distinct coloring of ligands £, £, and €3 generates homomers hy, hy, and hg
respectively. This means that the homomer set H[Dj3(/C5)] as an ordered set corresponds
to the ligand set £{D3(/C3)] in one-to-one fashion. Moreover, they correspond to the
coset, decomposition D3/Cy (eq. 5) as an ordered set:

HIDs(/C)]  L[Ds(/Co)) D;/C»

hy + £, o Col
1y © £y o Cy0y
hs ES A o C.C3

Thereby, H[Dy(/C3)], L[D3(/C:3)]. and. of course, D3/C are ascribed to the coset rep-
resentation D3(/C>). This is the foundation to the fact that H[D3(/C.)], £]Ds(/Cs)),
and D3/C> give the same marks as collected in Table 3.'2

Such relationships as illustrated in Fig. 8 hold true for any groups by virtue of the discus-
sions described in Chapters 7 and 15 of Fujita’s book [9]. The present results provide us
not only with practical methods for obtaining marks but also with a deeper insight into
stereochemistry and stercoisomerism. It is useful to summarize the results in the form of
atheorem: A homomer set H|G(/G5)], a ligand set L|G(/G,)], and a set of cosels G/ G,
are all governed by the same coset representation G(/G;).

3 Conclusion

The correspondence among a set of homomers H[G(/G,)], a set of equivalent ligands
LIG(/Gy)], and a set of cosets G/G; is discussed by virtue of coset representations
G(/G;), where G is a group and G; is a subgroup of G. This correspondence provides
us with two graphical approaches for obtaining marks of the group G. The procedures of
the two approaches are illustrated by using Dy as examples.

20ne of the authors (S.F.) has referred to this fact in his correspondence to the other author (S.E.) as
follows: ‘An organic chemist demanded to know the riddle and the Sphinx said “What is it that controls
elements in a group, controls atoms in a compound, and finally isomers in organic chemistry?” “Is it a
coset representation or a mark?” replied the organic chemist. The Sphinx found that her riddle was at
last answered and died as was fated. The organic chemist received his reward and he was made King of
the heaven.” Of course, this is a parody of a famous Greek myth [22].
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Figure 8: An orbit of ligands (£[D3(/C2)] = {1, ¢2,£3}) in a regular body (center, i.e. 3)
and an orbit of homomers (#[D3(/C)] = {hy, ha,h3}), which are assigned to the same
CR D3 (/Cy).
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